
 

  
Abstract—In knowledge-based systems, the quality and 

correctness of ontologies play an important role in semantic 
representation and knowledge sharing. But in reality, 
ontologies are often inconsistent and uncertain. Because of the 
difficulty in ensuring the quality of ontologies, there is an 
increasing need for dealing with the inconsistency and 
uncertainty in real-world applications of ontological reasoning 
and management. This paper proposes algorithm RMIU to 
perform a query-specific reasoning method for inconsistent and 
uncertain ontologies without changing the original ontologies. 
The reasoning route and certainty degree of each answer are 
also provided to the user for facilitating his selection of the most 
credible answer. Finally the prototype system is constructed 
and the experiment results validate the usability and 
effectiveness of our approach. 
 

Index Terms—ontology reasoning, semantic web, 
inconsistency, uncertainty 
 

I. INTRODUCTION 
ntologies play an important role in the Semantic Web[1]. 
The quality and correctness of ontologies have great 

effects on semantic representation and knowledge sharing. 
However, knowledge and information in the real life are 
usually uncertain, thereby leading to the uncertainty and 
inconsistency of the ontology. 

The uncertain ontology means that the correctness of the 
ontology is probabilistic. There are mainly three sources of 
uncertain ontologies: (1) subjective uncertainty of experts 
when they build the ontologies, (2) the uncertainty from 
original ontologies when the ontology is integrated from 
several sub-ontologies, and (3) the uncertainty from (semi-) 
automatically ontology learning tools. 

The uncertainty of ontology may lead to the inconsistency 
of the ontology. An inconsistent ontology means that an error 
or a conflict exists in this ontology, as a result some concepts 
in the ontology cannot be interpreted correctly. The 
inconsistency of ontologies may come from mis-presentation, 
polysemy, migration from another formalism, and integration 
from multiple sources. The inconsistency will result in wrong 
answers during ontology reasoning, and also result in false 
semantic understanding and knowledge representation. 

Since there are a great deal of inconsistent and uncertain 
ontologies in the Semantic Web, and it is always very hard to 
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ensure the quality of ontologies, dealing with inconsistency 
and uncertainty of ontologies has been recognized as an 
important problem in the recent decades. Although revising 
or repairing the imperfect ontology is an effective strategy, 
the revision cost is relatively high and it is hard to implement. 
Accordingly, we propose a reasoning method for inconsistent 
and uncertain ontologies, which can be used to get the query 
result most probable to be correct without revising the 
original ontologies, thus more convenient and easy to 
conduct. 

The primary contributions of this paper are summarized as 
follows: 

1. It is achievable to obtain the query results most probable 
to be correct for uncertain and inconsistent ontology, which 
exempts the user’s high cost in revising the existing 
ontologies. 

2. The reasoning method adopts an incrementally selection 
function, which is capable of selecting elements related to a 
specific query. Thus, the elements necessary for the 
reasoning could be obtained fast and the query results could 
be returned efficiently. 

3. The query results achieved by our method include not 
only “True” and “False” answers, but also the specific 
reasoning route (path) and certainty degree of each answer. 
In this way, the user may obtain more useful information to 
facilitate his selection of the most credible query result 
according to the certainty degree of each result. 

4. The empirical study of the proposed method is reported. 
The prototype system constructs an ontology for testing and 
the evaluation results validate the usability and promise of 
our approach. 

The rest of the paper is organized as follows: Section 2 
reviews the related work. The relevant terms and definitions 
are given in Section 3. Section 4 describes the reasoning 
method for inconsistent and uncertain ontologies and 
algorithm RMIU. The system and implementation are 
presented in Section 5. Finally, the conclusions and future 
work are depicted in Section 6. 

II. RELATED WORK 
Normally, there are two main strategies to deal with 

inconsistent ontologies.  
One is to resolve the error whenever an inconsistency is 

encountered. The other is to “live with” the inconsistency and 
to apply a non-standard reasoning method to obtain 
meaningful answers in the presence of inconsistencies.  

In this paper, we focus on the latter approach. Considering 
the revision cost of repairing the inconsistent ontologies, the 
second strategy is more suitable for the application in the 
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Web area. For example, in a typical Semantic Web setting, 
one would be importing ontologies from other sources, 
making it impossible to repair them, and the scale of the 
combined ontologies may be too large to make repair 
effective [2].  

Some researchers have been dedicated to this topic. Z.S. 
Huang, et al. [2] proposed a linear extension strategy to 
reason with inconsistent ontologies, but they didn’t deal with 
the situation when the extended subset was inconsistent. 
Beziau [3] introduced paraconsistent logics which allow 
theories that are inconsistent but non-trivial. Marquis and 
Porquet [4] presented a framework for reasoning with 
inconsistency by introducing a family of paraconsistent 
inference relations. S.X. Wang [5] depicted a reasoning 
algorithm for inconsistent OWL ontologies with the aim to 
support the design of software design patterns. 

In the area of reasoning with probabilities in knowledge 
representation, [6] presented a probabilistic extension of the 
Ontology Language OWL which relied on Bayesian 
Networks for reasoning. Fuzzy extensions of OWL have 
been proposed in [7, 8]. [9] defined a confidence function to 
handle the uncertain ontologies. [10] applied possibility 
extension on the description logic to achieve reasoning for 
uncertain ontology. This method removes elements with low 
certainty degree by using a decrement function, but they don't 
deal with the "False" answer of queries. [11] defined a vague 
ontology for semantic information retrieval, which took 
uncertainty issue of ontologies into consideration, though it 
didn’t provide a specific solution to solve the issue. 

To sum up, the conventional reasoning methods are 
difficult to obtain correct query results for the ontologies that 
are both inconsistent and uncertain, and some methods have 
low processing efficiency. Therefore, there is a need for a 
new reasoning method capable of considering the uncertainty 
and inconsistency issues of the ontologies simultaneously 
and with relatively high processing efficiency. 

In this paper, we introduce confidence factor to measure 
how confident we are of the correctness of the axioms in an 
ontology. A possibility extension method is utilized to obtain 
the confidence factor for each element, then an incrementally 
selection function is conducted to select the elements which 
are necessary to get the query results step-by-step. Both 
"true" answer and "false" answer are checked, and the 
reasoning route and certainty degree of each answer are 
calculated to get the final query answers. Finally, the ranked 
query answers are provided to the user to select more 
conveniently the most credible result. 

III. TERM AND DEFINITION 

A. Description Logic 
Description Logics (DL) are a family of well-studied 

set-description languages which have been in use to 
formalize knowledge for over two decades [12]. They have a 
well-defined model theoretic semantics, which allows for the 
automation of a number of reasoning services. 

DL is equipped with a formal, logic-based semantics. A 
distinguished feature is the emphasis on reasoning as a 
central service: reasoning allows one to infer implicitly 
represented knowledge from the knowledge that is explicitly 

contained in the knowledge base [13]. 
A DL knowledge base Σ = (T, A) consists a set T (TBox) 

and A (ABox). TBox has the form C D⊆  where C and D 
are concept descriptions. The ABox contains concept 
assertions of the form a : C where C is a concept and a is an 
individual name, and role assertions of the form <a,b> : R, 
where R is a role, and a and b are individual names.  

ALC [14] is a simple yet relatively expressive DL with 
conjunction ( C D∪ ), disjunction ( C D∩ ), negation ( C¬ ) 
and universal ( .r C∀ ) and existential quantification ( .r C∃ ). 
The interpretation function is extended to the different 
language constructs as follows [12]: 

( )
( )
( )
( ) ( ){ }
( ) ( ){ }

\
. | : ,
. | : ,

I I I

I I I

I I

I I I

I I I

C D C D
C D C D

C U C
R C d U e U d e R and e C
R C d U e U d e R implies e C

=
=

¬ =
∃ = ∈ ∃ ∈ ∈ ∈
∀ = ∈ ∀ ∈ ∈ ∈

∩ ∩
∪ ∪

 

A query ϕ  given an ontology ∑  can be expressed as an 
evaluation of the consequence relation | ϕ∑ = . There are two 
answers to that query: 'Yes' ( | ϕ∑ = ) or 'No' ( | ϕ∑ ≠ ). A 
‘yes’ answer means that ϕ  is a logical consequence of ∑ . A 
‘no’ answer means that ϕ  cannot be deduced from ∑ . The 
negation of ϕ  is expressed as ϕ¬ , so if the negation of ϕ  
can be deduced from ∑ , it is expressed as | ϕ∑ = ¬ .  

In this paper, we focus on ontologies which are 
represented in the description logic ALC. Our approach, 
however, can be trivially extended to more expressive DLs. 

B. Inconsistency of Ontology 
First, we will give out some definitions. 
Definition 1: A concept C is unsatisfiable w.r.t. an 

ontology O iff IC = Φ  for all models I  of O. That means 
the unsatisfiable concept is interpreted as empty set. 

Definition 2: A TBox T is inconsistent if there is a 
concept name in T, which is unsatisfiable.  

Definition 3: The unsatisfiable concept sets of ontology 
O and concept A are subsets of the ontology O in which A is 
unsatisfiable.  

The inconsistency of ontology has transitivity, i.e. one 
inconsistent axiom may cause many other axioms to become 
inconsistent as well. 

C. Uncertainty of Ontology 
An uncertain ontology means that the correctness of the 

ontology is probabilistic. To capture the certainty degree of 
ontology elements, we introduce the notion of confidence 
factor. 

Definition 4: The confidence factor (CF) is a rating 
annotation which indicates how confident we are of the 
correctness of the axioms in an ontology. The higher the CF 
value is, the higher probability that the axiom is correct.  

CF is a number between 0 and 1, presented as: 
: [0,1]CF N →   

in which, N means the set of all possible ontology 
elements. 

The value of CF could be obtained from the experts when 
they build the ontology, or calculated by some predefined 
algorithms. There are already some methods to obtain the CF 



 

value, so the calculation method is not the focus of this paper. 

IV. REASONING WITH INCONSISTENT AND UNCERTAIN 
ONTOLOGIES 

In this section, we will illustrate the reasoning method for 
the inconsistent and uncertain ontologies. First the key steps, 
Possibility extension, Selection function and Reasoning route, 
are introduced, then the algorithm RMIU is given out with a 
specific example. 

A. Possibility Extension 
Possibilistic logic [15] or possibility theory offers a 

convenient tool for handling uncertain or prioritized formulas 
and coping with inconsistency. When we obtain an ontology 
using ontology learning techniques, the axioms of the 
ontology are often attached with confidence degrees and the 
learned ontology may be inconsistent. In this case, 
possibilistic logic provides a flexible framework to interpret 
the confidence values and to reason with the inconsistent 
ontology under uncertainty. 

In this paper, we present a possibilistic extension of 
description logics based on the definition in [10]. 

Possibilistic logic is a weighted logic where each classical 
logic formula is associated with a number in (0, 1]. The 
confidence factor CF maps each element in the ontology to a 
number between 0 and 1, presented as: : [0,1]CF N → . 

( )CF ϕ  represents the confidence factor of formula ϕ . 
A possibilistic formula is a pair ( , )cϕ , in which ϕ  is a 

logic formula and c  is the certainty degree of ϕ . A 
possibilistic knowledge base is the set of possibilistic 
formulas, expressed as: {( , ) : 1,..., }i iB c i nϕ= = . 

A possibilistic axiom is a pair ( , )cϕ , in which ϕ  is an 
axiom and c  is a weight ( c ∈  [0,1]). A possibilistic 
TBox/ABox is a finite set of possibilistic axioms ( , )cϕ , where 
ϕ  is a TBox/ABox axoim. A possibilistic DL knowledge 
base B = (T, A) contains a possibilistic TBox T and a 
possibilistic ABox A. If *T  is denoted the classical DL 
axioms associated with T, *A  is denoted the classical DL 
axioms associated with A, then * { : ( , ) }i i iT c Tϕ ϕ= ∈ , 

* { : ( , ) }i i iA c Aϕ ϕ= ∈ . The classical base *B  of a 
possibilistic DL knowledge base is * ( *, *)B T A= . A 
possibilistic DL knowledge base B is inconsistent iff *B  is 
inconsistent [10]. 

B. Selection Function 
An incrementally selection function is utilized to 

determine which subsets of an inconsistent ontology should 
be considered in its reasoning process. Here we take [2] as a 
reference, and define a selection function which will be used 
in algorithm RMIU. 

Definition 5: A selection function s is a mapping s, which 
selects a subset of ontology ∑  relevant to query ϕ  at the 
step k ≥ 0, i.e., ( , , )s kϕ∑ ⊆ ∑ , 

( , , ) ( , , 1)s k s kϕ ϕ∑ ⊆ ∑ + . 
In this function, the initial set is an empty set, i.e., 

( , , 0)s ϕ∑ = Φ . The incrementally selection function has 
the advantage that they don’t have to return all subsets for 
consideration at the same time. If a query | ϕ∑ =  can be 
answered after considering some subset of the ontology for 

some value of k, the processing cost is lower and the 
efficiency is higher. The user could determine whether need 
to consider other subsets with higher values of k.  

The implementation of selection function is based on 
syntactic relevance. 

Definition 6: Suppose there are two elements φ  and ψ  in 
a given ontology. If there is a common name (e.g. instance 
name, concept name, relationship name) existing in both φ  
and ψ , it is named that φ  and ψ  are directly relevant  [2]. 

Definition 7: Suppose there are two elements φ  and 'φ  in 
a given ontology. If there are a set of elements satisfying，

0
ψ , …, 

k
ψ ∈ ∑ , and, φ and 

0
ψ  are directly relevant, 

0
ψ and 

1
ψ  are directly relevant, …, 

k
ψ and 'φ  are directly relevant, 

then φ  and 'φ  are referred to as K-relevant, or the relevance 
degree between φ  and 'φ  is K  [2]. 

The syntactic relevance is utilized to define the selection 
function s to extend the query ‘ | ϕ∑ = ?’ as follows: We start 
with the query formula ϕ  as a starting point for the selection 
function, i.e., ( , , 0)s ϕ∑ = Φ  

Then the selection function selects the formulas ψ  which 
are directly relevant to ϕ  as a working set (i.e. k = 1) to see 
whether or not they are sufficient to give an answer to the 
query. That is, 

( , , 1) { | }s and are directly relevantϕ ψ ϕ ψ∑ = ∈ ∑  
With the increase of k, s selects more elements that are 

relevant to the current working set. For k>1, 
( , , ) { | ( , , 1)}s k is directly relevant to s kϕ ψ ψ ϕ∑ = ∈ ∑ ∑ −  
We use the relevance-based selection function to fast 

obtain the subset of the inconsistent ontology that is 
necessary to get the query result. 

C. Reasoning Route 
To better record the reasoning process of inconsistent 

ontologies, we define Reasoning route as follows: 
Definition 8: Reasoning route is a collection R, which 

records all the ontology elements that are necessary to reason 
out the query φ, that is, if any element in the collection R is 
removed, it is impossible to obtain an answer for the query φ.  
It denotes |R ϕ=  and ' , ' |R R R ϕ⊂ ≠ . 

After obtaining the reasoning route of a query answer, we 
can further calculate the certainty degree of the answer. 

Definition 9: The Certainty Degree of an Answer (CDA) 
for a query means a score, for indicating the certainty or 
credibility degree of the answer in the ontology. The higher 
the CDA is, the more probable the answer is correct. For 
example, CDA can be represented as a digital from 0 to 1, 
namely, : [0,1]CDA A → , wherein A denotes the collection 
of all the answers for the query. 

In this paper, the CDA of a query is calculated by 
multiplying the confidence factors of each element in the 
reasoning route of this answer. 

D. Algorithm RMIU 
Our proposed reasoning method for inconsistent and 

uncertain ontology includes the following steps:  
1) input an ontology and a query;  
2) perform possibility extension on the ontology to 

calculate a Confidence Factor (CF) value for each element in 



 

the ontology; 
3) select a set of elements relevant to the query from the 

ontology by using the selection function;  
4) check whether it can reason out any query result from 

the set of selected elements;  
5) if it is determined that the set of selected elements 

cannot get any query result, increment the relevant degree of 
the selection function and repeat the steps 3) and 4), or if it 
can get query results, record the query results and 
corresponding reasoning paths and certainty degree of the 
answers, as well as increment the relevant degree of the 
selection function and repeat the steps 3) and 4);  

6) when the set of selected elements already contain all the 
elements in the ontology or the selection function cannot 
select any more element relevant to the query, rank the 
recorded query results in terms of the certainty degree, and 
output all of the recorded query results and their 
corresponding reasoning routes and certainty degree.  

The algorithm RMIU (Reasoning Method for Inconsistent 
and Uncertain ontology) is described below. 

The input of algorithm RMIU is an ontology B and a query 
φ, the aim of the algorithm is to determine whether any result 
of the query φ can be obtained from B: | ?B ϕ= . Ontology B 
is defined as B=(T, A), T={Ψi, i=1,2,..,n} and A={cj, 
j=1,2,..,m}, T denoting a set of axioms, A denoting a set of 
assertions. 

The output of the algorithm is the query results set A which 
include two parts: positive answer (PA) and negative answer 
(NA), expressed as: A={PA, NA}. PA stores the answers 
when the query is "True" (i.e. |B ϕ= ), NA stores the answers 
when the query is "False" (i.e. |B ϕ= ¬ ). 
Algorithm RMIU(B,ϕ ): Reasoning Method for Inconsistent 
and Uncertain ontology 
Input: Inconsistent and Uncertain ontology B , query ϕ  
Output: The query result set A of ontology B  with query ϕ  
begin 
While B  is inconsistent and uncertain do // Check whether 
B is inconsistent and uncertain, if yes, start the cycle 
{    * ( )B PossibilityExtension B← // B* is the possibility 

extension of B 
For (int k=1; C; k++) // C is the predefined threshold of k 
{ 
     ' ( *, , )ϕΣ = s B k  // selection function s 
     If ( ' | ϕΣ = )  // if the query answer is true 
     { 
          ( ', )PRP GetPosReasoningPath ϕ← ∑  // get positive 
reasoning path 
          ( ', )CD GetCertaintyDegree PRP← ∑  // get certainty 
degree of the answer 
          ( ', , )PA PA GetQueryResult PRP CD← + ∑  // positive 
Answer Set PA 
          A PA←  // add PA to A 
     } 
     If ( ' | ϕΣ = ¬ )  // if the query answer is false 
     { 
          ( ', )NRP GetNegReasoningPath ϕ← ∑  // get negative 
reasoning path 
          ( ', )CD GetCertaintyDegree NRP← ∑  // get certainty 
degree of the answer 

          ( ', , )NA NA GetQueryResult NRP CD← + ∑  // 
negative Answer Set NA 
          A NA←  // add NA to A 
     } 
     If ( ' *Σ = B 'Σ = Σor ) // closure condition 
          Break; 
          Else 'Σ ← Σ  
} 
If ((PA is empty) and (NA is empty)) 
     { A ← Φ  //A is empty set 
      Return A  //return the empty set A } 
Else { ( , )A rank PA NA←  // rank the query results by 
certainty degree 
      Return A  //return the Query Result Set A } 

} 
End While  
end 

When B is inconsistent and uncertain, the function 
PossibilityExtension( ) produces a possibility extension 
ontology B*. The possibility extension function assigns each 
element in the ontology a confidence factor. That is, 

( , ) * ( *, *)B T A B T A= → = . T* denotes a set of possibilistic 
axioms, i.e. T*={(Ψi,αi), i=1,2,..,n}. A* denotes a set of 
possibilistic assertions, A*={(cj, αj), j=1,2,..,m}. α represents 
a confidence factor. Regarding the calculation method of the 
confidence factor, it can use any well-known techniques in 
this field, like [10]. 

Next, the Incrementally Selection Function s selects the 
elements having a relevance degree k with the query φ. k has 
an initial value of 1 and plus 1 each time when incrementing 
the selection. 

In each cycle, the reasoner first checks whether the current 
working set ∑' can get a “True” answer of the query φ. If so, 
GetPosReasoningPath() and GetCertaintyDegree() functions 
are performed to calculate and record the reasoning path of 
the answer and its certainty degree. The reasoning path 
includes all the elements in the ontology that are necessary to 
reason out the answer, the certainty degree is calculated by 
multiplying the CFs of all the elements along the reasoning 
path. Then the positive answers with the corresponding 
reasoning path and certainty degree are recorded in PA by 
function GetQueryResult( ). 

To the contrary, if there is no “True” answer, the reasoner 
checks whether any “False” answer of the query φ can be 
reasoned out. Then, the function GetNegReasoningPath( ), 
GetCertaintyDegree( ) and GetQueryResult( ) are conducted 
to calculate and record the reasoning path of the negative 
answer and its certainty degree. 

If the set ∑' is equal to the ontology B* (which means the 
current set has chosen all the elements in the ontology, and 
thus no new element can be added in), or if ∑' is equal to the 
ontology ∑ (which means this round of selection function 
does not select new element to join in, that is, there will be no 
more element relevant to ∑'), the cycle is terminated; if not, 
give the set ∑' to ∑ and start next cycle. 

Finally, if the query φ has an answer (“True” or “False”), 
rank(PA,NA) function ranks all the query results according to 
the certainty degree of each answer, the algorithm outputs the 
ranked query answer set A, represented as: 



 

A={{answer ID: True (or False), path: {…}, certainty 
degree},…} 

If A is empty, it means the ontology B is not enough to 
make a determination. We name the query answer 
"Undetermined". 

To better explain the principle of algorithm RMIU, a 
specific example is given below. B is an inconsistent 
ontology, which includes 11 axioms: ax1-ax11, in which A-E, 
G, H, K, Q mean concepts, a and q mean instances. 

, , , ( ), ,
, , , , , ( )

A B A C A D Q A a B G
B

C B D E E B G H K H A Q q
⊆ ⊂ ⊂ ∩ ⊆⎧ ⎫

= ⎨ ⎬⊂ ⊂ ⊂ ⊂ ∩ ⊂⎩ ⎭
,  

by passing the Possibility Extension function,  
( , 0 .7 ), ( , 0 .8), ( , 0 .9),
( ( ), 0 .5), ( , 0 .3),

*
( , 0.6), ( , 0 .8), ( , 0 .7 ),
( , 0 .5), ( , 0 .6), ( ( ), 0 .5)

⊆ ⊂ ⊂ ∩⎧ ⎫
⎪ ⎪⊆⎪ ⎪= ⎨ ⎬⊂ ⊂ ⊂⎪ ⎪
⎪ ⎪⊂ ∩ ⊂⎩ ⎭

A B A C A D Q
A a B G

B
C B D E E B
G H K H A Q q  

Suppose the input query φ is: “ ?A B⊂ ”. 
The initial k is 1 and the selection function is as follows: 
' ( *, ,1)

( , 0.7), ( , 0.8), ( , 0.9), ( ( ), 0.5),
( , 0.3), ( , 0.6), ( , 0.7), ( , 0.6)

s B
A B A C A D Q A a

B G C B E B H A

ϕΣ =

⊆ ⊂ ⊂ ∩⎧ ⎫
= ⎨ ⎬⊆ ⊂ ⊂ ⊂⎩ ⎭

 

Then check whether ' | ϕΣ = . Two reasoning paths are 
found as follows: 

Answer set A = {{answer 1: True, path: { ( ,0.7)A B⊆ }, 
0.7}, {answer 2: True, path: { ( ,0.8), ( ,0.6)A C C B⊂ ⊂ }, 
0.48}} 

Check whether ' | ϕΣ = ¬ . The answer is 'No'. 
Continue to check whether ∑'=B* or ∑'=∑. It is found 

neither of the two conditions can be satisfied, then k = k+1, 
i.e. k=2, and the set ∑' is given to ∑. 

' ( *, , 2)
( , 0.7), ( , 0.8), ( , 0.9), ( ( ), 0.5),

( , 0.3), ( , 0.6), ( , 0.7), ( , 0.6)
( , 0.8), ( , 0.5), ( ( ), 0.5)

s B
A B A C A D Q A a

B G C B E B H A
D E G H K Q q

ϕΣ =

⊆ ⊂ ⊂ ∩⎧ ⎫
⎪ ⎪= ⊆ ⊂ ⊂ ⊂⎨ ⎬
⎪ ⎪⊂ ⊂ ∩⎩ ⎭

 

Then check whether ' | ϕΣ = . One reasoning path is found, 
and this path is added to the answer set A: 
Answer set A= 

 

{answer 1: True, path: {( , 0.7)}, 0.7},
{answer 2: True, path: {( , 0.8), ( , 0.6)}, 0.48}, 
{answer 3: True, path: {( , 0.9), ( , 0.8),
( , 0.7)}, 0.5}

A B
A C C B
A D Q D E

E B

⊆⎧ ⎫
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⎨ ⎬⊂ ∩ ⊂⎪ ⎪
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Check whether ' | ϕΣ = ¬ . One reasoning path is found: 
{answer 4: False, path: 
{ ( ,0.3), ( ,0.5), ( ,0.6)B G G H K H A⊆ ⊂ ∩ ⊂ }, 0.09}. 

Continue to check whether there is ∑'=B* or ∑'=∑. The 
former condition is satisfied. Then, since the answer set “has” 
answers, the query results need to be ranked. The final output 
can be obtained as follows: 
Query results A =  
{answer 1: True, path: {( , 0.7)}, 0.7},
{answer 3: True, path: {( , 0.9), ( , 0.8),
( , 0.7)},0.5},
{answer 2: True, path: {( , 0.8), ( , 0.6)}, 0.48}, 
{answer 4: False, path: {( , 0.3), ( , 0.

A B
A D Q D E

E B
A C C B
B G G H K

⊆
⊂ ∩ ⊂

⊂
⊂ ⊂
⊆ ⊂ ∩ 5),

( , 0.6)},0.09}H A

⎧ ⎫
⎪ ⎪
⎪ ⎪
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⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪

⊂⎪ ⎪⎩ ⎭

 

There are three "True" answers and one "False" answer. 
The user could select the most proper answer according to the 
certainty degree and also his personal knowledge. 

V. SYSTEM AND IMPLEMENTATION 

A. System Architecture 
We have implemented a prototype as a reasoner of 

inconsistent and uncertain ontologies. Figure 1 presents the 
architecture of the prototype system. Ontology storage stores 
all the ontologies with OWL format. To construct an 
inconsistent and uncertain ontology for testing, we use an 
ontology learning tool (like Text2Onto [16]) to build an 
ontology from Reuters News. Possibility extension modular 
performs the possibility extension for each element of the 
ontology, and stores the possibilistic ontology in possibilistic 
ontology storage. 

The key modulars of the prototype are incremental 
selection modular, query result checking and recording 
modular, reasoning path recording modular, certainty degree 
calculation modular and query result ranking modular. They 
realize the main function of algorithm RMIU. 

User interface inputs the query and outputs the query 
answers. The user could select the answer most probable to 
be correct according to the certainty degree of each answer, 
and also review the reasoning path to know how to get this 
result. In this way, the user may obtain more useful 
information to facilitate his selection. 

 
Fig. 1.  System architecture of the prototype. 

B. Experiment and Evaluation 
In order to validate our methods presented in the previous 

sections, we generated a document set from Reuters News, 
using 500 documents with the topic code "science and 
technology". This corpus served as input to the ontology 
extraction step. For this purpose we decided to use the freely 
available Text2Onto tool, developed at the AIFB, Karlsruhe, 
Germany. The learned ontology consisted of the following 
elements as shown in Table 1.  

TABLE I 
THE LEARNED ONTOLOGY FROM REUTERS NEWS 

Learned Element Number 
concepts 450 
instances 89 

subconcept-of relations 248 
disjoint-concepts relations 352 

instance-of relations 76 



 

Then, we applied an evaluation function and algorithm [17] 
to calculate the CF value of the learned ontology. After 
possibility extension, the learned ontology is stored into 
possibilistic ontology storage for further reasoning.  

For each instance c of concept C in this ontology, we make 
a positive instance query like 'is c a C?', and a negative 
instance query like 'is c a B?', in which B is another concept 
selected randomly. From the subconcept-of relations, we 
randomly select 100 relations to construct queries. For each 
subconcept-of relation like ' A B⊆ ', we make a positive 
query ' A B⊆ ?', and a negative query like ' A C⊆ ?'. After 
reasoning, the query results are shown in table 2. 

To measure the accuracy of the query results, we compare 
the answers with their intuitive answers which are supposed 
by a human. For a query, there may exist three answers: True, 
False, Undetermined. If the answer is the same as the 
intuitive answer, it is recorded as a correct answer. Of the 378 
queries, our reasoner returns 201 'True', 142 'False', and 35 
'Undetermined', in which 4 answers are different from the 
intuitive answers. The total accuracy is 99%, which proves 
the usability and effectiveness of our method. 

TABLE II 
THE QUERY RESULTS AND ACCURACY 

Answer True False Undetermined
Num. of answers 201 142 35 
Num. of error 1 1 2 
Accuracy 99.5% 99.3% 94.3% 
Num. of answers 201 142 35 
Total accuracy 99%   

In the above experiment, we predefine the threshold of k 
(i.e., C in algorithm RMIU) as 4. That is to say, the selection 
function will stop incrementally selecting more elements 
when k=4. Generally speaking, the value of C influences the 
execution time and the number of query answers. With the 
increase of threshold C, more elements are selected for 
reasoning, more query answers may be found, and more 
processing time is needed. But if the selection function 
reaches the closure condition (∑'= B* or ∑=∑') before k 
increases to C, then the threshold C couldn't influence the 
final results any more. So how to choose the "right" threshold 
C will depend on the application scenario and the scale of 
ontology, as it essentially means finding a trade-off between 
the execution time and the number of query answers. 

Figure 2 shows the relation between C and average 
processing time of the tested queries. When C<5, the time 
cost is raising with the increase of C. When C≥5, the closure 
condition is reached, so the processing time remains in 6 
seconds. 

 
Fig. 2.  The relation between threshold C and average processing time. 

VI. CONCLUSIONS AND FUTURE WORK 
To ensure the quality and correctness of the ontology, this 

paper proposes a query-specific reasoning method for 
inconsistent and uncertain ontologies. Without modifying the 
original ontology, we aim at developing a non-standard 
reasoner which is able to obtain a meaningful answer with the 
most possibility to be correct. The reasoning route and 
certainty degree of each answer are also calculated, thus the 
user may obtain more useful information to facilitate his 
selection of the most credible query result. The prototype 
system validates the feasibility and effectiveness of our 
method. In future, the efficiency of algorithm RMIU will be 
improved and more experiments need to be conducted to 
validate the algorithm in many different application 
scenarios.  
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