
 
 

 

 
Abstract—The prediction of operons is essential in order to 

understand transcription regulation in a given prokaryotic 
genome. An operon is a fundamental unit in transcription and 
contains specific functional genes for the construction and 
regulation of a network at the entire genome level. Correct 
predictions of operons are vital for understanding gene 
regulations and functions in newly sequenced genomes. In this 
study, we propose an improved binary particle swarm 
optimization (BPSO) for operon prediction in bacterial 
genomes. We train the proper values based on the Escherichia 
coli genome, and use five features, e.g., the intergenic distance, 
metabolic pathway, the cluster of orthologous groups, the gene 
length ratio and the operon length. As a result, we successfully 
selected three features to predict operons. Experimental 
results show that the prediction accuracy, sensitivity and 
specificity are better than in other methods.   

 
Index Terms— operon, transcription regulation, binary 

particle swarm optimization 
 

I. INTRODUCTION 

In prokaryotes, open reading frames (ORFs) belonging to 
the same operon are transcribed together into a single 
mRNA molecule [1]. In order to understand gene regulation 
in prokaryotic organism, it is important to determine the 
operon structure of their genomes first. 

Operon prediction can be used to infer the function of 
putative proteins. It provides valuables information for drug 
design and allows scientist to determine the protein function. 
However, a clear understanding of the rules of transcription 
in a cell is necessary to reliably predict operons. Operons in 
prokaryote organisms contain one or more consecutive 
genes on the same strand, and some eukaryotic organisms 
also contain operon-like structures [2]. In addition, as genes 
in the same operon are likely to be functionally related, the 
inferred operon structure may reveal the role of currently 
unknown genes. Genes are co-transcribed into a 
single-strand mRNA sequence. Understanding the rules on 
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which the transcription is based on critical to correct operon 
prediction.  

In recent years, many computational algorithms have 
been proposed to predict operon. Examples are the statistical 
log-likelihood scores [3], bayesian-based techniques [4], 
genetic algorithms [5], bayesian network [6], SVM [7], 
neural networks [8], classification [9], bayesian classifiers 
[10], ODB [11], DVDA [12], JPOP [13], and VIMSS [14], 
etc. Although these methods generally yield good operon 
prediction results, the accuracy of the prediction still leaves 
room for improvement. The various operon prediction 
methods for are based on many different features, e.g., 
intergenic distance [8], metabolic pathway [5], cluster of 
orthologous groups (COG) [8], gene length ratio [9], operon 
length [6], homologous genes [9, 13], terminator [6], 
promoter [6], microarray [5] and gene order conserved [11]. 

Of the features, the intergenic distance property is the 
simplest and most widely-used prediction property. It 
determines whether the distance between gene pairs at the 
transcription unit borders (TUB pairs) is longer than the 
distance between gene pairs within an operon (WO pairs). 
The most important feature is the transcription direction of 
the genes, which is a straightforward way of identifying the 
boundaries of certain operons as genes in opposite strands 
always form part of different operons. 

In this study, we propose an effective binary particle 
swarm optimization (BPSO) for operon prediction. We use 
the E. coli (NC_000913) dataset, which includes three 
bacterial genomes [Bacillus subtilis (NC_000964), 
Pseudomonas aeruginosa PA01 (NC_002516) and S. 
aureus (NC_002952)] for operon prediction. In a first step, 
the best possible combination of features is selected based 
on the concept of feature selection. ROC curves are used to 
implement the operon prediction. We selected five features 
commonly used in the literature, namely the intergenic 
distance, metabolic pathways, COG, gene length ratio and 
operon length. In a second step, the there most useful feature 
are employed used through feature selection to evaluate the 
operons. The experimental results indicate that the proposed 
method obtains a higher accuracy, sensitivity and specificity 
on the test data sets when compared to other methods from 
the literature. 

II. METHOD 

A. Data set 
The complete prokaryote genome data used for the tests 

was obtained from the GenBank database 
(http://www.ncbi.nlm.nih.gov/). A total of 4488, 4225, 5651 
and 2845 genes are contained in the E. coli genome, the B. 
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subtilis genome, the P. aeruginosa PA01 genome and the S. 
aureus genome, respectively. The related genomic 
information includes the gene name, the gene ID, and the 
position, strand and product of the gene. The experimental 
operons of E. coli and B. subtilis were extracted from 
RegulonDB (http://regulondb.ccg.unam.mx/) [16] and 
DBTBS (http://dbtbs.hgc.jp/) [17], respectively. The 
experimental operons of the P. aeruginosa PA01 genome 
and the S. aureus genome were extracted from the ODB 
(http://odb.kuicr.kyoto-u.ac.jp/) [11]. RegulonDB and 
DBTBS collect highly reliable data on experimentally 
validated operons of the E. coli and the B. subtilis genome 
[18], respectively. However, experimental operon data of P. 
aeruginosa PA01, S. aureus is not listed in any database. 
Hence, we referred to the literature [19] to extract 
experimentally validated operons from ODB (Operon 
DataBase). The metabolic pathway data and the COG data 
of the genomes were downloaded from KEGG 
(http://www.genome.ad.jp/kegg/pathway.html) and NCBI 
(http://www.ncbi.nlm.nih.gov/COG/). 

 
B. Operon pair definition 

In order to improve information related to studying drug 
and protein functions, operons need to be predicted based on 
an organism’s genomic sequence. The entire genome is 
searched for adjacent gene pairs, and each gene pair is 
divided into one of three types: (i) adjacent pair; (ii) OP pair; 
or (iii) NOP pair. The WO pairs and TUB pairs are defined 
based on biological experiments; these gene pairs are 
defined as positive and negative, respectively. If an operon 
consists of a single gene and the downstream gene of the 
operon is of unknown status, the adjacent gene is called a 
TUB pair (Fig. 1). However, if the upstream gene is the last 
gene of an operon and the downstream gene is of uncertain 
status, the gene pair cannot be labeled a TUB pair [10]. In 
addition, the first gene of an operon and the upstream gene is 
a TUB pair per definition. 
 
C. Operon features 

In this study, we use feature selection to select the most 
helpful feature. In a first step, we selected five common 
features and used Receiver Operating Characteristic (ROC) 
curves to express the relationship between the sensitivity 
and specificity value. In a second step, the ROC curves are 
used to identify where single feature groups have been 
removed the three most valuable features for operon 
prediction are selected and the features are individually 
described below: 

 
 

 
Fig. 1. Operon pairs sketch map 

 
a) Intergenic distance 

The intergenic distance between two adjacent genes 
within the same operon tends to be rather short, whereas a 
distance between two adjacent genes of different operons is 
relatively long [20]. Much evidence [5, 7, 8, 9, 11] supports 
the idea that the intergenic distance is the most important 
feature for operon prediction when it is applied to several 
genomes. 
 
b) Metabolic pathways 

Genes within an operon often share common biological 
characteristics and occur sequentially or contiguously to 
fulfill the same or similar functions in the same metabolic 
pathway [5, 20]. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) is one of the best resources for detailed 
pathway information; this data can be used to predict 
operons in many organisms.  
 
c) COG gene function  

Clusters of orthologous groups (COGs) of proteins [21, 
22] are defined by comparing protein sequences encoded in 
complete genomes. All conserved genes are classified 
according to their homologous relationships. The COGs are 
clusters of orthologous groups; individual orthologous 
proteins typically have the same function, and therefore 
genes in one operon often are in the same or a similar 
functional category in COG [14, 23]. 
 
d) Gene length ratio 

The score of the gene length ratio is determined by the 
natural logarithm of the length ratio of the upstream gene 
and the downstream gene [9, 19]. Boundary gene pairs are 
frequently coupled with small values of the natural 
logarithm of the length ratio [9], suggesting that the length 
of the downstream gene in proportion to the upstream gene 
influences the possibility of co-transcription of two adjacent 
genes. Therefore, the gene length ratio is one of the 
important features for operon prediction. 
 
e) Operon length 

Genes within one operon are co-transcribed in the same 
orientation. This characteristic can be used to predict if 
genes in a genome are clustered into operons. The operon 
length has been previously used as an operon prediction 
feature [6, 24]. Bacterial genomes, which typically contain a 
relatively high number of genes [25], are larger genomes 
that tend to display less clustering of genes into operons. 
Therefore, without normalization, the comparison of operon 
prediction performance between different genomes may be 
biased  

 
D. Binary particle swarm optimization 

The particle swarm optimization (PSO) algorithm is a 
population-based evolutionary algorithm that was 
developed by Kennedy and Eberhart in 1995 [26]. In PSO, 
each particle is considered a number of a swarm. Each 
particle makes use of its own memory and knowledge 
obtained from its neighbors to find the best solution. The 
best position among the path is travelled by some particles 



 
 

 

and called pbesti. The best value of all the individual pbest 
values is called gbest. At each generation, a particle’s 
position and velocity is updated according to its own pbest 
and the gbest value of the entire population this behavior is 
described by Eq. 1 and Eq. 2. 
 

)xgbest(rc            

)xpbest(rcvwv
old
idid22

old
idid11

old
id

new
id




   (1) 

new
id

oid
id

new
id vxx   (2) 

 
PSO is a method similar to a genetic algorithm, in which 

particles are initialized within a random population and 
search for global optimal solutions at each generation. 
However, PSO is not suitable for optimization problems in a 
discrete feature space. Hence, Kennedy and Eberhart 
developed binary PSO (BPSO) to overcome this problem 
[27]. The method involves a change in the way velocity is 
conceptualized. Whereas in a real number space velocity 
describes a change in position, if might better be thought of 
as a probability threshold when variables are optimized in a 
discrete space [27]. If a random number is smaller than the 

threshold, the variable new
idx is assigned a value of 1, 

otherwise it is 0. The function is defined below : 
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Thus the BPSO algorithm can be written as  
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where r1 and r2 are random numbers between (0, 1), and c1 
and c2 are both set to 2 [28]. Velocities      and      denote the 
velocities of a new particle and an old particle, respectively. 
The inertia weight w is linearly decreased from 0.9 to 0.4 [28] 
in the search process in order to optimally balance the global 
and the local search. The update function is defined below:  
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wmax and wmin are  set to 0.9 and 0.4, respectively.  movemax 
and movei represent the maximum number of iterations and 
the current number of iterations, respectively [28]. 

 
E. Improved Binary Particle Swarm Optimization 

At first particles attract each other the basic PSO 
algorithm because of the information flow of good solutions 
between particles. However, Riget et al. define a second 
phase repulsion [29] by “inverting” the velocity-update 
formula of the particles: 
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Fig. 2.  Initialization and encoding process 
 
In the repulsion phase the individual particle is no longer 

attracted to, but instead repelled by the best known particle 
position (gbestid) and its own previous best position 
(pbestid). 
 
F. Swarm initialization and code 
The initial condition is illustrated in the left part of Fig. 2. 
Because the first two adjacent genes (Gene1 - Gene2 = 63 
bps) have an intergenic distance less than the threshold (75 
bps), this pair is considered to be located in the same 
putative operon. Hence, the first element of the array is 1. 
Next, the two adjacent genes’ (Gene2-Gene3) distance is 
140 bps. Since the threshold is smaller than 140 bps, the two 
adjacent genes are of different operons, and thus second 
element of the array is denoted 0. The last gene is always 
represented as 0 in our encoding, and thus the final encoding 
of the particle1 is 100. 
 
G. Fitness evaluation 
As stated previously, many properties are used to predict 
operons. In this study, five features are used and described 
individually in the following section. The pair-scores of the 
intergenic distance, the metabolic pathway, COG, the gene 
length ratio and operon length are calculated by the 
logarithmic likelihood ratio test.  
 
(1) Intergenic distance 
We calculate the score of each separated interval in 10 bps 
bins [30] based on an intergenic distance from -100 bps to 
300 bps using the following Eq. 8.  
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(2) Metabolic pathways 
The pathway pair-score is only taken into account when two 
adjacent genes have the same pathway. Otherwise the 
pathway pair-score is 0 [19]. Eq. 9 is used to calculate the 
pathway pair-score. 
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(3) COG gene function 
Adjacent genes are often of the same class, so we assume 
that the gene pair is located in the same operon. The 
pair-score of the COG gene function is calculated with Eq. 
10 based on the first level.  
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(4) Gene length ratio. 
The pair-score of the gene length ratio is calculated as the 
natural logarithm of the length ratio of upstream genes and 
downstream genes [9]. It is defined by the following Eq. 11. 
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(5) Operon length 
The operon length is given by the number of genes in an 
operon [6].The probability P, i.e., the pair-score of the 
operon length, is calculated by the following Eq. 12. 
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Finally, the fitness value of a particle is calculated as the sum 
of the fitness values from all putative operons in the particle 
and thus given by the following Eq .13. 
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where c is the number of operons in the particle. 
 
H. Performance evaluation 
 
In order to verify the generalization ability of our method, 
the test of data sets does not contain the E. coli genome 
because it contains which has genome-specific properties. 
The predictive performance [9] was evaluated based on the 
sensitivity and specificity shown in Table 1. In Table 2, the 

true positive (TP) and false negative (FN) are the numbers of 
both correct and incorrect prediction of gene pairs among 
the WO gene pairs, respectively, whereas the true negative 
(TN) and the false positive (FP) are the numbers of the 
correct and incorrect prediction of gene pairs among the 
TUB gene pairs. The sensitivity, specificity and accuracy are 
determined based on TP, FN, TN and FP. 
 
Table 1.  Evaluation method for operon prediction   

Value to be estimated Equation for estimation 

Sensitivity (SN) SN=TP/(TP+FN) 

Specificity (SP) SP=TN/(FP+TN) 

Accuracy (ACC) ACC=(TP+TN)/(TP+FP+TN+FN) 

 
Table 2.  The positive and negative evaluation  

True data 
Prediction result 

Positive Negative 

Positive TP FP 

Negative FN TN 

 

III. RESULTS AND DISCUSSION 

A.  Parameter Settings 

The population number was set to 30, the iteration number 
was 100, c1 and c2 were 2, and Vmax and Vmin were 6 and -6, 
respectively [26, 27, 28]. 
 

B. Contribution of selected features to operon prediction 

We performed an ROC curve analysis to determine the 
relative value of the data sources and the predictive value of 
our approach under conditions of reduced data sources.  We 
conducted a set of experiments with reduced feature groups, 
results of which are removed from the method results (ROC). 
The implemented feature selection was based on the 
intergenic distance, metabolic pathway, COG gene function, 
and gene length ratio and operon length since these 
properties have powerful identification capabilities for 
operon prediction. We performed a ROC curve test to 
determine the best performing features. Figure 3 shows the 
ROC curves for reduced single feature groups. We can 
observe that the three best-performing features, as indicated 
by the ROC results are the intergenic distance, the pathway 
and the operon length ratio, respectively. We thus selected a 
these better-performing features for operon prediction. The 
feature selection concept can considerably reduce the 
computation time needed to predict operons. 



 
 

 

 
Fig. 3.  ROC curves using a single feature. 

C. Comparison to other methods 

 
An improved BPSO was applied to search for the best 
putative operon at each generation. The best putative operon 
identified by the search was then compared to 
experimentally verified operons. We compared our method 
with various reported methods, including UNIPOP [2], 
genetic algorithm (GA) [19], a fuzzy genetic algorithm 
(FGA) [5], support vector machine (SVM) [7] using both 
genome-specific and general genomic information  [9], 
VIMSS [14], genome-wide operon prediction in 
Staphylococcus aureus (S. aureus) [15] and JPOP [8]. As 
Table 2 shows, the prediction accuracy of the proposed 
method obtained the highest accuracy value on the B. 
subtilis (92.5), P. aeruginosa PA01 (93.6), and S. aureus 

(95.9) data sets. The proposed method also showed the best 
performance in terms of prediction sensitivity and 
specificity on most of the tested bacterial genomes. For P. 
aeruginosa and S. aureus, our method had the highest 
sensitivity (93.3) and (95.9), respectively. However, ODB 
achieved the highest specificity (99.2), but a very low 
sensitivity (49.9). ODB does not achieve a good balance 
between sensitivity and specificity as its highs specificity is 
traded for a low sensitivity. For B. subtilis, P. aeruginosa 
PA01 and S. aureus, our predictor obtained a higher 
accuracy and sensitivity compared to the other methods 
from the literature.  
Overall, the proposed method obtained better operon 
prediction results than the other methods tested. 

IV. CONCLUSION 

In this paper, we propose an improved BPSO method and 
use the feature selection concept to predict operon. The 
intergenic distance, metabolic pathway, COG gene 
functions, gene length ratio, and the operon length of the E. 
coli genome were employed for feature selection and to 
design a fitness function. Finally, the method is used to 
predict operons based on the intergenic distance, metabolic 
pathway, and gene length ratio, the three best-performing 
features. Experimental results show that the prediction 
accuracy, sensitivity and specificity achieved was better 
than in other methods, and that computation time could be 
reduced. In the future, we expect to improve our proposed 
methods by combining other algorithms in order to achieve 

Table 3. Accurcy, sensitivity, and specificity of operon prediction on three genomes. 

Genome Methodology Accuracy (%) Sensitivity (%) Specificity (%) 

B. subtilis 

(NC_000964) 

Improved BPSO (initiation threshold = 600 bps) 92.5 87.8 96.3 

Improved BPSO (initiation threshold = 300 bps) 91.9 89.4 93.9 

BPSO (initiation threshold = 600 bps) [31] 92.1 93.0 89.9 

BPSO (initiation threshold = 300 bps) [31] 90.5 88.7 94.5 

UNIPOP [2] 79.2 78.2 82.1 

GA [19] 88.3 87.3 89.7 

Classification [9] 90.2 N/A N/A 

SVM [7] 88.9 90.0 86.0 

ODB [11] 63.2 49.9 99.2 

DVDA [12] 48.5 31.9 93.2 

OFS [32] 68.3 76.5 43.9 

VIMSS [14] 78.0 76.4 87.1 

FGA [5] 88.2 N/A N/A 

JPOP [8] 74.6 72.0 90.0 

OPERON [33] 62.9 53.1 89.2 

FGENESB (http://www.softberry.com) 77.1 72.1 90.4 

P. aeruginosa 

PA01 

(NC_002516) 

Improved BPSO (initiation threshold = 600 bps) 93.6 93.3 94.1 

Improved BPSO (initiation threshold = 300 bps) 92.2 91.1 94.0 

BPSO (initiation threshold = 600 bps) [31] 93.3 93.0 95.1 

BPSO (initiation threshold = 300 bps) [31] 91.0 88.5 95.1 

GA [19] 81.3 87.0 76.3 

S. aureus 

(NC_002952) 

Improved BPSO (initiation threshold = 600 bps) 95.9 95.9 95.9 

Improved BPSO (initiation threshold = 300 bps) 93.6 93.1 94.5 

BPSO (initiation threshold = 600 bps) [31] 95.9 95.9 95.8 

BPSO (initiation threshold = 300 bps) [31] 93.6 92.4 95.8 

Genome-wide operon prediction in Staphylococcus aureus 

[15] 
92.0 N/A N/A 

N/A: Data not available. Highest values in bold type. 



 
 

 

even better results and feature increase the prediction 
performance. 
 

REFERENCES 
[1] De Hoon, M., S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano. 

2004. Predicting the operon structure of Bacillus subtilis using operon 
length, intergene distance, and gene expression information. Citeseer. 
pp. 276–287.  

[2] Li,G., Che,D. and Xu,Y. (2009) A universal operon predictor for 
prokaryotic genomes. J Bioinform Comput Biol., 7, 19–38. 

[3] Moreno-Hagelsieb G, Collado-Vides J. A powerful nonhomology 
method for the prediction of operons in prokaryotes. Bioinformatics 
2002;18:S329–36. 

[4] De Hoon MJ, Imoto S, Kobayashi K, et al. Predicting the operon 
structure of Bacillus subtilis using operon length, intergene distance, 
and gene expression information. Pac Symp Biocomput 2004;276–87. 

[5] Jacob E, Sasikumar R, Nair KN. A fuzzy guided genetic algorithm for 
operon prediction. Bioinformatics 2005;21: 1403–7 

[6] Bockhorst J, Craven M, Page D, et al. A Bayesian network approach 
to operon prediction. Bioinformatics 2003;19:1227–35. 

[7] Zhang GQ, Cao ZW, Luo QM, et al. Operon prediction based on 
SVM. Comput Biol Chem 2006;30:233–40. 

[8] Chen X, Su Z, Dam P, et al. Operon prediction by comparative 
genomics: an application to the Synechococcus sp. WH8102 genome. 
Nucleic Acids Res 2004;32:2147–57. 

[9] Dam P, Olman V, Harris K et al. Operon prediction using both 
genome-specific and general genomic information, Nucleic Acids 
Res. 2007;35:288-298. 

[10] Sabatti C, Rohlin L, Oh MK et al. Co-expression pattern from DNA 
microarray experiments as a tool for operon prediction, Nucleic Acids 
Res. 2002;30:2886-2893. 

[11] Okuda S, Katayama T, Kawashima S et al. ODB: a database of 
operons accumulating known operons across multiple genomes, 
Nucleic Acids Res. 2006;34:D358-D362. 

[12] Edwards,M.T., Rison,S.C., Stoker,N.G. and Wernisch,L. (2005) A 
universally applicable method of operon map prediction on minimally 
annotated genomes using conserved genomic context. Nucleic Acids 
Res., 33, 3253–3262. 

[13] Chen,X., Su,Z., Dam,P., Palenik,B., Xu,Y. and Jiang,T. (2004) 
Operon prediction by comparative genomics: an application to the 
Synechococcus sp. WH8102 genome. Nucleic Acids Res., 32, 
2147–2157. 

[14] Price,M.N., Huang,K.H., Alm,E.J. and Arkin,A.P. (2005) A novel 
method for accurate operon predictions in all sequenced prokaryotes. 
Nucleic Acids Res., 33, 880–892. 

[15] Wang,L., Trawick,J.D., Yamamoto,R. and Zamudio,C. (2004) 
Genome-wide operon prediction in Staphylococcus aureus. Nucleic 
Acids Res., 32, 3689–3702. 

[16] Pertea, M., Yanbule, K., Smedinghoff, M., Salzberg, S.L., 2008. 
OperonDB: a comprehensive database of predicted operons in 
microbial genomes. Nucleic Acids Res. 37, D479-482. 

[17] Sierro, N., Makita, Y., De Hoon, M., Nakai, K., 2008. DBTBS: a 
database of transcriptional regulation in Bacillus subtilis containing 
upstream intergenic conservation information. Nucleic Acids Res. 36, 
D93-D96. 

[18] Mao, F., Dam, P., Chou, J., OlmanL, V., XU, Y., 2009. DOOR: a 
database for prokaryotic operons. Nucleic Acids Res. 37, D459-463. 

[19] Wang, S., Wang, Y., Du, W., Sun, F., Wang, X., Zhou, C., Liang, Y., 
2007. A multi-approaches-guided genetic algorithm with application 
to operon prediction. Artif Intell Med 41, 151-159. 

[20] Salgado H, Moreno-Hagelsieb G, Smith TF et al. Operons in 
Escherichia coli: genomic analyses and predictions, Proc. Natl Acad. 
Sci. 2000;97:6652-6657. 

[21] Tatusov R, Koonin E, Lipman D. A genomic perspective on protein 
families, Science 1997;278:631. 

[22] Tatusov R, Fedorova N, Jackson J et al. The COG database: an 
updated version includes eukaryotes, BMC Bioinformatics 2003;4:41. 

[23] Chen X, Su Z, Xu Y et al. Computational prediction of operons in 
Synechococcus sp. WH8102, Genome Inform 2004;15:211-222. 

[24] Craven M, Page D, Shavlik J et al. A probabilistic learning approach 
to whole-genome operon prediction, Proc Int Conf Intell Syst Mol 
Biol 2000;8:116-127. 

[25] Cherry JL. Genome size and operon content, J Theor Biol 
2003;221:401-410. 

[26] Kennedy,J. and Eberhart,R. (1995) Particle swarm optimization. 
Proceedings of the IEEE International Conference on Neural 
Networks, Vol. 4, pp. 1942–1948. 

[27] Kennedy,J. and Eberhart,R. (1997) A discrete binary version of the 
particle swarm algorithm. Proceedings of the IEEE International 
Conference on Systems, Man, and Cybernetics, Vol. 5, pp. 
4104–4108. 

[28] Poli, R., J. Kennedy, and T. Blackwell. “Particle swarm optimization”. 
Swarm Intelligence, vol.1, pp. 33-57. 2007 

[29] Riget, J., and J. Vesterstrom. 2002. A diversity-guided particle swarm 
optimizer-the ARPSO. Dept. Comput. Sci., Univ. of Aarhus, Aarhus, 
Denmark, Tech. Rep 2:2002. 

[30] Romero, P.R. and Karp, P.D. (2004) Using functional and 
organizational information to improve genome-wide computational 
prediction of transcription units on pathway-genome databases. 
Bioinformatics, 20, 709-717. 

[31] Chuang L, Tsai J, Yang C. Binary particle swarm optimization for 
operon prediction, Nucleic acids research 2010;38:e128. 

[32] Westover, B.P., Buhler, J.D., Sonnenburg, J.L. and Gordon, J.I. 
(2005) Operon prediction without a training set. Bioinformatics, 21, 
880-888. 

[33] Ermolaeva, M.D., White, O. and Salzberg, S.L. (2001) Prediction of 
operons in microbial genomes. Nucleic Acids Res., 29, 1216-1221. 




