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Abstract—This paper presents an expository study of tem-
poral data mining for prediction of a future response sequence
via mining large number of highly correlated concurrent time
series. In the study, we investigate a two dimensional search
scheme over time domain weighting and feature space selection.
The weighting of observation records over time domain is
used to exploit the time dependency structure and feature
space selection is enforced to avoid the over-fitting issue. For
a specific temporal and spatial selection, its area under ROC
curve (AUC) is used to evaluate the prediction performance over
the training and testing data. By varying the weighting scheme
and feature selection, AUC contour maps on both training and
testing data are generated. The contour maps can suggest us
to apply the optimal allocations with highest AUC for future
responses prediction in training, testing , and possible validation
data. Numerical results over two sets of temporal data with
different applications have shown that the proposed scheme
can improve the prediction performance of conventional data
mining methods significantly.

Index Terms—temporal data mining, AUC, weighted logistic
regression

I. INTRODUCTION

TEMPORAL data mining is a research field of grow-
ing interest in which techniques and algorithms are

applied on data collected over time [11] [15] [9]. Business
market forecasting, financial or stock market prediction and
medicine records pattern clustering etc have been some of
the oldest and most studied applications [6] [2] [5]. As a
financial industry example, INFORMS (institute of opera-
tions research and the management sciences) recently has
organized a 2010 data mining contest to predict short term
movements in stock prices by exploiting hundreds of related
stock market time series. Some recent research works are also
reported in [13] [3] [8]. In telecommunications, researchers
are mining spatial and temporal data for detecting events
that impact mobility networks [4]. In a similar scenario,
people are interested in how to forecast the future network
capacity demand for locations of interest by utilizing a set
of spatial correlated and time dependent information. Many
similar mining applications can be found in other fields,
like weather forecasting, patients status prediction, etc. A
common task for these different applications is how to predict
a future response via numerous of related sequences over the
past. This problem also raise the interests about how once
can use the conventional statistical methods, such as logistic
regression [10] [12], bootstrapping [7] etc, for predictive
modeling with temporal and feature space data. An unique
feature of prediction in temporal data mining is the time
dependency structure inherent with the data sets. However,
many aforementioned methods usually deal with non-time
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dependency, and simply treat as cross sectional data, i.e.,
the order of records does not affect the performance. If the
time dependency structure is also considered in the mining
scheme development, we are interested in how it can improve
existing conventional prediction performance. Motivated by
this problem, we propose a logistic regression based scheme
which make varying weighting vectors over time domain and
time series selection over feature space. Essentially, it is a
weighted logistic regression (WLR) scheme with weighting
searching over time and feature selection over space. For
each fixed temporal and spatial combination, we use area un-
der the curve (AUC) to evaluate the prediction performance
over training data. After sweeping all the possible selections,
an AUC contour map can be created to indicate the optimal
allocations with the highest AUC. We then apply them to the
test data for prediction. To validate our proposed scheme, we
use two sets of temporal data with different applications. In
both cases, our method outperforms the conventional logistic
regression methods significantly.

II. DATA MODEL

Let us assume T × p predictor matrix X =
[x1,x2, · · · , xp] contains p time series, each with length
T × 1 and y = [y(1), y(2), · · · , y(T )]T as the response of
a target time series. y is not necessary to be synchronized
with X, and it can be some time after, i.e., prediction of
future movements with time series. Denote x1, x2, · · · , xp

as individual variable in X We have training data structure

{y(t), x1(t), x2(t), · · · , xp(t), t = 1, 2, · · · , T} ;

where the time series y(t) = {0, 1} is a binary response.
Following that, we have a test set as U = [u1,u2, · · · , up]
containing the same set of time series, but with starting time
index at t = T + 1, T + 2, · · · , and so on.

The problem of interest here is how the time index
information can be embedded in the conventional regression
models to improve the prediction performance over those
disregarding the time order.

III. STUDY DESIGN

The aforementioned problem is essentially to use a set
of records to predict a target response. This falls into the
conventional category of statistical methods for predictive
modeling, such as logistic regression, bootstrapping etc.
However, these methods usually ignore the time-related
orders inherent with time series, and just simply treat ev-
ery individual record as independent from each other, i.e.,
shuffling the records does not affect the performance. Here
we use logistic regression model as a benchmark for our
proposed scheme comparisons.



A. Conventional Logistic Regression
The conventional logistic regression is to predict individ-

ual vector y from X with probability predictions. Logistic
regression is a member of the family of methods called
generalized linear models (GLM). Such models include a
linear part followed by a ”logistic function”. Mathematically,
we will have estimated probability vector p

p ≡Pr(y|X) = Logit(β0 +Xβ) (1)

where β0 and β = [β1, · · · , βp]
T are obtained from logistic

regression, for given observations X with response y.

B. Proposed Scheme
We note that the conventional logistic regression does

not take advantage of the time index information from the
time series order. Since the test set data U are exactly
the following time series records after X, the more recent
records in X should reveal more reliable information for
the adjacent response prediction with U. In other words, w
has monotonically increasing values over time. Based on this
assumption, we impose an extra time importance weighting
vector w over the response vector y and try to enhance the
forecasting reliability. That is, the refined logistic regression
should be a weighted logistic regression

p ≡Pr([y, w]|X) = Logit(β0 +Xβ) (2)

where w is a vector containing weighting factors over time
horizon. In fact, having a WLR is not new in the literature
[14]. However, where and how to put the optimal weighting
factors is more important.

1) Weighting Scheme: To generate weighting factors w =
[w(1), w(2), · · · , w(T )]T , we use piecewise function to map
the time index (1,2, · · · , T ) into three weighting areas, where
we need to set up two thresholds. The first and the third areas
are flat line with constant weighting values, while the second
area is transition area with monotonically increasing values.
Mathematically, we have

w(t) =


0, t ≤ T1;
ef(t)

1+ef(t) , T1 < t ≤ T2;

1, T2 < t ≤ T ;

where f(t) = 10 t−(T1+T2)/2
T2−T1

to make sure −5 ≤ f(t) ≤ 5

and ef(t)

1+ef(t) has smooth curve range (0, 1). T1 and T2 are
selected as percentage points of the time index. Generally,
we select the transition area between T1 and T2 as 40% of
total time index. The remaining 1 and 0 points in w are
around 60%. We slide the cutting point T2 to generate and
identify different weighting vectors. For example, when T2 =
50%× T , then, the first 10% are zeros and the last 50% are
all ones, and between them are transition values between
(0, 1). However, when T2 = 20% × T is less than the 40%
transition length, we will make truncation, i.e., we only have
the first 20% transition points and the remaining 80% are all
ones.

For extreme situation, T2 = 0, we have w = [1, 1, · · · , 1]T
equals all ones, which is identical to the case where there is
no weighting vector imposed on the logistic regression. As
such, we can always use the T2 = 0 weighting scheme (i.e.,
conventional no weighting) to compare with other weighting
schemes.

Fig. 1. Weighted logistic regression (WLR) is implemented over two
dimensional tuning: One is to change the number of variable that will be
included in the WLR; and the other is to use a sliding window to change
the weighting vector over the number of observations that will be imposed
on the WLR.

2) Procedures for proposed scheme: In this paper, we
propose that, the weighting vector should be chosen to
slide over the time index and meanwhile the time series
in predictor matrix X should be selected over different
variables. For every selected combination with the weighting
vector location and the number of variables, we have area
under curve (AUC) to evaluate the prediction performance.
In total, from the two dimensional tuning, an AUC contour
map can be created to indicate which parameter combination
shows the highest AUC performance. We then can apply the
same set-up to the test data. If multiple areas in the contour
map stand out, we can use the linear combination of them
for testing.

In summary, we have below 5-step procedures for our
proposed scheme:

1) Use standard logistic regression as criterion to rear-
range the orders of the time series in X. The first
column of the re-arranged data matrix X can best
predict the data in y and the second one has the
second best prediction, and so on and so forth for the
remaining ones.

2) Set loop 1 over all p variables:
for i in the set of {1, 2, · · · , p} and select
the first i columns of X as

Xsel = [x1,x2, · · · ,xi]

3) Given Xsel, set loop 2
for j in the set of {0, 1, 2, · · · , 20},
compute different weighting factors, with
T2 = j × 5%× T ;

4) For given Xsel and T2, use equation (2) to compute
AUC in WLR.

AUC[i, j] = AUC;

5) At the end of loop 1 and loop2, use two-dimensional
AUC map to find the optimal combination of the
number of time series from X and weighting factor
w for y prediction. Use the same setup with testing
data U.

3) Measuring Scenarios: In the 5-step procedures, we
assume that the optimal performance in the training data



contour map will be the same as that in the test data set.
Note that we are dealing with time-series data set which are
varying over time. One might concern how the consistent
performance can be achieved between training and testing.
To clarify this concern, we use figure 2 to show how the
proposed scheme is implemented in two different scenarios,
where a red dash line is used to separate the total known time
series records for training and those records for prediction.

In Scenario 1, the training data is sliced as pre-training
and validation data sections. We use the aforementioned 5-
step procedures to treat pre-training part as training while
validation part as testing. Since both are within the training
data (we know the response y), we can easily evaluate both
contour maps in pre-training and validation parts. We expect
that they should be consistent. After we are confident with
this result, we proceed to use the whole training data and
testing data to repeat the 5-procedures again. Again, the
training and testing results should be consistent on the AUC
contour map.

In Scenario 1, the training data is sliced as pre-training
and validation data sections. We use the aforementioned 5-
step procedures to treat pre-training part as training while
validation part as testing. Since both are within the training
data (we know the response y), we can easily evaluate both
contour maps in pre-training and validation parts. We expect
that they should be consistent. After we are confident with
this result, we proceed to use the whole training data and
testing data to repeat the 5-procedures again. Again, the
training and testing results should be consistent on the AUC
contour map.

In Scenario 2, we take the most recent part as the val-
idation part. When implementing 5-step procedures, unlike
scenario 1, we use the whole set of records of X for training.
We apply the same combination setup to both validation data
and testing data. In total, we use WLR once to generate three
contour maps and expect all of them should be consistent.

Comparing with these two scenarios, we can see that
scenario 1 separate the testing part from training data in
two WLR implementations, while the scenario 2 contains
validation part in training. On the other hand, scenario 1
use two WLR, where the performance in the first WLR
implement does not necessarily be consistent with the second
WLR since the second WLR contains more recent data which
is different from the first WLR. Meanwhile, one can see that
scenario 2 contains the most recent data and only has one
WLR.

IV. NUMERICAL RESULTS

We like to compare the proposed optimal allocated WLR
in (2) with the normal method in (1). The criterion is the area
under ROC curve (AUC) with probabilities prediction. The
AUC contour map is generated by SAS graphics program [1].
As we explain in the subsection “Weighting Scheme”, when
threshold T2 is selected as T2 = 0%×T , the weighting vector
w contains all ones, i.e., no weighting. Under this situation,
WLR in (2) reduces to be normal logistic regression in (1).

The time series used for training and test are from some
anonymous industrial daily sales data. We apply both sce-
narios for comparisons. Figure 3 demonstrates all four AUC
contour maps from four separate steps in Scenario 1,where
Step 1 and Step 2 results are from the first WLR and Step

3 and Step 4 are from the second one. We first notice that
in both WLR, the pair of AUC maps display similar, i.e.,
consistent performance pattern. Then, we note that, from the
first WLR to the scond one, the AUC map patterns change
a little bit. This is due to extra time series records included
in the second WLR. One can conclude that the AUC map
pattern can vary over time but the training and test have the
comparable results. Most importantly, AUC maps exhibit that
the best performance does not happen at T2 = 0%×T , which
indicates that WLR in (2) outperforms the logistic regression
without weighting in (1).

The corresponding scenario 2 results are shown in Figure
4. Note that there is only one WLR involved and all three
of them are displaying similar performance pattern. The
drawback in this scenario is that we repeatedly use the same
data for training and validation. Similar to previous scenario,
the WLR in (2) outperforms the logistic regression without
weighting in (1).

To show this proposed scheme can be applied for different
application fields, we implement it with the popular S&P 500
stock market daily prices to predict the following day index
price movement. The comparison of training and testing
data is presented in Figure 5. We note here that we are
interested in how to generate new features or variable time
series for the best prediction mining scheme. Instead, we
are look for an extra performance enhancement via our
proposed optimal allocation search for a given set of feature
space data. Obviously, both contour maps show the extra
performance improvements can be achieved by an optimal
allocation search. We have the same area in both maps which
shows the highest AUC values. That is, the optimal allocation
area in training is validated in the testing data.

In sum, for either scenario, a two dimensional AUC map
from training data manifests the optimal combinations of the
weighting vector and the selected time series features, which
can be utilized to apply for the best test data prediction.

V. CONCLUSIONS

In this study, we investigate a classic predictive modeling
for temporal data mining, i.e., utilizing a number of past time
sequences to predict a related future response movement.
We propose a time-domain weighting and feature space
selection search scheme which sweeps all the allocation
combinations simultaneously. After this two dimensional
tuning, an AUC contour map can be created to reveal where
the optimal allocations lie on. We then apply them to test data
for performance enhancement. Two different implementation
scenarios are considered and both sets of the results show
WLR with optimal allocations outperforms the conventional
logistic regression without weighting significantly.
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(a) Scenario 1. (b) Scenario 2.
Fig. 2. Two different Scenarios. (a) Implement WLR twice. (b) Implement WLR once.

Fig. 3. Comparison of AUC within scenario 1 for anonymous industrial daily data.



Fig. 4. Comparison of AUC within scenario 2 for anonymous industrial daily data.
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