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Abstract—Computer aided diagnostics of early stages of
the breast cancer is one of the most challenging problems
of the contemporary medical image processing. Computerized
detection of the breast tumors from ultrasound images provides
the way which helps the physicians to decide whether a certain
solid tumor is benign or malignant. However, it is one of the
most difficult types of images to assess.

We propose a new method to improve the accuracy of the
tumor detection based on phase portrait method combined
with the multiresolution analysis. This approach is used as a
pre-processing procedure followed by the generalized gradient
vector flow field and detection by active contours (snakes). We
analyze our approach with the synthetic images and a series
of the real ultrasound breast tumor images and compare the
results with the ground truth hand-drawn by the radiologists.
Our numerical experiments show that the proposed method
over performs the conventional generalized gradient vector field
endowed with classical preprocessing such as the Gaussian
smoothing, median filtering, etc.

Index Terms—phase portrait analysis, multiresolution analy-
sis, medical image processing

I. INTRODUCTION

ACTIVE contours or snakes proposed by Kass et al.
[1]. have been extensively used in computer vision and

image processing for edge detection, image segmentation and
motion tracking. In particular, they have been applied (with
a different degree of success) to locate the object boundaries
in various applications of medical image processing such as
segmentation of abnormalities in the images of the human
heart, liver, brain, breast, etc. [2], [3], [4], [5].

The most important component of the snake is an external
force derived from the image gradient vector field which
pushes the snake towards the boundary. However, the gra-
dient created nearby the boundary (edge) must be extended
so that the snake “feels ” the object even if it is far from
it. Therefore, a variety of modifications of Kass’s method
enhance the effect of the image edges and overcome the
sensitivity to the initial conditions and the noise. The balloon
snakes [6], [7] introduce an external force which inflates or
deflates the contour even though it might be far from the
actual boundary.

The sectored snakes [8] evolve subject to constraints
derived from a priori knowledge of the object so that the
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snake converges to a contour having some features of the
prescribed shape.

Zhu and Yuille [9] performed the snake based segmen-
tation starting from multiple seeds by iterative boundary
deformation and region merging.

One of the most popular modification are the gradient
vector flow (GVF) snakes introduced by Prince and Xu [10],
[11]. The GVF minimizes a certain variational functional
derived from a gray level edge map computed from the
image. It is designed to enhance the capture range, extend
the large gradients far from the boundary and smooth the
gradients caused by noise and speckles. The resulting Euler
equation are similar to steady state linear diffusion model.

Prince and Xu extended the GVF to the generalized
gradient vector field (GGVF) [12] by introducing non-linear
diffusion.

The GGVF based techniques have numerous applications
in medical image processing (see for instances survey [13]).
Examples of using GGVF for ultrasound (US) imagery are
[14], [15], [16], [17], computed tomography images [18],
mammography images [19], magnetic resonance imaging
[20].

However, the GGVF treatment of the ultrasound images is
still far from perfect. Although the GGVF is able to smooth
false gradients created by tissues, shadows and random noise,
in many cases it produces false boundaries and artifacts. On
the other hand an excessive smoothing destroys the actual
boundary and the accuracy of resulting contour becomes
unacceptable.

This paper presents a numerical treatment of the GGVF
images to improve the accuracy and convergence of the
GGVF snake. Our modification called the phase portrait force
field analysis (PPA) is inspired by discrete force field analysis
[21]. The algorithm finds patterns resembling standard linear
flow configurations and classifies them as the noise, the
boundary of an object or the regular point.

We use the standard linear flow classification shown in
Fig.1 and convert it into the image processing terms. The
boundary is represented by the node-saddle. The noise is
represented by an attracting star, repelling star, attracting
node and repelling node(Fig.1).

It should be noted that in the past PPA has been applied
to a variety image processing applications such as, satellite
imagery [22], texture analysis [23], and the fingerprint iden-
tification [24]. In medical image processing PPA has been
applied to detect abnormalities in mammogram breast tumor
images [25]. However, to the best of our knowledge, the
idea of PPA in the context of multiresolution GGVF active
contours has been overlooked.



Fig. 1. Phase portrait flow pattern

As opposed to the majority of the phase portrait techniques
based on “if-then ” rules, we propose a continuous measure
derived from the corresponding vector flow matrix.

The PPA applies to each multiresolution level, where the
snake runs until convergence. The snake is then interpolated
to the next level and the procedure repeats.

Our numerical experiments on numerous ultra-sound
breast tumor images show a similar or better accuracy but
at the same time much less sensitivity to the snake control
parameters and the initial position of the contour as compared
with the conventional GGVF, multiresolution GGVF snakes
and multiresolution snakes endowed with conventional filters.

II. BACKGROUND

A. Snakes in the Framework of the Gradient Vector Flow
Technique

An active contour or snake is a parametrically defined
curve X(s) = (x(s), y(s)), s ∈ [0, 1] which evolves inside
the image domain so that it attaches itself to the desired
object. The evolution of the snake is governed by Euler
equations corresponding to an energy functional defined by

E =

∫ 1

0

1

2

(
a|X ′(s)|2 + b|X ′′(s)|2

)
ds

+

∫ 1

0

Eext (X (s)) ds, (1)

where Eext is an external force which moves the snake
towards the object. The minimum of the functional is sup-
posed to be a curve which approximates a boundary of the
object of interest. Although this claim has not been proven
theoretically for realistic assumptions such as the presence
of noise, false objects, speckles, low contrast areas, etc, a
strong rationale behind it is variational functional(1).

Popular gradient vector flow techniques (GVF) originally
proposed by Prince and Xu [10], [11], replace a “raw ”

gradient vector field Eext (X (s)) derived from the image
edges by a new vector field. The vector field is obtained by
extending the large gradients at the boundary and smoothing
gradients caused by noise. The GVF is a minimizer of the
following functional

µ

∫∫
|∇u|2 + |∇v|2 dx dy

+

∫∫
|∇f |2|V −∇f |2 dx dy, (2)

where µ is the diffusion coefficient.
The first integral produces a smoothly varying vector field

V = (u(x, y), v(x, y)), while the second integral encourages
the vector field to approach ∇f , if |∇f | is large.

The Euler equation for functional(2) is given by

µ∇2V − (V −∇f)|∇f |2 = 0. (3)

Equation(3) can be solved by treating V as a function of
time and replacing (3) by :

∂V

∂t
= µ∇2V − (V −∇f)|∇f |2. (4)

The steady-state solution (as t → ∞) of the linear
parabolic equation above is the desired solution of the Euler
equation (3) . Equation (4) is discretized with regard to the
time and space variables and solved numerically. The time
steps are interpreted as numerical iterations.

Xu and Prince [12] extended the GVF technique by
introducing spatially varying coefficients to decrease the
smoothing effect at the boundary, namely,

∂V

∂t
− g (|∇f |)∇2V − h (|∇f |) (∇f − V ) = 0. (5)

The improved version of the GVF is called the generalized
gradient vector flow (GGVF). The weighting functions g
and h depend on the gradient of the edge map so that in
the proximity of large gradients g gets smaller whereas h
becomes larger. In [12] the following weighting functions
have been proposed

g (|∇f |) = e−|∇f |/K , h (|∇f |) = 1− g (|∇f |) , (6)

where K is a calibration parameter.
However, the GGVF may produce a vector field, where

the gradients are not extended far enough from the actual
boundary of the object. On the other hand, the true boundary
can be partially or even entirely destroyed by excessive
smoothing when K is too large.

The smoothing effect depends on the diffusion coefficient
µ (or K in case of (6)) and the iteration step. If a con-
ventional stopping criteria based on the proximity to the
steady state solution produces an “over-smoothed ” solution,
the user must modify the diffusion coefficient or interrupt
the iterations earlier. However, interrupting the iterations too
early may lead to false boundaries and artifacts.

The proposed PPA treats this problem by using local
configurations of the vector field. If the local pattern resem-
bles the noise the algorithm applies additional smoothing. If
PPA detects a possible boundary the smoothing (diffusion)
becomes small, so that this part of the vector field remains
unchanged. Our experiments show that the same set of
GGVF parameters achieves a better accuracy when PPA is
applied. As a matter of fact, since PPA adapts the diffusion



TABLE I
TYPES OF 2D CRITICAL POINTS.

Pattern Eigenvalues
Center R1 = R2 = 0 I1 = −I2 ̸= 0
Attracting Focus R1 = R2 < 0 I1 = −I2 ̸= 0
Repelling Focus R1 = R2 > 0 I1 = −I2 ̸= 0
Attracting Node R1 ̸= R2 < 0 I1 = I2 = 0
Attracting Star R1 = R2 < 0 I1 = I2 = 0
Repelling Node R1 ̸= R2 > 0 I1 = I2 = 0
Repelling Star R1 = R2 > 0 I1 = I2 = 0
Saddle Point R1 > 0, R2 < 0 I1 = I2 = 0
Node-Saddle 1 R1 > 0, R2 = 0 I1 = I2 = 0
Node-Saddle 2 R1 < 0, R2 = 0 I1 = I2 = 0
Pure Shear R1 = R2 = 0 I1 = I2 = 0

automatically, it is often the case that the dependence of the
accuracy on K is substantially reduced.

B. Phase portrait analysis

The phase portrait analysis makes it possible to introduce
a continuous measure indicating the boundary point, regular
point or noise based on the eigenvalues of the linear flow
matrix [26]. The method applies to any size of the sampling
window and works well combined with GGVF iterations.

There are eleven basic linear flow patterns characterized
by the eigenvalues of the flow matrix (see Table 1, where
λ1, λ2 are the eigenvalues, Ri = Reλi, Ii = Imλi). Since
we apply our classification to the vector field subjected to
smoothing and boundary enhancing effects of GGVF. The
most prominent patterns are attracting/repelling stars (noise),
node-saddle (boundary) and the pure share (regular point).

Consequently, our classifier is given by

C(W ) =



noise, min(|λ1|,|λ2|)
max(|λ1|,|λ2|) > ∆1,

|λ1| > ∆2 or|λ2| > ∆2

boundary, min(|λ1|,|λ2|)
max(|λ1|,|λ2|) ≤ ∆1,

|λ1| > ∆2 or|λ2| > ∆2

regular point,
|λ1| ≤ ∆2 or|λ2| ≤ ∆2,

(7)

where W is the window around the pixel and ∆1, ∆2 the
thresholds evaluated by training.

III. ITERATIVE ALGORITHM

The proposed algorithm combines GGVF-PPA snake with
the multiresolution analysis (MRA) based on the Daubechies
wavelets D4 [27]. The PPA detects the noise and boundary
points for each multiresolution level and for various size
of the window. The first run of PPA detects and removes
the noise. The gray level in the corresponding windows
gets smoothed. The second run detects the boundary. If the
point belongs to the boundary, the gray level in the central
point gets increased. Then the gradient vector field ∇f is
reconstructed and GGVF applies to improve ∇f . Finally, the
snake runs on the resulting vector field until convergence and
is interpolated to the higher level. The procedure is repeated
until the highest resolution level is achieved. The steps of
the algorithm are given below.

1) Apply MRA to the original image(2-3 levels).
2) Set the resolution level to the lowest one.
3) Apply the Canny edge detector to obtain a gray level

edge map.

4) Evaluate ∇f .
5) Noise removal step:

a) Apply PPA with a certain window size to obtain
C(W ) at every point.

b) If C(W ) = “noise ”, smooth the gray level at this
window(median filter, Gaussian filter, etc).

c) Increase the window size and go to 5.1 until the
maximum window size is reached.

6) Evaluate new ∇f .
7) Boundary detection step:

a) Apply PPA with a certain window size to obtain
C(W ) at every point.

b) If C(W ) = “boundary ”, increase the gray level
of the edge map.

c) Increase the window size and go to 7.1 until the
maximum window size is reached.

8) Evaluate new ∇f .
9) Run GGVF on the improved vector field.

10) Run the snake on the final vector field until conver-
gence.

11) Interpolate the snake to the next resolution level.
12) Set the image to the next resolution level.
13) Go to 3 until the highest resolution level is achieved.
In the boundary detection step, the gray level is increased

by fnew = αfold, where α is a prescribed coefficient. If
fnew > 255 at few points then fnew := 255 but if fnew >
255 at many points, the entire image is re-scaled. In our
experiments α = 1.5.

IV. NUMERICAL RESULTS

Detection of tumors in the ultrasound (US) images by
a trained physician is usually efficient and the number of
false negatives is low. However, manual segmentation of the
tumor boundary is tedious and time-consuming. Therefore,
automatic segmentation techniques are important to help
us to better visualize the tumor boundary, to calculate the
volume of the tumor and to extract features needed for the
tumor classification (benign or malignant).

This section presents experiments on real US images. The
ground truth contours were outlined by Dr.Mavin Wongsaisu-
van, who is currently a leading radiologist with the Queen
Sirikit Center for Breast Cancer of King Chulalongkorn
Memorial Hospital of Bangkok.

The proposed GGVF-MRA-PPA is compared with GGVF,
GGVF-MRA and GGVF-MRA combined with the Gaussian
smoothing (GS). The parameters of the algorithms are hand-
tuned and the methods are compared when they perform the
best (see similar evaluations in [13]).

The noise removal step uses the quantile filter [28]. It
replaces intensities of all pixels in the sampling window
by the minimal (in this window) gray level. The number of
multiresolution levels is hand-tuned for the best performance.

The accuracy is evaluated in terms of the percentage of the
true positives and the average Hausdorff distance between
true contour and snake given by

distH(CT , CS) =∑
a∈CT

min
b∈CS

∥a−b∥
NT

+
∑

a∈CS

min
b∈CT

∥a−b∥
NS

2
, (8)



where NT and NS is the number of points belonging to
the true contour and the snake respectively and ∥∥ denotes
the Euclidean distance. The tables show the best accuracy
from 50 GVF iterations performed for K = 0.01 and
K = 0.1(see equation (7)). The US images are shown in
Fig. 2, 3 and 4.

Example 1. A low contrast malignant tumor. Complicated
shape.

Considera a tumor shown in Fig.2. Let us analyze the
performance of GGVF combined with different noise re-
moval methods for varying diffusion coefficients (6). The
snake has been initialized at an average Hausdorff distance
of approximately 11, 17 and 22 pixels from the true boundary
as follows. First, the snake is initialized inside a binary
ground truth image which is “black ” inside the tumor and
“white ” outside. Next, we let the snake grow until it reaches
a prescribed distance from the boundary. Finally, we use this
contour as the initial snake inside the real ultrasound image.
The GGVF iterations are analyzed for extreme values of
the diffusion coefficients: K = 0.01 (slow diffusion) and
K = 0.1 (relatively high diffusion). The results in Table 2
and our forthcoming tables show the best accuracy vs. the
distance between the snake and the true boundary from 50
GGVF iterations.

The best results of GGVF-MRA-GS and GGVF-MRA-
PPA show a close accuracy when the snake is initialized
at d = 11 from the boundary. However, when the contour
is initialized far from the boundary, GGVF-MRA-PPA
outperforms GGVF-MRA-GS, GGVF-MRA and the
conventional GGVF. For example, when the contour is
initialized at 22 pixels from the true boundary, the best
result produced GGVF-MRA-PPA for K = 0.1 is by 20
percent better than that of GGVF-MRA-GS in terms of
the true positive points. In turn, the Hausdorff distance is
5 times (!) smaller (Table 2). This is because the contours
are different along a significant part of the boundary shown
in Fig.2. For this experiment, number of multiresolution
levels NL = 3, ∆1 = 0.81, ∆2 = 0.1 and the window size
Smax = 15× 15.

Example 2. A low contrast malignant tumor. Complicated
structure of the noise. A false boundary.

The image from Example 1 is characterized by an almost
uniform background inside the tumor and a single large
cluster of noise. This noise can be detected in one pass when
the sampling window becomes large enough. As opposed
to Example 1 the noise from Example 2 is much more
complicated.

It includes several clusters scattered across the entire
tumor. Some of the noise intensities are very close to the
intensities of pixels from the true boundary. Such structures
are hard to classify and eliminate. Besides, the tumor is
characterized by a false boundary at the right side of the
image(Fig.3(a)).

With these features the segmentation is intractable for
conventional GGVF (Fig.3(c)). However, GGVF enhanced
by MRA and subjected to a GS works much better. Figure
3 and Table 3 compare the performance of the proposed

Fig. 2. Example 1. Low contrast US image, (782×616), (d = 22pixels).
(a) The original image, (b) the initial contour and the ground truth, (c)
GGVF, (d) GGVF-MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.

Fig. 3. Example 2. Low contrast US image, (687× 535), (d = 12.6). (a)
The original image, (b) the initial contour and the ground truth, (c) GGVF,
(d) GGVF-MRA, (e) GGVF-MRA-GS, (f) GGVF-MRA-PPA.

method with GGVF, GGVF-MRA and GGVF-MRA-GS. The
accuracy is slightly different when the snake is initialized
close to the boundary (at d = 6.8 and d = 9.1) for K = 0.1.

Furthermore, for d = 12.6 the proposed method is better
if K = 0.1 (see Fig.3 (c)-(f)). It strongly outperforms other
methods for K = 0.01 (see Table 3). The good accuracy of



TABLE II
EXAMPLE 1. THE BEST ACCURACY(PERCENTAGE OF TRUE POSITIVES AND THE HAUSDORFF DISTANCE OF GGVF, GGVF-MRA, GGVF-MRA-GS,

AND GGVF-MRA-PPA) VS. THE DISTANCE BETWEEN THE INITIAL CONTOUR AND THE TRUE BOUNDARY(K = 0.01, K = 0.1, 50 ITERATIONS).

d GGVF GGVF-MRA GGVF-MRA-GS GGVF-MRA-PPA
(pixels) K K K K

0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1
11.0 29.293 59.085 75.648 90.530 90.688 86.903 90.476 89.732

7.873 3.755 3.820 1.624 1.142 1.737 1.545 1.494
17.4 20.027 42.154 55.177 89.715 64.151 87.132 89.808 90.075

11.585 6.975 5.928 1.657 5.371 1.742 1.680 1.641
21.9 16.526 29.930 43.247 72.873 59.660 71.965 91.396 90.986

19.224 18.289 12.432 8.237 12.199 6.600 1.690 1.441

GGVF-MRA-GS could be explained by smoothing effects
of GGVF for large K. Nevertheless, large K is not always
possible because strong diffusion may destroy the true
boundary. It is much safer to run GGVF with small K and
correct the noise by PPA. The local nature of PPA makes
it possible to smooth only noisy areas while enhancing the
boundary regions. For this experiment, NL = 3, ∆1 = 0.85,
∆2 = 0.1 and Smax = 10× 10.

Example 3. A low contrast benign tumor. High level
of noise inside the tumor.

Consider a benign tumor depicted in Fig.4. The high level
of noise disrupts the performance of GGVF and GGVF-MRA
making them practically unacceptable.

As far as the GGVF-MRA-GS vs. GGVF-MRA-PPA is
concerned, they perform equally well for K = 0.1. However,
the results for K = 0.01 are different again. The accuracy
of GGVF-MRA-GS drops significantly for every d, whereas
GGVF-MRA-PPA works relatively well. This exemplifies
a typical case when small K is not able to suppress the
noise (under-iterated GGVF). However, GGVF-MRA-PPA
compensates for that by removing the noise from the tumor
body. For this experiment, NL = 2, ∆1 = 0.8, ∆2 = 0.1
and Smax = 3× 3.

V. CONCLUSION

The proposed combination GGVF-MRA-PPA applied to
segmentation of the US tumor images of breast is capable of
increasing the accuracy of the segmentation up to 5 times in
terms of the average Hausdorff distance and up to 20% in
terms of true positives. The method shows promising results
when applied to the initial contour positioned far from the
true boundary. Due to its local nature, the method works
very well with the noise represented by a large group of
pixels with the intensity different from the local background.
The numerical experiments make it possible to conjecture
that the proposed techniques will succeed in segmentation
of a variety of tumors displayed in ultrasound images of the
breast.
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