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Abstract—In this research, a new multiple selection 

algorithm, which is known as “static range statistical multiple 
selection algorithm” is proposed. This algorithm is developed 
based on the statistical knowledge about the uniform 
distribution nature of the data which has been arranged 
according to certain order in the file. A global file with n keys 
is distributed evenly among p peers in the peer-to-peer 
network. The selection algorithm can performs multiple 
selections concurrently to find multiple target keys with 
different predefined target ranks. The algorithm uses a fixed 
filter approach in which the algorithm is able to make sure 
that the target key is within certain filter range in each local 
file. The range is made smaller and smaller as the selection 
process iterates until all target keys are found. The algorithm 
is able to reduce the number of messages needed and increases 
the success rate of all multiple selections in the selection 
process compared to the previous multiple selection 
algorithms proposed by Loo in 2005. 

 
Index Terms—multiple selection, peer-to-peer system, static 

filter, filter range   
 

I. INTRODUCTION 

Selection algorithm has been developed to ease the 
networking operation and peer-to-peer computing. It is an 
algorithm that deals with the problem of selecting kth 
smallest key out of a group of keys, which are distributed 
almost evenly in the distributed environment or peer-to-
peer environment. Selection operations are needed in some 
distributed sorting algorithms ([4], [8], [23], [10], [12], 
[13]). In these distributed sorting algorithms, it is necessary 
to find the n/ith keys (where i = 1, 2, …,   p – 1;  n is size 
and p is the number of computers involved). For a file, F 
with n records which distributed in a few sites and all this 
records are totally ordered, resolution algorithms [19] have 
been designed to minimize the amount of communication 
activity rather than the amount of processing activity.   
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Different solutions and bounds exist for the distributed 
selection problem in the point-to-point network depending 
on the topology of the network ([5], [14], [22]).  

The sampling techniques are used in designing the 
distributed algorithms [16]. Some distributed algorithms 
([20], [18], [8]) were suitable for the intranet environment. 
Wei has developed an efficient selection and sorting 
schemes for processing large files distributed over a 
network [24].  

Many other distributed selection algorithms have been 
developed for various purposes based on different 
topologies and assumption. Rodeh presented an algorithm 
for the case where two computers are connected together 
[17]. Shen presented his algorithm on hypercube [21] and 
Hao et al. presented an algorithm on mesh [7]. Aggrawal et 
al. presented a selection algorithm for Pyramid [1].  

In 2003, Wu et al. [25] has designed fast and scalable 
parallel algorithms for selection and median filtering. It is 
the most time efficient algorithm, especially compared to 
the other algorithms mentioned in [15] and [6]. Alexandros 
et. al. [2] presented a randomized selection algorithm whose 
performance is analyzed in an architecture independent way 
on the bulk-synchronous parallel (BSP) model of 
computation. Bader presented an efficient randomized high-
level parallel algorithm (Fast and UltraFast) and solves the 
general selection problem that requires the determination of 
the element of rank k [3].  

Loo et al. [11] presented a statistical selection algorithm, 
which are designed to select kth smallest key from a very 
large file distributed over many computers. This algorithm 
aims to minimize the number of communication messages 
necessary to the selection problem.  

Loo [9] presents an efficient distributed multiple selection 
algorithm which is designed to select multiple keys 
simultaneously from different data sets which are 
distributed in a peer-to-peer system and aimed to reduce the 
number of communication messages compared to the single 
selection algorithm that he proposed previously [11] and 
other algorithms in the literature.  

This research work is based on the work by Loo et al., [9] 
which is currently the best multiple selection algorithm in 
the peer-to-peer environment. A simulation is set up to re-
implement the algorithm and the new algorithm to measure 
them based on the performance parameter selected. 

 

II. STATIC RANGE MULTIPLE SELECTION 
ALGORITHM 

 
Static range selection algorithm is an algorithm that 

makes use of the hashing approach and predefined filter 
range to locate the target key with certain target rank. It is a 
multiple selection algorithm in which multiple target keys 



are to be found with each selection will occupied a fixed 
filter range but with different upper filter and lower filter.  

A total number of keys, n will be distributed evenly to p 
participants in the system. In this research, the total number 
of keys in the global file is 100 millions. Preprocessing 
stage include the hashing stage, the determination of lower 
filter and upper filter for each selection. After that, the first 
pivot is identified and the selection round starts. The upper 
filter and the lower filter will be adjusted based on the 
actual global rank of the pivot. The details of the algorithm 
are as follows. 

A. Hashing Stage 

Based on the statistical knowledge of the uniform 
distribution of all keys which are randomly generated by 
each node in the local file, it is possible to hash the keys in 
to hash values, which can be used as indicators to the actual 
global rank of the keys in the global file. By gathering all 
local maximum and the minimum keys from all nodes, the 
coordinator determines the global maximum and the global 
minimum keys and broadcast them to all nodes involved.  

The equation of the hash value generator is as follow: 

Hash_value =  floor
minkey

n
range

 
 

 
                          [1] 

where  min: minimum global key 
          range = maximum global key – minimum global key 
          n : number of keys in the global file 

B. Identification of Lower and Upper Filter 

Based on the predefined filter range, two filters will be 
selected for each of the selection, namely upper filter and 
lower filter.  

C. Determination of Global Rank for Filter 

After the identification of both upper and lower filter 
keys for each selection by each node, these filter keys will 
be sent to other nodes. The nodes will determine the local 
rank for the filter keys. After that the participants will send 
the local ranks for all the filter keys back to the sender. 
Upon receiving the local ranks from each participant, actual 
global rank for each filter keys can be calculated based on 
the following equation: 
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                         [2] 

where R[r] : local rank from node r 
 
After the pre-selection process, the global ranks for each 
filter keys (lower and upper) will be determined. 

D. Selection Process 

The actual round of the selection process started after the 
determination of the global rank of each filter keys of each 
selection. 

The first pivot and the subsequent pivot for each selection 
are calculated based on the predicted value from the 
following equation: 
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where AR1i: actual global rank for lower filter Ai 
           AR2i: actual global rank for upper filter Bi 

                 ki: target rank i 

 
The pivots are selected by finding the greatest value that 

is smaller or equal to the predicted value. 
As shown in figure 1, the receiver nodes received the 

pivots from the sender and the calculation for the local 
ranks of the pivots begun. Upon receiving the local ranks 
from receiver nodes, the sender calculates the global rank 
for each of its pivots. 

If the global rank of the pivot is equals to the target rank 
for that particular selection, then the searching process for 
that selection will be terminated. 

 If the global rank of the pivot is not equal to the target 
rank, then a new predicted value will be calculated again 
based on the equation mentioned above. The local file will 
be divided into two sub-files. The first sub-file contains all 
keys that are smaller than the pivot and vice versa. If the 
global rank of the pivot is greater than the target rank, then 
the first sub-file is used. Upper filter and lower filter will be 
adjusted to the smallest and the largest key of the sub-file. If 
the global rank of the pivot is smaller than the target rank, 
the second sub-file is used with the upper and lower filter 
will be adjusted as mentioned.  

New pivot values are calculated. These pivots will be sent 
to all nodes. This process will be iterated until all target 
keys have been found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: Selection Process 

III. NUMBER OF MESSAGES NEEDED 

According to figure 2, the number of messages needed by 
the Loo’s algorithm [9] is 61.78 for 10 nodes and 215.38 for 
40 nodes. As the number of nodes increases, the number of 



messages increases. Loo’s algorithm [9] has the highest 
number of messages needed to complete the selection 
process compared to static range multiple selection 
algorithms with different filter ranges (25000, 20000 and 
15000).  

As the result shown, filter range 25000 selection 
algorithm will be able to finish the whole selection process 
with lower number of messages required compared to [9]. 
The number of messages required is within the range from 
53 to 183. For the case of 10 nodes, the improvement is 
13.05%. As the number of nodes increases, the 
improvement becomes more significant. For the case of 40 
nodes, the improvement is 15.41%.  

For filter range 20000 selection algorithm which 
occupied a narrower range, the number of messages needed 
to complete the selection process has becomes smaller. The 
improvement for the case 10 nodes and 40 nodes are 
13.48% and 15.71% respectively.  

The number of messages required for filter range 15000 
selection algorithm has a range from 52 to 179. The 
improvement shown by this approach for the case of 10 
nodes and 40 nodes are 14.41% and 17.62% respectively. 

 As the number of nodes increases, the number of 
messages required increases. With the increment of the 
number of nodes involved, number of target keys that need 
to be searched increases. For each node added to the 
system, the number of target keys that need to be found is 
increases by 1. In the experiment provided above, the 
number of nodes increases 5 between each cases, this 
means that the number of selections (target keys) that need 
to be found is increases by 5 too. The number of messages 
required is increases with greater number of target keys that 
need to be found. 

By comparing to the original algorithm, filter range 
15000 selection algorithm shows the best improvement in 
reducing the number of messages needed in the case of 40 
nodes with 17.62% compared to filter range 25000 with 
15.41% and filter range 20000 with 15.71%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Number of messages against number of nodes 

IV. SUCCESS RATE 

According to figure 3, the success rate of the original 
algorithm is within 0.53 to 0.6. Success rate is a 
measurement of how many selections that has been succeed 
in finding the target keys in the multiple selection process. 
With more nodes are involved, the success rates of the 
selections increase. The best performance of Loo’s 

algorithm [9] occurs in the case of 40 nodes, where the 
success rate is 0.601.  

Filter range 25000 selection algorithm achieved the best 
result among all the other filter range approaches. The 
success rate for this algorithm is consistent which is about 
0.99 from the case of 10 nodes to the case of 40 nodes.  

Filter range 20000 selection algorithm achieved success 
rate that is quite consistent at about 0.98 for all cases from 
10 nodes to 40 nodes. By comparing to filter range 25000 
selection algorithm, the success rate has been reduced about 
1.68% for the case of 10 nodes and 1.35% for the case of 40 
nodes.  

For filter range 15000 selection algorithm, the success 
rate is still more than 0.9. By comparing to filter range 
20000 selection algorithm, the success rate has been 
reduced about 3.86% for the case of 10 nodes and 4.8% for 
the case of 40 nodes.  

As the number of nodes increases, the number of 
selections that need to be performed in the multiple 
selection process will be increase as well. The success rates 
are increased because of the number of pivots that can be 
checked in a round had been increased. With more pivots 
that can be sent and checked in the whole process, the 
probability of finding the target key for a certain selection 
will be increased.  

The success rate has been reduced as the filter range 
becomes narrower. With the narrower range, the probability 
of a target key that lies between the filters are lower. Thus, 
some selection might not succeed as the target key is falls 
out of the filter range. However, the reduction in success 
rates is less than 2% according to the result. This shows that 
in most of the cases, the target keys are still fall within the 
filter range although the ranges has become narrower. 

By comparing to Loo’s algorithm [9], filter range 25000 
selection algorithm achieved the highest success rate among 
all the other filter range approaches. However, filter range 
25000 has the greatest number of messages required 
compared to the other filter range approaches. Since filter 
range 15000 has the lowest number of messages needed to 
complete the whole multiple selection processes and at the 
same time has a success rate which is more than 0.9 that is 
still acceptable, so static range multiple selection algorithm 
with filter range 15000 can be considered as a substitution 
to Loo’s algorithm [9]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3: Success rate against number of nodes 
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V. CONCLUSION 

The static range multiple selection algorithm which 
utilized a fixed filter range with 15000 are able to reduce 
the number of messages needed to complete the multiple 
selection processes and achieving high success rate that is 
more than 0.9 compared to Loo’s algorithm [9].  

Future works might include other performance 
parameters like number of rounds needed and the execution 
time needed for the whole process. 
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