

Abstract—In knowledge-based systems, the quality and

correctness of ontologies play an important role in semantic
representation and knowledge sharing. But in reality,
ontologies are often inconsistent and uncertain. Because of the
difficulty in ensuring the quality of ontologies, there is an
increasing need for dealing with the inconsistency and
uncertainty in real-world applications of ontological reasoning
and management. This paper proposes algorithm RMIU to
perform a query-specific reasoning method for inconsistent and
uncertain ontologies without changing the original ontologies.
The reasoning route and certainty degree of each answer are
also provided to the user for facilitating his selection of the most
credible answer. Finally the prototype system is constructed
and the experiment results validate the usability and
effectiveness of our approach.

Index Terms—ontology reasoning, semantic web,
inconsistency, uncertainty

I. INTRODUCTION
ntologies play an important role in the Semantic Web[1].
The quality and correctness of ontologies have great

effects on semantic representation and knowledge sharing.
However, knowledge and information in the real life are
usually uncertain, thereby leading to the uncertainty and
inconsistency of the ontology.

The uncertain ontology means that the correctness of the
ontology is probabilistic. There are mainly three sources of
uncertain ontologies: (1) subjective uncertainty of experts
when they build the ontologies, (2) the uncertainty from
original ontologies when the ontology is integrated from
several sub-ontologies, and (3) the uncertainty from (semi-)
automatically ontology learning tools.

The uncertainty of ontology may lead to the inconsistency
of the ontology. An inconsistent ontology means that an error
or a conflict exists in this ontology, as a result some concepts
in the ontology cannot be interpreted correctly. The
inconsistency of ontologies may come from mis-presentation,
polysemy, migration from another formalism, and integration
from multiple sources. The inconsistency will result in wrong
answers during ontology reasoning, and also result in false
semantic understanding and knowledge representation.

Since there are a great deal of inconsistent and uncertain
ontologies in the Semantic Web, and it is always very hard to

Manuscript received December 26, 2010; revised January 31, 2011.
Bo Liu is with the NEC Labs China, Beijing, 100084 China (phone:

+86-10-62705962; e-mail: liu_bo@nec.cn).
Jianqiang Li is with the NEC Labs China, Beijing, 100084 China (e-mail:

li_jianqiang@nec.cn).
Yu Zhao is with the NEC Labs China, Beijing, 100084 China (e-mail:

zhao_yu@nec.cn).

ensure the quality of ontologies, dealing with inconsistency
and uncertainty of ontologies has been recognized as an
important problem in the recent decades. Although revising
or repairing the imperfect ontology is an effective strategy,
the revision cost is relatively high and it is hard to implement.
Accordingly, we propose a reasoning method for inconsistent
and uncertain ontologies, which can be used to get the query
result most probable to be correct without revising the
original ontologies, thus more convenient and easy to
conduct.

The primary contributions of this paper are summarized as
follows:

1. It is achievable to obtain the query results most probable
to be correct for uncertain and inconsistent ontology, which
exempts the user’s high cost in revising the existing
ontologies.

2. The reasoning method adopts an incrementally selection
function, which is capable of selecting elements related to a
specific query. Thus, the elements necessary for the
reasoning could be obtained fast and the query results could
be returned efficiently.

3. The query results achieved by our method include not
only “True” and “False” answers, but also the specific
reasoning route (path) and certainty degree of each answer.
In this way, the user may obtain more useful information to
facilitate his selection of the most credible query result
according to the certainty degree of each result.

4. The empirical study of the proposed method is reported.
The prototype system constructs an ontology for testing and
the evaluation results validate the usability and promise of
our approach.

The rest of the paper is organized as follows: Section 2
reviews the related work. The relevant terms and definitions
are given in Section 3. Section 4 describes the reasoning
method for inconsistent and uncertain ontologies and
algorithm RMIU. The system and implementation are
presented in Section 5. Finally, the conclusions and future
work are depicted in Section 6.

II. RELATED WORK
Normally, there are two main strategies to deal with

inconsistent ontologies.
One is to resolve the error whenever an inconsistency is

encountered. The other is to “live with” the inconsistency and
to apply a non-standard reasoning method to obtain
meaningful answers in the presence of inconsistencies.

In this paper, we focus on the latter approach. Considering
the revision cost of repairing the inconsistent ontologies, the
second strategy is more suitable for the application in the

A Query-specific Reasoning Method for
Inconsistent and Uncertain Ontology

Bo Liu, Jianqiang Li, and Yu Zhao

O

Web area. For example, in a typical Semantic Web setting,
one would be importing ontologies from other sources,
making it impossible to repair them, and the scale of the
combined ontologies may be too large to make repair
effective [2].

Some researchers have been dedicated to this topic. Z.S.
Huang, et al. [2] proposed a linear extension strategy to
reason with inconsistent ontologies, but they didn’t deal with
the situation when the extended subset was inconsistent.
Beziau [3] introduced paraconsistent logics which allow
theories that are inconsistent but non-trivial. Marquis and
Porquet [4] presented a framework for reasoning with
inconsistency by introducing a family of paraconsistent
inference relations. S.X. Wang [5] depicted a reasoning
algorithm for inconsistent OWL ontologies with the aim to
support the design of software design patterns.

In the area of reasoning with probabilities in knowledge
representation, [6] presented a probabilistic extension of the
Ontology Language OWL which relied on Bayesian
Networks for reasoning. Fuzzy extensions of OWL have
been proposed in [7, 8]. [9] defined a confidence function to
handle the uncertain ontologies. [10] applied possibility
extension on the description logic to achieve reasoning for
uncertain ontology. This method removes elements with low
certainty degree by using a decrement function, but they don't
deal with the "False" answer of queries. [11] defined a vague
ontology for semantic information retrieval, which took
uncertainty issue of ontologies into consideration, though it
didn’t provide a specific solution to solve the issue.

To sum up, the conventional reasoning methods are
difficult to obtain correct query results for the ontologies that
are both inconsistent and uncertain, and some methods have
low processing efficiency. Therefore, there is a need for a
new reasoning method capable of considering the uncertainty
and inconsistency issues of the ontologies simultaneously
and with relatively high processing efficiency.

In this paper, we introduce confidence factor to measure
how confident we are of the correctness of the axioms in an
ontology. A possibility extension method is utilized to obtain
the confidence factor for each element, then an incrementally
selection function is conducted to select the elements which
are necessary to get the query results step-by-step. Both
"true" answer and "false" answer are checked, and the
reasoning route and certainty degree of each answer are
calculated to get the final query answers. Finally, the ranked
query answers are provided to the user to select more
conveniently the most credible result.

III. TERM AND DEFINITION

A. Description Logic
Description Logics (DL) are a family of well-studied

set-description languages which have been in use to
formalize knowledge for over two decades [12]. They have a
well-defined model theoretic semantics, which allows for the
automation of a number of reasoning services.

DL is equipped with a formal, logic-based semantics. A
distinguished feature is the emphasis on reasoning as a
central service: reasoning allows one to infer implicitly
represented knowledge from the knowledge that is explicitly

contained in the knowledge base [13].
A DL knowledge base Σ = (T, A) consists a set T (TBox)

and A (ABox). TBox has the form C D⊆ where C and D
are concept descriptions. The ABox contains concept
assertions of the form a : C where C is a concept and a is an
individual name, and role assertions of the form <a,b> : R,
where R is a role, and a and b are individual names.

ALC [14] is a simple yet relatively expressive DL with
conjunction (C D∪), disjunction (C D∩), negation (C¬)
and universal (.r C∀) and existential quantification (.r C∃).
The interpretation function is extended to the different
language constructs as follows [12]:

()
()
()
() (){ }
() (){ }

\
. | : ,
. | : ,

I I I

I I I

I I

I I I

I I I

C D C D
C D C D

C U C
R C d U e U d e R and e C
R C d U e U d e R implies e C

=
=

¬ =
∃ = ∈ ∃ ∈ ∈ ∈
∀ = ∈ ∀ ∈ ∈ ∈

∩ ∩
∪ ∪

A query ϕ given an ontology ∑ can be expressed as an
evaluation of the consequence relation | ϕ∑ = . There are two
answers to that query: 'Yes' (| ϕ∑ =) or 'No' (| ϕ∑ ≠). A
‘yes’ answer means that ϕ is a logical consequence of ∑ . A
‘no’ answer means that ϕ cannot be deduced from ∑ . The
negation of ϕ is expressed as ϕ¬ , so if the negation of ϕ
can be deduced from ∑ , it is expressed as | ϕ∑ = ¬ .

In this paper, we focus on ontologies which are
represented in the description logic ALC. Our approach,
however, can be trivially extended to more expressive DLs.

B. Inconsistency of Ontology
First, we will give out some definitions.
Definition 1: A concept C is unsatisfiable w.r.t. an

ontology O iff IC = Φ for all models I of O. That means
the unsatisfiable concept is interpreted as empty set.

Definition 2: A TBox T is inconsistent if there is a
concept name in T, which is unsatisfiable.

Definition 3: The unsatisfiable concept sets of ontology
O and concept A are subsets of the ontology O in which A is
unsatisfiable.

The inconsistency of ontology has transitivity, i.e. one
inconsistent axiom may cause many other axioms to become
inconsistent as well.

C. Uncertainty of Ontology
An uncertain ontology means that the correctness of the

ontology is probabilistic. To capture the certainty degree of
ontology elements, we introduce the notion of confidence
factor.

Definition 4: The confidence factor (CF) is a rating
annotation which indicates how confident we are of the
correctness of the axioms in an ontology. The higher the CF
value is, the higher probability that the axiom is correct.

CF is a number between 0 and 1, presented as:
: [0,1]CF N →

in which, N means the set of all possible ontology
elements.

The value of CF could be obtained from the experts when
they build the ontology, or calculated by some predefined
algorithms. There are already some methods to obtain the CF

value, so the calculation method is not the focus of this paper.

IV. REASONING WITH INCONSISTENT AND UNCERTAIN
ONTOLOGIES

In this section, we will illustrate the reasoning method for
the inconsistent and uncertain ontologies. First the key steps,
Possibility extension, Selection function and Reasoning route,
are introduced, then the algorithm RMIU is given out with a
specific example.

A. Possibility Extension
Possibilistic logic [15] or possibility theory offers a

convenient tool for handling uncertain or prioritized formulas
and coping with inconsistency. When we obtain an ontology
using ontology learning techniques, the axioms of the
ontology are often attached with confidence degrees and the
learned ontology may be inconsistent. In this case,
possibilistic logic provides a flexible framework to interpret
the confidence values and to reason with the inconsistent
ontology under uncertainty.

In this paper, we present a possibilistic extension of
description logics based on the definition in [10].

Possibilistic logic is a weighted logic where each classical
logic formula is associated with a number in (0, 1]. The
confidence factor CF maps each element in the ontology to a
number between 0 and 1, presented as: : [0,1]CF N → .

()CF ϕ represents the confidence factor of formula ϕ .
A possibilistic formula is a pair (,)cϕ , in which ϕ is a

logic formula and c is the certainty degree of ϕ . A
possibilistic knowledge base is the set of possibilistic
formulas, expressed as: {(,) : 1,..., }i iB c i nϕ= = .

A possibilistic axiom is a pair (,)cϕ , in which ϕ is an
axiom and c is a weight (c ∈ [0,1]). A possibilistic
TBox/ABox is a finite set of possibilistic axioms (,)cϕ , where
ϕ is a TBox/ABox axoim. A possibilistic DL knowledge
base B = (T, A) contains a possibilistic TBox T and a
possibilistic ABox A. If *T is denoted the classical DL
axioms associated with T, *A is denoted the classical DL
axioms associated with A, then * { : (,) }i i iT c Tϕ ϕ= ∈ ,

* { : (,) }i i iA c Aϕ ϕ= ∈ . The classical base *B of a
possibilistic DL knowledge base is * (*, *)B T A= . A
possibilistic DL knowledge base B is inconsistent iff *B is
inconsistent [10].

B. Selection Function
An incrementally selection function is utilized to

determine which subsets of an inconsistent ontology should
be considered in its reasoning process. Here we take [2] as a
reference, and define a selection function which will be used
in algorithm RMIU.

Definition 5: A selection function s is a mapping s, which
selects a subset of ontology ∑ relevant to query ϕ at the
step k ≥ 0, i.e., (, ,)s kϕ∑ ⊆ ∑ ,

(, ,) (, , 1)s k s kϕ ϕ∑ ⊆ ∑ + .
In this function, the initial set is an empty set, i.e.,

(, , 0)s ϕ∑ = Φ . The incrementally selection function has
the advantage that they don’t have to return all subsets for
consideration at the same time. If a query | ϕ∑ = can be
answered after considering some subset of the ontology for

some value of k, the processing cost is lower and the
efficiency is higher. The user could determine whether need
to consider other subsets with higher values of k.

The implementation of selection function is based on
syntactic relevance.

Definition 6: Suppose there are two elements φ and ψ in
a given ontology. If there is a common name (e.g. instance
name, concept name, relationship name) existing in both φ
and ψ , it is named that φ and ψ are directly relevant [2].

Definition 7: Suppose there are two elements φ and 'φ in
a given ontology. If there are a set of elements satisfying，

0
ψ , …,

k
ψ ∈ ∑ , and, φ and

0
ψ are directly relevant,

0
ψ and

1
ψ are directly relevant, …,

k
ψ and 'φ are directly relevant,

then φ and 'φ are referred to as K-relevant, or the relevance
degree between φ and 'φ is K [2].

The syntactic relevance is utilized to define the selection
function s to extend the query ‘ | ϕ∑ = ?’ as follows: We start
with the query formula ϕ as a starting point for the selection
function, i.e., (, , 0)s ϕ∑ = Φ

Then the selection function selects the formulas ψ which
are directly relevant to ϕ as a working set (i.e. k = 1) to see
whether or not they are sufficient to give an answer to the
query. That is,

(, , 1) { | }s and are directly relevantϕ ψ ϕ ψ∑ = ∈ ∑
With the increase of k, s selects more elements that are

relevant to the current working set. For k>1,
(, ,) { | (, , 1)}s k is directly relevant to s kϕ ψ ψ ϕ∑ = ∈ ∑ ∑ −
We use the relevance-based selection function to fast

obtain the subset of the inconsistent ontology that is
necessary to get the query result.

C. Reasoning Route
To better record the reasoning process of inconsistent

ontologies, we define Reasoning route as follows:
Definition 8: Reasoning route is a collection R, which

records all the ontology elements that are necessary to reason
out the query φ, that is, if any element in the collection R is
removed, it is impossible to obtain an answer for the query φ.
It denotes |R ϕ= and ' , ' |R R R ϕ⊂ ≠ .

After obtaining the reasoning route of a query answer, we
can further calculate the certainty degree of the answer.

Definition 9: The Certainty Degree of an Answer (CDA)
for a query means a score, for indicating the certainty or
credibility degree of the answer in the ontology. The higher
the CDA is, the more probable the answer is correct. For
example, CDA can be represented as a digital from 0 to 1,
namely, : [0,1]CDA A → , wherein A denotes the collection
of all the answers for the query.

In this paper, the CDA of a query is calculated by
multiplying the confidence factors of each element in the
reasoning route of this answer.

D. Algorithm RMIU
Our proposed reasoning method for inconsistent and

uncertain ontology includes the following steps:
1) input an ontology and a query;
2) perform possibility extension on the ontology to

calculate a Confidence Factor (CF) value for each element in

the ontology;
3) select a set of elements relevant to the query from the

ontology by using the selection function;
4) check whether it can reason out any query result from

the set of selected elements;
5) if it is determined that the set of selected elements

cannot get any query result, increment the relevant degree of
the selection function and repeat the steps 3) and 4), or if it
can get query results, record the query results and
corresponding reasoning paths and certainty degree of the
answers, as well as increment the relevant degree of the
selection function and repeat the steps 3) and 4);

6) when the set of selected elements already contain all the
elements in the ontology or the selection function cannot
select any more element relevant to the query, rank the
recorded query results in terms of the certainty degree, and
output all of the recorded query results and their
corresponding reasoning routes and certainty degree.

The algorithm RMIU (Reasoning Method for Inconsistent
and Uncertain ontology) is described below.

The input of algorithm RMIU is an ontology B and a query
φ, the aim of the algorithm is to determine whether any result
of the query φ can be obtained from B: | ?B ϕ= . Ontology B
is defined as B=(T, A), T={Ψi, i=1,2,..,n} and A={cj,
j=1,2,..,m}, T denoting a set of axioms, A denoting a set of
assertions.

The output of the algorithm is the query results set A which
include two parts: positive answer (PA) and negative answer
(NA), expressed as: A={PA, NA}. PA stores the answers
when the query is "True" (i.e. |B ϕ=), NA stores the answers
when the query is "False" (i.e. |B ϕ= ¬).
Algorithm RMIU(B,ϕ): Reasoning Method for Inconsistent
and Uncertain ontology
Input: Inconsistent and Uncertain ontology B , query ϕ
Output: The query result set A of ontology B with query ϕ
begin
While B is inconsistent and uncertain do // Check whether
B is inconsistent and uncertain, if yes, start the cycle
{ * ()B PossibilityExtension B← // B* is the possibility

extension of B
For (int k=1; C; k++) // C is the predefined threshold of k
{
 ' (*, ,)ϕΣ = s B k // selection function s
 If (' | ϕΣ =) // if the query answer is true
 {
 (',)PRP GetPosReasoningPath ϕ← ∑ // get positive
reasoning path
 (',)CD GetCertaintyDegree PRP← ∑ // get certainty
degree of the answer
 (', ,)PA PA GetQueryResult PRP CD← + ∑ // positive
Answer Set PA
 A PA← // add PA to A
 }
 If (' | ϕΣ = ¬) // if the query answer is false
 {
 (',)NRP GetNegReasoningPath ϕ← ∑ // get negative
reasoning path
 (',)CD GetCertaintyDegree NRP← ∑ // get certainty
degree of the answer

 (', ,)NA NA GetQueryResult NRP CD← + ∑ //
negative Answer Set NA
 A NA← // add NA to A
 }
 If (' *Σ = B 'Σ = Σor) // closure condition
 Break;
 Else 'Σ ← Σ
}
If ((PA is empty) and (NA is empty))
 { A ← Φ //A is empty set
 Return A //return the empty set A }
Else { (,)A rank PA NA← // rank the query results by
certainty degree
 Return A //return the Query Result Set A }

}
End While
end

When B is inconsistent and uncertain, the function
PossibilityExtension() produces a possibility extension
ontology B*. The possibility extension function assigns each
element in the ontology a confidence factor. That is,

(,) * (*, *)B T A B T A= → = . T* denotes a set of possibilistic
axioms, i.e. T*={(Ψi,αi), i=1,2,..,n}. A* denotes a set of
possibilistic assertions, A*={(cj, αj), j=1,2,..,m}. α represents
a confidence factor. Regarding the calculation method of the
confidence factor, it can use any well-known techniques in
this field, like [10].

Next, the Incrementally Selection Function s selects the
elements having a relevance degree k with the query φ. k has
an initial value of 1 and plus 1 each time when incrementing
the selection.

In each cycle, the reasoner first checks whether the current
working set ∑' can get a “True” answer of the query φ. If so,
GetPosReasoningPath() and GetCertaintyDegree() functions
are performed to calculate and record the reasoning path of
the answer and its certainty degree. The reasoning path
includes all the elements in the ontology that are necessary to
reason out the answer, the certainty degree is calculated by
multiplying the CFs of all the elements along the reasoning
path. Then the positive answers with the corresponding
reasoning path and certainty degree are recorded in PA by
function GetQueryResult().

To the contrary, if there is no “True” answer, the reasoner
checks whether any “False” answer of the query φ can be
reasoned out. Then, the function GetNegReasoningPath(),
GetCertaintyDegree() and GetQueryResult() are conducted
to calculate and record the reasoning path of the negative
answer and its certainty degree.

If the set ∑' is equal to the ontology B* (which means the
current set has chosen all the elements in the ontology, and
thus no new element can be added in), or if ∑' is equal to the
ontology ∑ (which means this round of selection function
does not select new element to join in, that is, there will be no
more element relevant to ∑'), the cycle is terminated; if not,
give the set ∑' to ∑ and start next cycle.

Finally, if the query φ has an answer (“True” or “False”),
rank(PA,NA) function ranks all the query results according to
the certainty degree of each answer, the algorithm outputs the
ranked query answer set A, represented as:

A={{answer ID: True (or False), path: {…}, certainty
degree},…}

If A is empty, it means the ontology B is not enough to
make a determination. We name the query answer
"Undetermined".

To better explain the principle of algorithm RMIU, a
specific example is given below. B is an inconsistent
ontology, which includes 11 axioms: ax1-ax11, in which A-E,
G, H, K, Q mean concepts, a and q mean instances.

, , , (), ,
, , , , , ()

A B A C A D Q A a B G
B

C B D E E B G H K H A Q q
⊆ ⊂ ⊂ ∩ ⊆⎧ ⎫

= ⎨ ⎬⊂ ⊂ ⊂ ⊂ ∩ ⊂⎩ ⎭
,

by passing the Possibility Extension function,
(, 0 .7), (, 0 .8), (, 0 .9),
((), 0 .5), (, 0 .3),

*
(, 0.6), (, 0 .8), (, 0 .7),
(, 0 .5), (, 0 .6), ((), 0 .5)

⊆ ⊂ ⊂ ∩⎧ ⎫
⎪ ⎪⊆⎪ ⎪= ⎨ ⎬⊂ ⊂ ⊂⎪ ⎪
⎪ ⎪⊂ ∩ ⊂⎩ ⎭

A B A C A D Q
A a B G

B
C B D E E B
G H K H A Q q

Suppose the input query φ is: “ ?A B⊂ ”.
The initial k is 1 and the selection function is as follows:
' (*, ,1)

(, 0.7), (, 0.8), (, 0.9), ((), 0.5),
(, 0.3), (, 0.6), (, 0.7), (, 0.6)

s B
A B A C A D Q A a

B G C B E B H A

ϕΣ =

⊆ ⊂ ⊂ ∩⎧ ⎫
= ⎨ ⎬⊆ ⊂ ⊂ ⊂⎩ ⎭

Then check whether ' | ϕΣ = . Two reasoning paths are
found as follows:

Answer set A = {{answer 1: True, path: { (,0.7)A B⊆ },
0.7}, {answer 2: True, path: { (,0.8), (,0.6)A C C B⊂ ⊂ },
0.48}}

Check whether ' | ϕΣ = ¬ . The answer is 'No'.
Continue to check whether ∑'=B* or ∑'=∑. It is found

neither of the two conditions can be satisfied, then k = k+1,
i.e. k=2, and the set ∑' is given to ∑.

' (*, , 2)
(, 0.7), (, 0.8), (, 0.9), ((), 0.5),

(, 0.3), (, 0.6), (, 0.7), (, 0.6)
(, 0.8), (, 0.5), ((), 0.5)

s B
A B A C A D Q A a

B G C B E B H A
D E G H K Q q

ϕΣ =

⊆ ⊂ ⊂ ∩⎧ ⎫
⎪ ⎪= ⊆ ⊂ ⊂ ⊂⎨ ⎬
⎪ ⎪⊂ ⊂ ∩⎩ ⎭

Then check whether ' | ϕΣ = . One reasoning path is found,
and this path is added to the answer set A:
Answer set A=

{answer 1: True, path: {(, 0.7)}, 0.7},
{answer 2: True, path: {(, 0.8), (, 0.6)}, 0.48},
{answer 3: True, path: {(, 0.9), (, 0.8),
(, 0.7)}, 0.5}

A B
A C C B
A D Q D E

E B

⊆⎧ ⎫
⎪ ⎪⊂ ⊂⎪ ⎪
⎨ ⎬⊂ ∩ ⊂⎪ ⎪
⎪ ⎪⊂⎩ ⎭

Check whether ' | ϕΣ = ¬ . One reasoning path is found:
{answer 4: False, path:
{ (,0.3), (,0.5), (,0.6)B G G H K H A⊆ ⊂ ∩ ⊂ }, 0.09}.

Continue to check whether there is ∑'=B* or ∑'=∑. The
former condition is satisfied. Then, since the answer set “has”
answers, the query results need to be ranked. The final output
can be obtained as follows:
Query results A =
{answer 1: True, path: {(, 0.7)}, 0.7},
{answer 3: True, path: {(, 0.9), (, 0.8),
(, 0.7)},0.5},
{answer 2: True, path: {(, 0.8), (, 0.6)}, 0.48},
{answer 4: False, path: {(, 0.3), (, 0.

A B
A D Q D E

E B
A C C B
B G G H K

⊆
⊂ ∩ ⊂

⊂
⊂ ⊂
⊆ ⊂ ∩ 5),

(, 0.6)},0.09}H A

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪

⊂⎪ ⎪⎩ ⎭

There are three "True" answers and one "False" answer.
The user could select the most proper answer according to the
certainty degree and also his personal knowledge.

V. SYSTEM AND IMPLEMENTATION

A. System Architecture
We have implemented a prototype as a reasoner of

inconsistent and uncertain ontologies. Figure 1 presents the
architecture of the prototype system. Ontology storage stores
all the ontologies with OWL format. To construct an
inconsistent and uncertain ontology for testing, we use an
ontology learning tool (like Text2Onto [16]) to build an
ontology from Reuters News. Possibility extension modular
performs the possibility extension for each element of the
ontology, and stores the possibilistic ontology in possibilistic
ontology storage.

The key modulars of the prototype are incremental
selection modular, query result checking and recording
modular, reasoning path recording modular, certainty degree
calculation modular and query result ranking modular. They
realize the main function of algorithm RMIU.

User interface inputs the query and outputs the query
answers. The user could select the answer most probable to
be correct according to the certainty degree of each answer,
and also review the reasoning path to know how to get this
result. In this way, the user may obtain more useful
information to facilitate his selection.

Fig. 1. System architecture of the prototype.

B. Experiment and Evaluation
In order to validate our methods presented in the previous

sections, we generated a document set from Reuters News,
using 500 documents with the topic code "science and
technology". This corpus served as input to the ontology
extraction step. For this purpose we decided to use the freely
available Text2Onto tool, developed at the AIFB, Karlsruhe,
Germany. The learned ontology consisted of the following
elements as shown in Table 1.

TABLE I
THE LEARNED ONTOLOGY FROM REUTERS NEWS

Learned Element Number
concepts 450
instances 89

subconcept-of relations 248
disjoint-concepts relations 352

instance-of relations 76

Then, we applied an evaluation function and algorithm [17]
to calculate the CF value of the learned ontology. After
possibility extension, the learned ontology is stored into
possibilistic ontology storage for further reasoning.

For each instance c of concept C in this ontology, we make
a positive instance query like 'is c a C?', and a negative
instance query like 'is c a B?', in which B is another concept
selected randomly. From the subconcept-of relations, we
randomly select 100 relations to construct queries. For each
subconcept-of relation like ' A B⊆ ', we make a positive
query ' A B⊆ ?', and a negative query like ' A C⊆ ?'. After
reasoning, the query results are shown in table 2.

To measure the accuracy of the query results, we compare
the answers with their intuitive answers which are supposed
by a human. For a query, there may exist three answers: True,
False, Undetermined. If the answer is the same as the
intuitive answer, it is recorded as a correct answer. Of the 378
queries, our reasoner returns 201 'True', 142 'False', and 35
'Undetermined', in which 4 answers are different from the
intuitive answers. The total accuracy is 99%, which proves
the usability and effectiveness of our method.

TABLE II
THE QUERY RESULTS AND ACCURACY

Answer True False Undetermined
Num. of answers 201 142 35
Num. of error 1 1 2
Accuracy 99.5% 99.3% 94.3%
Num. of answers 201 142 35
Total accuracy 99%

In the above experiment, we predefine the threshold of k
(i.e., C in algorithm RMIU) as 4. That is to say, the selection
function will stop incrementally selecting more elements
when k=4. Generally speaking, the value of C influences the
execution time and the number of query answers. With the
increase of threshold C, more elements are selected for
reasoning, more query answers may be found, and more
processing time is needed. But if the selection function
reaches the closure condition (∑'= B* or ∑=∑') before k
increases to C, then the threshold C couldn't influence the
final results any more. So how to choose the "right" threshold
C will depend on the application scenario and the scale of
ontology, as it essentially means finding a trade-off between
the execution time and the number of query answers.

Figure 2 shows the relation between C and average
processing time of the tested queries. When C<5, the time
cost is raising with the increase of C. When C≥5, the closure
condition is reached, so the processing time remains in 6
seconds.

Fig. 2. The relation between threshold C and average processing time.

VI. CONCLUSIONS AND FUTURE WORK
To ensure the quality and correctness of the ontology, this

paper proposes a query-specific reasoning method for
inconsistent and uncertain ontologies. Without modifying the
original ontology, we aim at developing a non-standard
reasoner which is able to obtain a meaningful answer with the
most possibility to be correct. The reasoning route and
certainty degree of each answer are also calculated, thus the
user may obtain more useful information to facilitate his
selection of the most credible query result. The prototype
system validates the feasibility and effectiveness of our
method. In future, the efficiency of algorithm RMIU will be
improved and more experiments need to be conducted to
validate the algorithm in many different application
scenarios.

REFERENCES
[1] T.B. Lee, “Semantic Web Road Map”, W3C Design Issues, 1998.

 Available: http://www.w3.org/DesignIssues/Semantic.html
[2] Z.S. Huang, V.F. Harmelen, A.T. Teije, “Reasoning with Inconsistent

Ontologies”, in Proceedings of IJCAI'05, 2005, pp. 254-259.
[3] J.-Y. Beziau, “What is Paraconsistent Logic”, Frontiers of

paraconsistent logic, Research Studies Press, pp. 95–111, 2000.
[4] P. Marquis, N. Porquet, “Resource-bounded Paraconsistent Inference”,

Annals of Mathematics and Artificial Intelligence, pp. 349–384, 2003.
[5] S.X. Wang, “Reasoning with Inconsistent OWL Ontologies for

Software Reuse”, World Congress on Software Engineering, vol. 2,
pp.113-116, 2009.

[6] Z. Ding, Y. Peng, “A Probabilistic Extension to Ontology Language
OWL”, in Proceedings of the 37th Hawaii International Conference on
System Sciences, Track 4, Vol. 4, IEEE CS Press, 2004.

[7] U. Straccia, “Towards a Fuzzy Description Logic for the Semantic
Web” (preliminary report), in Proceedings of the Second European
Semantic Web Conference, 2005, pp. 67-181.

[8] H.B. Kong, G. Xue, X.L. He, S.W. Yao, “A Proposal to Handle
Inconsistent Ontology with Fuzzy OWL”, in CSIE, Vol. 1, pp.599-603,
2009, WRI World Congress on Computer Science and Information
Engineering, 2009.

[9] S.C. Lam, J.Z. Pan, D. Sleeman, W. Vasconcelos, “Ontology
Inconsistency Handling: Ranking and Rewriting Axioms”, Technical
Report AUCS/TR0603, 2006.

[10] G.L. Qi, J.Z. Pan, Q. Ji, “Extending Description Logics with
Uncertainty Reasoning in Possibilistic Logic”, in Proceedings of the
9th European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, CSQARU 2007, LNAI 4724, pp. 828-839,
2007.

[11] S. Calegari, E. Sanchez, “A Fuzzy Ontology-approach to Improve
Semantic Information Retrieval”, in Proceedings of the Third ISWC
Workshop on Uncertainty Reasoning for the Semantic Web, URSW'07,
2007, pp. 6-11.

[12] S. Schlobach, Z.S. Huang, “Inconsistent Ontology Diagnosis and
Repair”, 2007. Available: http://wasp.cs.vu.nl/sekt/dion/sekt363.pdf

[13] F. Baader, D. Calvanese, D.L. McGuinness, et al., “The Description
Logic Handbook: Theory, Implementation, and Applications”,
Cambridge University Press, 2003.

[14] M.S. Schauss, G. Smolka, “Attribute Concept Descriptions with
Complements”, Artificial Intelligence, Vol. 48, pp. 1–26, 1991.

[15] D. Dubois, J. Lang, H. Prade, “Possibilistic Logic”, Handbook of Logic
in Artificial Intelligence and Logic Programming, pp. 439–513.
Oxford University Press, Oxford, 1994.

[16] Text2Onto. Available: http://code.google.com/p/text2onto/
[17] P. Haase, J. Völker, “Ontology Learning and Reasoning - Dealing with

Uncertainty and Inconsistency”, Lecture Notes in Computer Science,
Vol. 5327, pp. 366-384, 2008.

