
 

  
Abstract—This paper studies three statistical downscaling 
methods to predict temperature and rainfall at 45 weather 
stations in Thailand. Methods under consideration are multiple 
linear regressions (MLR), support vector machine with 
polynomial kernel (SVM-POL), and support vector machine 
with Radial Basis Function kernel (SVM-RBF). Large-scale 
data are from Geophysical Fluid Dynamics Laboratory 
(GFDL). Five predictor variables are chosen: (1) temperature, 
(2) pressure, (3) precipitation, (4) evaporator, and (5) net short 
wave. Accuracy is assessed by 10-fold cross-validation in terms 
of root-mean-squared error (RMSE) and correlation 
coefficient (R). SVM-RBF is the most accurate model. 
Prediction accuracy of monthly average rainfall and 
temperature is satisfying in most part of the country. Lastly, 
downscaling models can project long term trends of monthly 
average rainfall and temperature.  
 

Index Terms— statistical downscaling, temperature, rainfall, 
multiple linear regressions, support vector machine. 

I. INTRODUCTION 

eneral Circulation Models (GCMs) are widely accepted 
as a tool for predicting future climate change. 
However, output from GCMs cannot be used for local 

prediction directly because GCMs operate in large scale. It 
is necessary to bring output from GCMs down to small scale 
for local prediction. Downscaling is a method to derive local 
climate information from relative GCM output. 

Two downscaling approaches that are commonly used are 
statistical downscaling and dynamical downscaling. 
Statistical downscaling assumes that relationships between 
large scale and local climate are constant. It combines GCM 
output with local observations in order to obtain their 
statistical relationships. Local climate forecast can then be 
determined from such relationships. Dynamical 
downscaling involves nesting regional climate model into an 
existing global climate model. Numerical meteorological 
modeling is used in dynamical downscaling approach.  

Various methods have been employed to derive 
relationships in statistical downscaling to forecast different 
climate information in different parts of the world. Such  
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methods include canonical correlation analysis, multiple 
linear regressions, artificial neural networks and support 
vector machine. The rest of this section summarizes some 
previous studies on statistical downscaling methods. 

Katrin Maak et al. [6] discussed statistical downscaling 
with canonical correlation analysis to validate the flowering 
date of Galanthus nivalis L. at 74 stations in Northern 
Germany. Observation period was in January, February and 
March of the years 1890 to 1990. They found a strong linear 
correlation between flowering dates and monthly mean 
near-surface air temperatures. Statistical model was built 
from twenty years of observed data. The prediction was 
accurate. In addition, they paid extra attention to scenarios 
when atmospheric CO2 concentration increased. It was 
found that air temperature alone was a sufficient predictor 
when CO2 concentration was doubled and tripled. 

Huth [7] evaluated several statistical downscaling models 
and predictors in estimating daily mean temperatures during 
winter at 39 stations in central Europe. Data from eight 
winter seasons (December 1982-February 1983 to 
December 1989-February 1990) were used in the study. 
Downscaling methods under consideration were canonical 
correlation analysis, singular value decomposition analysis, 
and three multiple regression models (full regression, 
stepwise regression and pointwise regression). Chosen 
predictors were 500 hPa heights, sea level pressure, 850 hPa 
temperature and 1000–500 hPa thickness. Pointwise 
regression outperformed other methods. The best predictor 
for daily mean temperature at regional average and 
individual station levels was the combination of heights and 
temperature. Temperature alone gave more accurate 
estimate than circulation variables. 

Dibike et al. [11] compared two downscaling models—
temporal neural network (TNN) model and regression-based 
statistical model. Models were to predict daily precipitation, 
daily minimum temperature and daily maximum 
temperature in northern Quebec, Canada. Six combinations 
of 6-7 predictors were evaluated. Thirty years of data (1961-
1990) were used to construct the models. Seasonal model 
biases were discussed. It was found that the TNN model 
was more efficient in downscaling both daily precipitation 
and daily maximum and minimum temperatures. 

Tripathi et al. [10] proposed the support vector machine 
(SVM) approach for statistical downscaling to obtain 
average monthly rainfall at meteorological sub-divisions 
(MSDs) in the entire India. The period of study extended 
from January 1948 to December 2002. The SVM model was 
compared against multilayer back-propagation neural 
network based model. They concluded that SVM based 
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model was a suitable statistical downscaling method for 
precipitation. 

Hua Chen et al. [4] compared three downscaling 
models—relevance vector machine (RVM), least square 
support vector machine (LSSVM) and back propagation 
neural network (BPNN). The focus of the study was on the 
effect of climate change on runoff change of Danjiang Kou 
reservoir, China. Time period was from 1960 to 2000. They 
also tried to simulate future scenario prediction. They found 
that the RVM model was an effective way to assess climate 
change impact on hydrology. 

The following objectives have been set for our study. 
Firstly, to see the effect of grid size on model accuracy, 
secondly to evaluate three statistical downscaling methods 
in estimating monthly average rainfall and temperature at  
weather stations in Thailand, and lastly, to see the trend of 
monthly average rainfall and temperature in the next four 
years. 

The paper is organized as follows. Section II introduces 
statistical downscaling process and three downscaling 
methods that were used in experiments. Section III describes 
data that were used to construct and test models. Model 
accuracy measures are explained in Section IV. Section V 
discusses three sets of experiments. Section VI concludes 
the paper. 

II. STATISTICAL DOWNSCALING TECHNIQUES 

A. Statistical downscaling process 
Statistical downscaling is based on an assumption that 

there is a strong relationship between large-scale 
predictor(s) and small-scale predictand. Predictor(s) can be 
used to determine predictand when they co-vary with 
similar time structure. 

Common GCM predictor choices include geopotential 
heights and sea surface temperature. According to [3], the 
frequently used predictors to predict temperature and 
rainfall are sea level pressure, height, temperature, and the 
relative humidity. Common predictands are temperature and 
rainfall at a local weather station. Statistical model 
determines values of predictand from predictor. 

B. Multiple linear regressions 
Multiple linear regression (MLR) is a statistic method 

that is used to model a linear relationship between a 
dependent variable (predictand) and one or more 
independent variables (predictors). MLR is a least square-
based method. Predictand is a continuous variable. MLR 
assumes that the relationship between variables is linear. 
Therefore, the MLR model can be expressed as a linear 
function shown in Equation 1. 

nnxxxy βββ +++= ...2211  ,     (1) 
where y  is the value of a predictand, ix is the value of 

the ith predictor variable, and 
iβ is an adjustable error 

coefficient of the ith predictor variable. 
Multiple linear regression attempts to find a best fit plane. 

The fit can be evaluated by the coefficient of multiple 
determination (R2). The correlation coefficient (R) expresses 
the degree to which two or more predictors are related to the 
predictand.  

C. Support vector machine 
Support vector machines (SVMs) are a set of related 

supervised learning methods that are used in classification 
and regression analysis. Basic idea of the SVM for 
regression analysis is explained below.  

Consider the finite training sample pattern ( )ii yx , , where 
N

i Rx ∈  is a sample value of the input vector x consisting of 
N training patterns (i.e., Nxxx ,...,1= ) and Ryi ∈  is the 
corresponding value of the desired model output. A non-
linear transformation function is defined to map the input 
space to a higher dimension feature space, hR  

A non-linear relation between inputs and outputs in the 
original input space are shown in Equation 2. 
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where ŷ  is the actual model output, w and b  are 
adjustable coefficients model parameters. 

The objective function in support vector machines task is  
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Because it’s very difficult to computation involve 
calculating transformed vector, the solution method called 
kernel trick. The mapping kernel can be defined as  

( ) )()(, yxyxK Φ⋅Φ=            (5) 
The kernel trick is a method for calculating similarity in 

the transformed space using the original space, helps to 
address in mapping function by Mercer’s Theorem, 
computing time using kernel function is cheaper than using 
the transformed attribute set, avoided curse of 
dimensionality problem because the computations are 
performed in the original space. 

Mercer’s Theorem is a function to perform mapping of 
the attributes of the original space to the feature space.  

{ })(),(),( xxxxK ′=′ φφ           (6) 
A polynomial kernel mapping is a popular method for 

non-linear modeling.  
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Radial Basis Function (RBF) kernel is used to map the 
input data into higher dimensional feature space, which is 
given by 
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where σ  is the width of RBF kernel which can be 
adjusted to control the expressivity of RBF. The RBF 
kernels have localized and finite responses across the entire 
range of predictors. 

The advantage with RBF kernel is that it nonlinearly 
maps the training data into a possibly infinite dimensional 
space, thus it can effectively handle the situations when the 
relationship between predictors and predictand is non-linear. 
Moreover, the RBF is computationally simple than 
polynomial kernel, which has more parameters [10, 12]. 



 

III. DATA  

A. GFDL data 
We used Geophysical Fluid Dynamics Laboratory (GFDL 

CM2.x) reanalyzed data (2.25°lat.x3.75°long, scenarios A2 
and B2) in our experiments. Five predictors were chosen: 
(1) surface (skin) temperature (TSTAR in Ko ); (2) surface 
pressure (PSTAR in 2dynes/cm ); (3) precipitation (rain + 
snow: PRECIP in cm/day); (4) evaporation (EVAPOR in 
cm/day); and (5) net short wave at the top (SWTOP in 

2/ mW ). 
GFDL CM2.x scenarios A2 and B2 were chosen for the 

experiments. “The A2 family of scenarios is characterized 
by, a world of independently operating, self-reliant nations, 
continuously increasing population, regionally oriented 
economic development, slower and more fragmented 
technological changes and improvements to per capita 
income. The B2 scenarios are of a world more divided, but 
more ecologically friendly. The B2 scenarios are 
characterized by, continuously increasing population, but at 
a slower rate than in A2, emphasis on local rather than 
global solutions to economic, social and environmental 
stability, intermediate levels of economic development, less 
rapid and more fragmented technological change than in A1 
and B1” [1, 3]. 

B. Observed data 
Region of study was the country Thailand (5ºN–22ºN 

latitudes and 95ºE–105ºE longitudes). We used local 
weather data from Thai Meteorological Department. 
Rainfall and temperature were collected from 45 weather 
stations located at every part of the country. Provinces 
where 45 weather stations were situated are circled in 
Figure 1.  

The observation period spanned from January 1965 to 
September 2007.  

Thailand is covered by 96 (12x8) GFDL grid points.  

IV. MODEL ACCURACY MEASURES 
Data were divided into 2 groups. The first group (was 

used to train model, and the second group was used to test 
model. 10-fold cross validation was used to assess the 
accuracy of model. Accuracy measures were root-mean-
squared error (RMSE), correlation coefficient (R), mean 
absolute error (MAE), relative absolute error (RAE), and 
root relative squared error (RRSE). 

V. EXPERIMENTS 

A. Set 1 : Grid size 
The purpose of this set of experiments was to see the 

effect of GFDL grid sizes to model accuracy.  
A support vector machine model with Radial Basis 

Function kernel (SVM-RBF) was used.  
Three different GFDL grid sizes— 1x1, 3x3, 5x5 were 

examined. 

 
Fig. 1.  Distribution of 45 weather stations. 

 

Results 
Table I shows rainfall and temperature prediction 

accuracy of the model at Bangkok station when grid size 
was varied. 

TABLE I 
MODEL ACCURACY WITH DIFFERENT GRID SIZES  

(BANGKOK STATION, SVM-RBF MODEL) 
Predictand/
Scenarios 

Grid 
Size 

R MAE RMSE RAE 
(%) 

RRSE 
(%) 

 1x1 0.6219 2.3782 3.5223 69.36 82.36 
rain / A2 3x3 0.6467 2.2725 3.3481 66.28 78.29 

 5x5 0.6869 2.1583 3.1999 62.95 74.82 
 1x1 0.5913 2.4771 3.6786 72.25 86.02 

rain / B2 3x3 0.6038 2.3991 3.5182 69.97 82.27 
 5x5 0.6644 2.2343 3.2776 65.17 76.64 
 1x1 0.7907 0.6787 0.9340 63.70 65.42 

temp / A2 3x3 0.8307 0.6052 0.8067 56.80 56.50 
 5x5 0.8396 0.5854 0.7831 54.94 54.85 
 1x1 0.7854 0.7063 0.9663 66.29 67.68 

temp / B2 3x3 0.8300 0.5992 0.8098 56.23 56.72 
 5x5 0.8390 0.5802 0.7816 54.45 54.74 

 
We can see from Table I that when 5x5 grid was chosen, 

the model gave the most accurate output (MAE, RMSE, 
RAE, RRSE values were the lowest and R is closest to 1) at 
Bangkok station in both scenarios.  

In addition, we also tested at other 44 weather stations 
and found that the results could be interpreted in the same 
direction—5x5 GFDL grid gave the highest accuracy. Due 
to space limitation, we could not present accuracy measures 
at other weather stations.  

Grid size was fixed at 5x5 in all other sets of experiments.  

B. Set 2 : Statistical downscaling methods  
The purpose of this set of experiments was to evaluate 

three statistical downscaling methods: (1) multiple linear 
regression (MLR); (2) support vector machine with 
polynomial kernel (SVM-POL), and (3) support vector 
machine with Radial Basis Function kernel (SVM-RBF). 

From the result of the previous set of experiments, we 
opted for 25 (5x5) GFDL grid points. Hence, with five 
predictors, there were 125 dimensions in total. Note that 
Ghosh [14] used 12 grid points, Tripathi et. al [10] used 36 



 

grid points and Hua Chen et. al [4] used 24 grid points in 
their experiments. 

Accuracy of monthly average of all 45 stations from the 
three downscaling methods was measured in terms of 
RMSE and R. In addition, we took a closer look at Bangkok 
weather station by finding four accuracy measures at the 
station. 

Results 
Table II shows accuracy of three downscaling methods 

under consideration.  
TABLE II 

ACCURACY OF DOWNSCALING MODELS 
(ALL 45 STATIONS) 

Predictand / 
Scenarios 

 RMSE   R  
MLR 
 

SVM- 
POL 

SVM- 
RBF 

MLR SVM- 
POL 

SVM- 
RBF 

rain / A2 3.41 2.89    2.83 0.64 0.72 0.74 
rain / B2 3.50 2.96 2.88 0.62 0.70 0.72 
temp / A2 1.11 0.92 0.88 0.81 0.86 0.88 
temp / B2 1.01 0.92 0.88 0.81 0.86 0.87 

 

The lowest RMSE values of rainfall and temperature 
predictands were 2.83 and 0.88, respectively. Both were 
resulted from SVM-RBF model. In addition, values of R 
from SVM-RBF model were closest to 1 in both rainfall and 
temperature predictands. Thus, SVM-RBF model gave the 
most accurate monthly average rainfall and temperature in 
all 45 weather stations. 

Table III expresses model accuracy comparison using all 
four accuracy measures. 

TABLE III 
ACCURACY OF DOWNSCALING MODELS 

(BANGKOK STATION) 
Predictand/ 
Scenarios 

Model 
accuracy 

MLR SVM- 
POL 

SVM- 
RBF 

 R 0.6152 0.6582 0.6869 
 MAE  2.7176 2.2578 2.1583 

rain / A2 RMSE 3.5948 3.2841 3.1999 
 RAE (%) 79.26 65.85 62.95 
 RRSE (%) 84.06 76.79 74.82 
 R  0.5978 0.6236 0.6644 
 MAE  2.6679 2.3812 2.2343 

rain / B2 RMSE 3.6021 3.378 3.2776 
 RAE (%) 77.81 69.45 65.17 
 RRSE (%) 84.23 78.99 76.64 
 R  0.7993 0.8298 0.8396 
 MAE  0.684 0.5921 0.5854 

temp / A2 RMSE 0.8788 0.7975 0.7831 
 RAE (%) 64.19 55.57 54.94 
 RRSE (%) 61.55 55.86 54.85 
 R 0.7923 0.8217 0.8390 
 MAE  0.6918 0.6284 0.5802 

temp / B2 RMSE 0.8911 0.8163 0.7816 
 RAE (%) 64.93 58.98 54.45 
 RRSE (%) 62.41 57.17 54.74 

 

The focus was at Bangkok weather station. The two SVM 
based models outperformed the MLR based model in all 
predictand-scenario combinations. The four measures all 
agreed.  

For temperature predictand, the SVM-RBF model was 
superior in both scenarios. For rainfall predictand, the 
SVM-RBF model performed better in scenario A2 and the 
SVM-POL model was better in scenario B2. 

SVM-RBF downscaling method was used in all 
experiments in Sets 3 and 4. 

C. Set 3 : Prediction 
The purpose of this set of experiments was to find 

prediction accuracy of the model (SVM-RBF).  
Three weather stations were chosen from each of the four 

regions of Thailand—northern, north eastern, central and 
southern. Locations of these 12 weather stations are marked 
with diamonds in Figure 1.  

Predictands were monthly average rainfall and 
temperature at these 12 weather stations from the year 1991 
to the year 2007.  

Results 
Table IV shows RMSE values of monthly average rainfall 

and temperature predictands in both scenarios. Prediction 
accuracy of temperature was higher than that of rainfall at 
all 12 stations under both scenarios. 

TABLE IV 
PREDICTION ACCURACY (RMSE) 

MONTHLY AVERAGE RAINFALL AND TEMPERATURE 
(12 STATIONS, 1991-2007) 

Weather 
station Region rain 

A2 
rain  
B2 

temp 
A2 

temp 
B2 

Maehongson northern 1.9232 1.9988 1.1183 1.0435 
Nan northern 2.5218 2.4070 1.0938 1.0297 
Phitsanulok northern 2.7308 2.5118 0.9623 0.8855 
Loei northeastern  2.3352 2.2483 1.1058 1.0139 
Mukdahan northeastern 2.6490 2.6449 1.4168 1.3310 
Ubon 
Ratchathani northeastern  2.4722 2.7118 1.1126 1.1126 

Chainat central 2.1962 2.1066 0.8774 0.8225 
Suphanburi central 2.3676 2.2564 1.0340 0.9262 
Bangkok central 3.2050 2.9762 1.0712 0.9979 
Phetchaburi southern 2.5214 2.5201 0.7044 0.6872 
Phuket southern 3.2043 3.4266 0.9159 0.9259 
Narathiwat southern 6.0269 5.7578 0.6070 0.6123 

 

We took a closer look at four weather stations in four 
regions from 2005-2007. Selected stations were 
Maehongson station (northern region), Loei station 
(northeastern region), Bangkok station (central) and 
Phetchaburi station (south region).  

Actual observed and predicted monthly average rainfall 
values are shown in Figures 2-5. Predicted rainfall values 
from both scenarios were very close, especially in northern 
and northeastern regions. The observed and predicted 
rainfall values varied in the same direction at all four 
stations. Predicted rainfall values were quite close to actual 
rainfall values observed at northern station most of the time. 
The observed values were much higher than the predicted 
values only 1-2 times each year when it rained the most. We 
could say the same to station in the northeastern region. 
However, prediction accuracy was lower at central and 
southern stations. 

Actual observed and predicted monthly average 
temperature values are shown in Figures 6-9. We can see 
from these graphs that the observed and predicted values 
varied in the same direction at all four stations. Predicted 
temperature values were quite close to actual values at 
stations in northern, northeastern and southern regions 
throughout the three-year period. Prediction accuracy was 



 

lower at central station. 

 
Fig. 2. Monthly average rainfall  

Maehongson station (northern region) 
 

 
Fig. 3. Monthly average rainfall  

Loei station (northeastern region) 
 

 
Fig. 4.  Monthly average rainfall  
Bangkok station (central region) 

 

 
Fig. 5.  Monthly average rainfall  

Phetchaburi station (southern region) 
 

 
Fig. 6. Monthly average temperature  

Maehongson station (northern region) 

 
Fig. 7. Monthly average temperature  

Loei station (northeastern region) 
 

 
Fig. 8.  Monthly average temperature  

Bangkok station (central region) 
 

 
Fig. 9.  Monthly average temperature  
Phetchaburi station (southern region) 

 

D. Set 4 : Future prediction 
The purpose of this set of experiments was to project 

future prediction of monthly average rainfall and 
temperature from 2010 to 2020 at Loei station. Loei is a 
province in northeastern part of Thailand. Loei station was 
chosen because predicted rainfall and temperature values 
from both scenarios in northern and northeastern regions 



 

were very close to actual observed. Model was constructed 
from SVM-RBF downscaling methods. From experiment set 
3, scenario B2 resulted in lower RMSE in both rainfall and 
temperature prediction in northeastern region. Therefore, we 
chose scenario B2 for this set of experiments.  

Results 
The projected rainfall and temperature values at Loei 

station are shown in Figures 10 and 11. 
The most rainy months are May(2010, 2011 and 2019), 

June(2016), July(2013, 2015, 2017), August(2012, 2014, 
2020), and September (2018). The least rainy months are 
January(2010, 2011, 2014-2018, 2020) and December 
(2012, 2013, 2019). 

Projected average temperature in any given month does 
not vary much throughout the ten-year period. Highest 
temperature occurs in April(2012, 2013, 2017-2019) and 
May(2010, 2011, 2014-2016, 2020). Lowest temperature 
occurs in January(2010, 2012-2016, 2018, 2020), and 
December (2011, 2017, 2019). 

 
Fig. 10.  Projected monthly average rainfall at Loei station (scenario B2) 

 

 
Fig. 11.  Projected monthly average temperature Loei station (scenario B2) 

 

VI. CONCLUSION 
Four sets of experiments were conducted in our study. 

The first set was about GFDL grid size. It was found that 
5x5 grid yielded the highest model accuracy. Therefore, it 
was used in all other sets of experiments together with five 
predictors (TSTAR, PSTAR, PRECIP, EVAPOR and 
SWTOP) and two scenarios (A2 and B2). In the second set 
of experiments, one MLR based and two SVM based 
(SVM-POL and SVM-RBF) statistical downscaling 
methods were evaluated in terms of ability to forecast 
rainfall and temperature at 45 weather stations Thailand. 
Observation period was from January 1965 to September 
2007. The SVM-RBF model was the most accurate model 
among the three. The third set of experiments determined 
prediction accuracy at selected weather stations from every 
part of Thailand. Focused period was 2005-2007. In 
general, observed values and predicted values varied in 
similar manner. However, temperature prediction was more 

accurate than rainfall prediction especially at stations in 
southern region. Models were used to project future rainfall 
and temperature values in the last set of experiments.  
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