
Static Range Multiple Selection Algorithm for
Peer-to-Peer System

Mohamed Othman, Kweh Yeah Lun, Fatimah bt. Dato Ahmad, Hamidah Ibrahim

Abstract—In this research, a new multiple selection

algorithm, which is known as “static range statistical multiple
selection algorithm” is proposed. This algorithm is developed
based on the statistical knowledge about the uniform
distribution nature of the data which has been arranged
according to certain order in the file. A global file with n keys
is distributed evenly among p peers in the peer-to-peer
network. The selection algorithm can performs multiple
selections concurrently to find multiple target keys with
different predefined target ranks. The algorithm uses a fixed
filter approach in which the algorithm is able to make sure
that the target key is within certain filter range in each local
file. The range is made smaller and smaller as the selection
process iterates until all target keys are found. The algorithm
is able to reduce the number of messages needed and increases
the success rate of all multiple selections in the selection
process compared to the previous multiple selection
algorithms proposed by Loo in 2005.

Index Terms—multiple selection, peer-to-peer system, static

filter, filter range

I. INTRODUCTION

Selection algorithm has been developed to ease the
networking operation and peer-to-peer computing. It is an
algorithm that deals with the problem of selecting kth
smallest key out of a group of keys, which are distributed
almost evenly in the distributed environment or peer-to-
peer environment. Selection operations are needed in some
distributed sorting algorithms ([4], [8], [23], [10], [12],
[13]). In these distributed sorting algorithms, it is necessary
to find the n/ith keys (where i = 1, 2, …, p – 1; n is size
and p is the number of computers involved). For a file, F
with n records which distributed in a few sites and all this
records are totally ordered, resolution algorithms [19] have
been designed to minimize the amount of communication
activity rather than the amount of processing activity.

Manuscript received January 12, 2010; revised Jan 2, 2011.
Mohamed. Othman is with the Department of Communication

Technology and Network, Faculty of Computer Science and Information
Technology, Universiti Putra Malaysia, 43300, UPM Serdang, Selangor,
MALAYSIA. (Tel: +603-89466535, email:
mothman@fsktm.upm.edu.my)

Kweh Yeah Lun is with the Department of Communication Technology
and Network, Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, 43300, UPM Serdang, Selangor, MALAYSIA.
(email: kwehyl@fsktm.upm.edu.my)

Fatimah Dato Ahmad is with the Center for Research Management and
Post Graduate Studies, National Defense University of Malaysia, Kem
Sungai Besi, 57000 Kuala Lumpur, MALAYSIA. (email:
fatimah@upnm.edu.my)

Hamidah Ibrahim is with the Department of Communication
Technology and Network, Faculty of Computer Science and Information
Technology, Universiti Putra Malaysia, 43300, UPM Serdang, Selangor,
MALAYSIA. (email: hamidah@fsktm.upm.edu.my)

Different solutions and bounds exist for the distributed
selection problem in the point-to-point network depending
on the topology of the network ([5], [14], [22]).

The sampling techniques are used in designing the
distributed algorithms [16]. Some distributed algorithms
([20], [18], [8]) were suitable for the intranet environment.
Wei has developed an efficient selection and sorting
schemes for processing large files distributed over a
network [24].

Many other distributed selection algorithms have been
developed for various purposes based on different
topologies and assumption. Rodeh presented an algorithm
for the case where two computers are connected together
[17]. Shen presented his algorithm on hypercube [21] and
Hao et al. presented an algorithm on mesh [7]. Aggrawal et
al. presented a selection algorithm for Pyramid [1].

In 2003, Wu et al. [25] has designed fast and scalable
parallel algorithms for selection and median filtering. It is
the most time efficient algorithm, especially compared to
the other algorithms mentioned in [15] and [6]. Alexandros
et. al. [2] presented a randomized selection algorithm whose
performance is analyzed in an architecture independent way
on the bulk-synchronous parallel (BSP) model of
computation. Bader presented an efficient randomized high-
level parallel algorithm (Fast and UltraFast) and solves the
general selection problem that requires the determination of
the element of rank k [3].

Loo et al. [11] presented a statistical selection algorithm,
which are designed to select kth smallest key from a very
large file distributed over many computers. This algorithm
aims to minimize the number of communication messages
necessary to the selection problem.

Loo [9] presents an efficient distributed multiple selection
algorithm which is designed to select multiple keys
simultaneously from different data sets which are
distributed in a peer-to-peer system and aimed to reduce the
number of communication messages compared to the single
selection algorithm that he proposed previously [11] and
other algorithms in the literature.

This research work is based on the work by Loo et al., [9]
which is currently the best multiple selection algorithm in
the peer-to-peer environment. A simulation is set up to re-
implement the algorithm and the new algorithm to measure
them based on the performance parameter selected.

II. STATIC RANGE MULTIPLE SELECTION
ALGORITHM

Static range selection algorithm is an algorithm that

makes use of the hashing approach and predefined filter
range to locate the target key with certain target rank. It is a
multiple selection algorithm in which multiple target keys

are to be found with each selection will occupied a fixed
filter range but with different upper filter and lower filter.

A total number of keys, n will be distributed evenly to p
participants in the system. In this research, the total number
of keys in the global file is 100 millions. Preprocessing
stage include the hashing stage, the determination of lower
filter and upper filter for each selection. After that, the first
pivot is identified and the selection round starts. The upper
filter and the lower filter will be adjusted based on the
actual global rank of the pivot. The details of the algorithm
are as follows.

A. Hashing Stage

Based on the statistical knowledge of the uniform
distribution of all keys which are randomly generated by
each node in the local file, it is possible to hash the keys in
to hash values, which can be used as indicators to the actual
global rank of the keys in the global file. By gathering all
local maximum and the minimum keys from all nodes, the
coordinator determines the global maximum and the global
minimum keys and broadcast them to all nodes involved.

The equation of the hash value generator is as follow:

Hash_value = floor
minkey

n
range

 [1]

where min: minimum global key
 range = maximum global key – minimum global key
 n : number of keys in the global file

B. Identification of Lower and Upper Filter

Based on the predefined filter range, two filters will be
selected for each of the selection, namely upper filter and
lower filter.

C. Determination of Global Rank for Filter

After the identification of both upper and lower filter
keys for each selection by each node, these filter keys will
be sent to other nodes. The nodes will determine the local
rank for the filter keys. After that the participants will send
the local ranks for all the filter keys back to the sender.
Upon receiving the local ranks from each participant, actual
global rank for each filter keys can be calculated based on
the following equation:

1

[]
p

r

G R r

 [2]

where R[r] : local rank from node r

After the pre-selection process, the global ranks for each
filter keys (lower and upper) will be determined.

D. Selection Process

The actual round of the selection process started after the
determination of the global rank of each filter keys of each
selection.

The first pivot and the subsequent pivot for each selection
are calculated based on the predicted value from the
following equation:

Predicted_valuei =
1

()
2 1

i i
i i i

i i

k AR
A B A

AR AR

 [3]

where AR1i: actual global rank for lower filter Ai
 AR2i: actual global rank for upper filter Bi

 ki: target rank i

The pivots are selected by finding the greatest value that

is smaller or equal to the predicted value.
As shown in figure 1, the receiver nodes received the

pivots from the sender and the calculation for the local
ranks of the pivots begun. Upon receiving the local ranks
from receiver nodes, the sender calculates the global rank
for each of its pivots.

If the global rank of the pivot is equals to the target rank
for that particular selection, then the searching process for
that selection will be terminated.

 If the global rank of the pivot is not equal to the target
rank, then a new predicted value will be calculated again
based on the equation mentioned above. The local file will
be divided into two sub-files. The first sub-file contains all
keys that are smaller than the pivot and vice versa. If the
global rank of the pivot is greater than the target rank, then
the first sub-file is used. Upper filter and lower filter will be
adjusted to the smallest and the largest key of the sub-file. If
the global rank of the pivot is smaller than the target rank,
the second sub-file is used with the upper and lower filter
will be adjusted as mentioned.

New pivot values are calculated. These pivots will be sent
to all nodes. This process will be iterated until all target
keys have been found.

Fig. 1: Selection Process

III. NUMBER OF MESSAGES NEEDED

According to figure 2, the number of messages needed by
the Loo’s algorithm [9] is 61.78 for 10 nodes and 215.38 for
40 nodes. As the number of nodes increases, the number of

messages increases. Loo’s algorithm [9] has the highest
number of messages needed to complete the selection
process compared to static range multiple selection
algorithms with different filter ranges (25000, 20000 and
15000).

As the result shown, filter range 25000 selection
algorithm will be able to finish the whole selection process
with lower number of messages required compared to [9].
The number of messages required is within the range from
53 to 183. For the case of 10 nodes, the improvement is
13.05%. As the number of nodes increases, the
improvement becomes more significant. For the case of 40
nodes, the improvement is 15.41%.

For filter range 20000 selection algorithm which
occupied a narrower range, the number of messages needed
to complete the selection process has becomes smaller. The
improvement for the case 10 nodes and 40 nodes are
13.48% and 15.71% respectively.

The number of messages required for filter range 15000
selection algorithm has a range from 52 to 179. The
improvement shown by this approach for the case of 10
nodes and 40 nodes are 14.41% and 17.62% respectively.

 As the number of nodes increases, the number of
messages required increases. With the increment of the
number of nodes involved, number of target keys that need
to be searched increases. For each node added to the
system, the number of target keys that need to be found is
increases by 1. In the experiment provided above, the
number of nodes increases 5 between each cases, this
means that the number of selections (target keys) that need
to be found is increases by 5 too. The number of messages
required is increases with greater number of target keys that
need to be found.

By comparing to the original algorithm, filter range
15000 selection algorithm shows the best improvement in
reducing the number of messages needed in the case of 40
nodes with 17.62% compared to filter range 25000 with
15.41% and filter range 20000 with 15.71%.

Fig. 2: Number of messages against number of nodes

IV. SUCCESS RATE

According to figure 3, the success rate of the original
algorithm is within 0.53 to 0.6. Success rate is a
measurement of how many selections that has been succeed
in finding the target keys in the multiple selection process.
With more nodes are involved, the success rates of the
selections increase. The best performance of Loo’s

algorithm [9] occurs in the case of 40 nodes, where the
success rate is 0.601.

Filter range 25000 selection algorithm achieved the best
result among all the other filter range approaches. The
success rate for this algorithm is consistent which is about
0.99 from the case of 10 nodes to the case of 40 nodes.

Filter range 20000 selection algorithm achieved success
rate that is quite consistent at about 0.98 for all cases from
10 nodes to 40 nodes. By comparing to filter range 25000
selection algorithm, the success rate has been reduced about
1.68% for the case of 10 nodes and 1.35% for the case of 40
nodes.

For filter range 15000 selection algorithm, the success
rate is still more than 0.9. By comparing to filter range
20000 selection algorithm, the success rate has been
reduced about 3.86% for the case of 10 nodes and 4.8% for
the case of 40 nodes.

As the number of nodes increases, the number of
selections that need to be performed in the multiple
selection process will be increase as well. The success rates
are increased because of the number of pivots that can be
checked in a round had been increased. With more pivots
that can be sent and checked in the whole process, the
probability of finding the target key for a certain selection
will be increased.

The success rate has been reduced as the filter range
becomes narrower. With the narrower range, the probability
of a target key that lies between the filters are lower. Thus,
some selection might not succeed as the target key is falls
out of the filter range. However, the reduction in success
rates is less than 2% according to the result. This shows that
in most of the cases, the target keys are still fall within the
filter range although the ranges has become narrower.

By comparing to Loo’s algorithm [9], filter range 25000
selection algorithm achieved the highest success rate among
all the other filter range approaches. However, filter range
25000 has the greatest number of messages required
compared to the other filter range approaches. Since filter
range 15000 has the lowest number of messages needed to
complete the whole multiple selection processes and at the
same time has a success rate which is more than 0.9 that is
still acceptable, so static range multiple selection algorithm
with filter range 15000 can be considered as a substitution
to Loo’s algorithm [9].

Fig. 3: Success rate against number of nodes

Number of Messages against Number of Nodes with
Different Filter Range

0

50

100

150

200

250

10 15 20 25 30 35 40

Number of Nodes

A
ve

ra
g

e
N

u
m

b
er

 o
f

M
es

sa
g

es

Loo [9]

25000

20000

15000

Success Rate against Number of Nodes with Different
Filter Range

0

0.2

0.4

0.6

0.8

1

1.2

10 15 20 25 30 35 40

Number of Nodes

S
u

cc
es

s
R

at
e

Loo [9]

25000

20000

15000

V. CONCLUSION

The static range multiple selection algorithm which
utilized a fixed filter range with 15000 are able to reduce
the number of messages needed to complete the multiple
selection processes and achieving high success rate that is
more than 0.9 compared to Loo’s algorithm [9].

Future works might include other performance
parameters like number of rounds needed and the execution
time needed for the whole process.

REFERENCES

[1] Aggrawal, C., Jain, N. and Gupta, P., “An efficient selection

algorithm on the pyramid”, Journal of Information Processing
Letters, 53, 1995, pp. 37-47.

[2] Alexandros, V., Gerbessiotis, Constantinos, and Siniolakis, J.,
“Architecture independent parallel selection with applications to
parallel priority queues”, Theoretical Computer Science, 301, 2003,
pp. 119 – 142.

[3] Bader, D., “An Improved, randomized algorithm for parallel
selection with an experimental study”, Journal of Parallel and
Distributed Computing, 64, 2004, pp. 1051-1059.

[4] Dechter, R. and Kleinrock, L., “Broad communications and
distributed algorithms”, Journal of IEEE Transactions on
Computers, C-35(3), 1986, pp. 123-128.

[5] Frederickson, G.N., “Tradeoffs for selection in distributed networks”,
Proceedings of 2nd ACM Symposium Principles Distributed
Computing, Montreal, Quebec, Canada, 1983, pp. 154-160.

[6] Han, Y., Pan, Y., and Shen, H., “Sublogarithmic Deterministic
Selection on Arrays with a Reconfigurable Optical Bus”, IEEE
Transaction on Computers, 51(6), 2002, pp. 702 – 707.

[7] Hao, M., MacKenzie, P. and Stout, Q., “Selection on the
reconfigurable mesh”, Proceedings of 4th Symposium on the
Frontiers of Massively Parallel Computation, McLean, Virginia,
USA, 1992, pp. 38-45.

[8] Huang, J.H. and Kleinrock, L., “Distributed selectsort sorting
algorithms on broadcast communication networks”, Journal of
Parallel Computing, 16(2/3), 1990, pp. 183-190.

[9] Loo, A., “Distributed multiple selection algorithm for peer-to-peer
systems”, The Journal of Systems and Software, 78, 2005, pp. 234 –
248.

[10] Loo, A., Bloor, C. and Grey, D., “Complexity analysis of distributed
database algorithm”, Proceedings of High Performance Computing
in Engineering 97, Gran Canaria, Spain, 1997.

[11] Loo, A. and Choi, Y.K., “A peer-to-peer distributed selection
algorithm for the Internet”, Journal of Internet Research: Electronic
Networking Applications and Policy, 12 (1), 2002, pp. 16-30.

[12] Loo, A., Chung, C., Fu, R. and Lo, J., “Efficiency measurement of
distributed statistical sorting algorithms”, Proceeding of Applications
of High Performance Computing in Engineering, Milan, Italy, 1995.

[13] Loo, A. and Ng, J., “Distributed statistical sorting algorithm”,
Proceeding of IEEE Singapore International Conference on
Networks (SICON), Singapore, 1991, pp. 222-225.

[14] Matsuhita, T.A., “Distributed algorithms for election”, Master Thesis,
Department of Computer Science, University of Illinois, Urbana,
Illinois, USA, 1983.

[15] Pan, Y., “Order statistics on optically interconnected multiprocessor
systems”, Proceeding of First International Workshop Massively
Parallel Processing Using Optical Interconnections, 1994, pp. 162 –
169.

[16] Rajasekaran, S. and Wei, D.S.L., “Designing efficient distributed
algorithms using sampling techniques”, Proceedings of 11th
International Parallel Processing Symposium (IPPS’97), Geneva,
Switzerland, 1997, pp. 397-401.

[17] Rodeh, M., “Finding the median distributively”, Journal of Computer
and System Science, 24(2), 1982, pp. 162-167.

[18] Santoro, N., Sidney, J.B. and Sidney, S.J., “A distributed selection
algorithm and its expected communication complexity”, Journal of
Theoretical Computer Science, 100, 1992, pp. 185-204.

[19] Santoro, N. and Suen, E., “Reduction techniques for selection in
distributed files”, Journal of IEEE Transactions on Computers,
38(6), 1989, pp. 891-896.

[20] Saukas, E. and Song, S., “Efficient selection algorithms on distributed
memory computers”, Proceedings of High Performance Networking
and Computing, Orlando, Florida, USA, 1988.

[21] Shen, H., “A universal algorithm for parallel k-selection in
hypercubes”, Journal of Parallel Computing, 18, 1991, pp. 139-145.

[22] Shirira, L., Francez, N. and Rodeh, M., “Distributed k-selection: from
a sequential to a distributed algorithm”, Proceedings of 2nd ACM
Symposium Principles of Distributed Computing, Montreal, Quebec,
Canada, 1983, pp. 143-153.

[23] Wegner, L.M., “Sorting a distributed file in a network”, Journal of
Computer Networks, 8, 1984, pp. 451-461.

[24] Wei, D.S.L., Rajasekaran, S., Cheng, Z., and Naik, K., “Efficient
Selection and Sorting Schemes Using Coteries for Processing Large
Distributed Files”, Journal of Parallel and Distributed Computing,
62, 2002, pp. 1295 – 1313.

[25] Wu, C.H., and Horng, S.J., “Fast and Scalable Selection Algorithms
with Applications to Median Filtering”, IEEE Transaction on
Parallel and Distributed Systems, 14(10), 2003, pp. 983 – 992.

