
An Implementation of a Pairing-Based Anonymous
Credential System with Constant Complexity

Amang Sudarsono, Toru Nakanishi, Nobuo Funabiki∗

Abstract—An anonymous credential system allows the user
to convince a verifier of the possession of a certificate issued
by the issuing authority anonymously. One of the applications
is the privacy-enhancing electronic ID (eID). A previously
proposed anonymous credential system achieves the constant
complexity for the number of user’s attributes. However, due
to the use of RSA-based cryptography, it still suffers from a
high cost computation. Recently, we proposed an anonymous
credential system with the constant complexity using a pairing-
based accumulator, where more efficient ECC (Elliptic Curve
Cryptography) can be used instead of the RSA. In this paper, we
present an implementation of the anonymous credential system
in the application to the eID. We show the practicality of the
system from experimental results that the processing times are
constantly less than a second.

Index Terms—Authentications, privacy, anonymous creden-
tials, electronic ID, pairings

I. I NTRODUCTION

A. Backgrounds

Electronic identification have been widely applied to ac-
cess to buildings, use of facilities, Web services, etc. Cur-
rently, electronic identity (eID) such as eID card is often
used for the identification. The eID is issued by a trusted
organization such as the government, company, or university,
and used for services provided by the organization. On the
other hand, such a trusted ID is very attractive for secondary
use in commercial services. The eID includes attributes of
the user such as name, address, gender, occupation, date
of birth. In commercial cases, instead of the identification,
the attribute-based authentication is desired. For example, a
service provider can refuse the access from kids, by checking
the age in the eID.

One of serious issues in the existing eID systems is user’s
privacy. In the systems, the eID reveals the user’s identity.
Thus, the service provider can collect the use history of
each user. Furthermore, part of attributes are a high privacy-
sensitive, and only the selected attributes should be disclosed.
Anonymous credential systems [1], [2], [3], [4] are one of
the solutions.

Anonymous credential systems allow an issuer to issue a
certificate to a user. Each certificate is a proof of membership,
qualification or privilege, and it contains user’s attributes.
The user can anonymously convince a verifier of the posses-
sion of the certificate, where the selected attributes can be
disclosed without revealing any other information about the
user’s privacy. The user can prove complex relations on the
attributes using AND and OR relations. AND relation is used
when proving the possession of all of the multiple attributes.
For example, the user can prove that he is a student, he has

∗ Dept. of Communication Network Engineering, Okayama University,
3-1-1 Tsushima-naka, Okayama, 700-8530 Japan

Email:nakanisi@cne.okayama-u.ac.jp

a valid student card, and this card has not yet expired, when
entering the faculty building. OR relation represents the proof
for possession of one of multiple attributes. For example, he
can prove that he is either a staff or a teacher when using a
copy machine in the office.

B. Related Works

In [1], Camenisch and Lysyanskaya firstly proposed an
anonymous credential system based on RSA. Unfortunately,
it suffers from a linear complexity in the number of user’s
attributes in proving AND and OR relations. Hence, this
system is not suitable for small devices such as smart
cards. In [3], Camenisch and Groß extended the system
to solve the drawback, where the attributes are encoded
into prime numbers. Then, the AND and OR relations are
proven with the constant complexity w.r.t. the number of
attributes using zero-knowledge proofs of integer relations
on prime numbers. However, due to the use of RSA-based
cryptography, it still suffers from a high cost computation.

An implementation of eID on a standard Java card using
the systems of [1], [3] is shown in [5].

C. Our Contributions

In [4], we proposed a pairing-based anonymous credential
system with the constant complexity. The use of pairings
allows us to apply ECC (Elliptic Curve Cryptography) in-
stead of RSA. Thus, due to the shorter key size, we expect
light computations. In this paper, to show the practicality
of the proposed system, we present the implementation and
evaluate it from experiments. For the implementation, we
suppose an eID application over Web services for mobile
environments. In the prototype system, the computation time
of the prover (user) and the verifier (server) are relatively
constant of only640 ms and153 ms when proving the
AND relation. They are only630 ms and152 ms for the
OR relation. Unfortunately, as the compensation, the size
of the public key depends on the number of attributes. It
varies from601 kB to 6 MB when the number of attributes
increases from1, 500 to 15, 000. In the current mobile PC
environments, the data size is sufficiently practical, since the
public key is not changed after it is distributed in the user
registration.

II. I MPLEMENTED ANONYMOUS CREDENTIAL SYSTEM

A. Model

We show the model of the anonymous credential sys-
tem [4] which is derived from [2]. As well as [3], this model
employs two types of attributes for representation. One type
is a small finite-set attribute such as the gender or the

occupation. Another type is a string attribute such as the full-
name or the address. The example of those attributes used in
the eID is depicted in TABLE I. The anonymous credential
system consists of three protocols:KeyGen, ObtainCert ,
andProveCert.

TABLE I
EXAMPLE OF STRING AND SMALL FINITE-SET ATTRIBUTES.

String Small Finite-set Example Values
1) full-name 8) gender male,female
2) address 9) day of birth 1–31
3) phone number 10) month of birth 1–12
4) identity number 11) year of birth 1930–2005
5) issuance date 12) marital status single,marriage
6) expiration date 13) nationality 193 recognized states
7) email address 14) hometown 200 allocated cities

15) city living 200 allocated cities
16) residence status citizen,immigrant,...
17) religion moslem,christian,...
18) blood type A,B,O,AB
19) occupation student,teacher,...
20) academic degree B.S.,M.S,Ph.D.,...
21) major science,economic,...
22) year of graduated 1970–2005
23) workplace 200 allocated cities
24) main language 100 allocated lang.
25) 2nd language 100 allocated lang.
26) topic of interest music,sport,...
27) favorite color red,green,blue,...
28) favorite music pop,rock,jazz,...
29) favorite sport baseball,tennis,...

• KeyGen: This is a probabilistic key generation algo-
rithm for the issuer, on the input security parameter
1L and the maximum numbers of string and finite-set
attributesn, ℓ, outputs the issuer’s public keyipk and
the issuer’s secret keyisk.

• ObtainCert : This is an interactive protocol between
a probabilistic algorithmUser of user with IDi and
a probabilistic algorithmIssuer. The common input
of this protocol areipk and (SAi, FAi) that are sets
of string attributes and finite-set attributes of the user,
respectively. In addition, the input forIssuer is isk.
The output ofUser is the certificatecert[i] ensuring
the attributes (SAi, FAi).

• ProveCert: This is an interactive protocol between the
user and the verifier. The common inputs areipk, and
(TSA, TFA) are subsets of string attributes and finite-
set attributes respectively, and user’s secret inputs are
cert[i] and (SAi, FAi).

(1) By using the string attributes, it is proven that
a part of attributes TSA⊆ SAi is all certified
by cert[i].

(2) For the finite-set attributes, we have two op-
tions:
(a) the AND relation proves that all of the

attribute sets TFA are certified bycert[i],
or

(b) the OR relation proves that one of the
attribute sets TFA is certified bycert[i].

The security requirements of the anonymous credential
system are as follows:

• Unforgeability : Only the user with the certificate certi-
fying the proved relation is accepted by the verifier in
ProveCert protocol.

• Anonymity : Any verifiers cannot identify the user from
ProveCert protocol.

• Unlinkability : Any verifiers cannot determine whether
any pair ofProveCert protocols were conducted by the
same user or not.

The unlinkability is a stronger anonymity. In linkable
anonymous setting, the verifier can collect the use history
of an anonymous user, since the verifier can determine the
sameness of the prover. Then, the history may de-anonymize
the prover by relating the dates or frequency. Also, if one
transaction is de-anonymized by some other method, all the
transactions of the prover are de-anonymized. Therefore, the
unlinkability is needed.

B. Outline of Cryptographic Construction

Generally, anonymous credential system can be con-
structed as follows. The certificate is a cryptographic digital
signature, where multiple attribute values are signed. The
signature is denoted asSign(a1, a2, . . . , ak) that is signing
function on attribute valuesa1, a2, . . . , ak. By using a zero-
knowledge proof technique, the user can prove only the
knowledge that he ownsSign(a1, a2, . . . , ak), where parts
of the attributes can be secret.

In [6], using a bilinear map called pairings instead of RSA
cryptography, a short certificate with the zero-knowledge
proof is proposed. However, in the pairing-based certificate,
each attribute value is expressed as an exponent on a base
assigned to the attribute type. Hence, proving the knowledge
of the certificate needs the cost depending on the number of
attribute types.

In the implemented system, a pairing-based accumulator
[2] is used for expressing the finite-set attributes (for the
string type, it still use the exponent). The accumulator, given
multiple inputs {gi1 , . . . , giℓ

} ⊆ {g1, . . . , gk}, outputs a
single valueacc = f(gi1 , . . . , giℓ

). In addition, we can prove
the validity of the accumulation with the constant cost. In
our anonymous credential system, each attribute valueai is
assigned togi. Then, the accumulated valueacc is signed by
an extended signature scheme for the certificate. Thus, by the
zero-knowledge proofs thatgi is accumulated toacc and that
acc is signed, the user can prove that an attribute valueai is
certified with the constant complexity. In proving AND rela-
tion of ai1 ∧ · · · ∧ aiℓ′ , we require the zero-knowledge proof
that everygij is accumulated intoacc. The bilinear property
of the pairing allows us to unify the pairing computations
of the accumulators into a single pairing computation. Thus,
we can achieve the constant complexity. In OR relation of
ai1 ∨ · · · ∨ aiℓ′ , we can use another accumulator to prove
some aij s.t. aij ∈ {ai1 , · · · , aiℓ′}. The zero-knowledge
proof needs only the constant cost, and thus the total cost is
also constant.

The demerit of using the accumulator is that we need the
number of input values of the accumulator is the number of
all attribute values. Since the input values have to be included
in the public keyipk, the size ofipk increases in proportion
to the number of attribute values.

C. Utilized Pairing Library

To implement the pairing-based construction, we need
the fast library computing the pairings together with the

underlying ECC operations. We utilize the library based on
“Cross-twistedχ-based Ate (Xt-Xate) pairing” [7] with254-
bit group order and the embedding degree is12. The security
level is equivalent to the 3000-bit RSA. The library is based
on the GMP library and implemented by C language due to
the pursuit of the fastness.

Fig. 1. System model.

III. D ESIGN OFPROTOCOLS

The system model of the eID application is shown in
Fig. 1. At first, the issuer publishes its public keyipk. Then,
the user registers himself along with particular attributes
(SAi, FAi) to the issuer for certification by usingObtainCert
protocol via a secure channel (①∼③). Based on the issued
certificate, he requests a service to the Service Provider (SP)
(④). Then, the SP specifies attributes that the SP wants to
know (⑤). This specification forms AND or OR relation,
depending on the SP’s requirement. Then, the user generates
a proof for the possession of certificate w.r.t. the specified
attribute(s) and shows it to the SP (verifier) anonymously
by usingProveCert protocol (⑥). If only if the verification
of user’s proof is valid, the SP grants the user to access a
requested service. In this scenario, we can consider that the
number of finite-set attribute values is at least1, 500, due to
the involvement of the nationality, city, language, and other
categories as shown in TABLE I.

We design our protocols: user registration and authentica-
tion as follows.

A. User Registration

Fig. 2 shows the user registration protocol. This protocol
comprises the following two steps. In advance, the user
has to fetch the issuer public keyipk, for example by
downloading it from the official web-site of issuer. We
assume that there is an existing access control application
(e.g., based on username and password) to permit the user
to use a communication channel (which is out of scope
of this paper). Then, he can use such channel to perform
ObtainCert protocol together with the issuer.

(1) Registration of user’s attributes.
The user requests the registration. He sends his
attributes for certification (①∼③).

(2) Issuing the certificate.

Fig. 2. User registration protocol.

(a) The issuer computes the accumulator, certifies
it into certificatecert and sendscert to the
user (③∼⑤).

(b) The user checks the validity ofcert to ensure
whethercert was sent by the legitimate issuer
or not. If it is valid, he embeds his secret keys
into the cert and outputs the user certificate
cert[i] (⑥∼⑦).

B. Authentication

The authentication mechanism is performed by using a
ProveCert protocol. Fig. 3 shows the authentication process
to allow the user to access the service provided by an
SP through wireless networks. This protocol comprises the
following two steps. In this protocol, the user can prove
his possession of particular attributes into two ways, AND
relation proving and OR relation proving.

Fig. 3. Authentication protocol.

(1) Generation and transmission of a proof for posses-
sion of certificate.
(a) The user requests a service to the SP. Then,

the SP provides him a set of specified at-
tributes. Depending on the SP’s requirement,
there are two options, multiple selection and
one selection of a set of specified attributes
(①∼②).

(b) By usingcert[i] and the selected attribute(s),
the user generates the proof for the possession
of such attribute(s). This proof means that

such selected attribute(s) is(are) included in
the certificate. Then, he shows the proof to
the SP (③∼④).

(2) Verification of a proof for possession of certificate.

(a) The SP verifies the proof. If it is valid, the
SP grants the user to access the service (resp.
reject the service) (⑤∼⑥).

(b) The verification result is displayed in the web
browser of the user which indicates either
accept or reject to access the service (⑦).

IV. I MPLEMENTATION

We basically implemented our system using Java through
the Java GUI and Java applet at the user and Java servlet at
the Servide Provider (SP) and the issuer, since the Java applet
and Java servlet communications are useful to implement
the web-based applications. The communication between the
user and the servers (i.e., the issuer and SP) is over http
connections. The cryptographic processes in the anonymous
credential system are implemented by C language as the
middle-ware, since we need the fast computations as well
as the underlying pairing library. As the interface between C
and Java, we use Java Native Interface (JNI).

Pre-computation process.To reduce the computation
time in the authentication protocol, we pre-compute the
fixed value components (e.g., the pairing calculations of
fixed values of public key components). This pre-computed
data are used to generate or verify the proof, where the
computation times of generating and verifying the proof are
reduced to about 51% and 30%, respectively.

Reply attack protection. An attacker may duplicate some
valid transcript of the authentication to use for another
session. To protect this, we use a random nonce. The nonce is
computed by the hash function from the user’s defined mes-
sage (this can be any messages including random numbers)
and timestamps.

Fig. 4. Implementation of user registration protocol.

The implementation of user registration protocol is de-
picted from Fig. 4. In this implementation, there are three
steps:

1) Step 1: By using theipk, he executes the registration
process of the middle-ware through JNI. Then, he
sends the issuer his attributes (①∼③).

2) Step 2: User’s attributes,ipk, and issuer secret key
isk are the input parameters for generating user mem-
bership certificatecert provided by the middle-ware
(④∼⑤).

3) Step 3: Upon receivingcert, the user embeds his secret
to the cert and outputs the user certificatecert[i].
Then, he executes a pre-computation process to provide
a pre-computed data to be used later in generating the
proof (⑥).

Fig. 5. Implementation of authentication protocol.

The implementation of authentication protocol is depicted
from Fig. 5. In this implementation, there are two main
processes; user’s proof generation and verification. At first,
the SP needs to download theipk from the issuer and
executes the pre-computation process from the middle-ware
to obtain pre-computed data.

1) User’s proof generation: The selected attribute(s),ipk,
cert[i], and user’s pre-computed data are used as the
input parameters for generating the proof. This is
performed by using the proving function in the middle-
ware. The function provides AND and OR relations
proving. The proof is based on the random nonce
generated from the hash function. The Java applet is
embedded into local web page to interact with Java
servlet at the SP’s web server (①∼④).

2) Verification: At the SP side, the received proof,ipk,
and the SP’s pre-computed data are used as the input
parameters to verify the proof. This is done by execut-
ing the verification function in the middle-ware. This
function also provides AND and OR relations. The
correctness of the nonce is also checked. The output of
this function is valid or invalid (resp. accept or reject)
(⑤∼⑥).

V. EXPERIMENTAL RESULTS

A. Test Bed

We have implemented the user registration protocol and
authentication protocol (Fig. 2 and Fig. 3) in our proposed

Fig. 6. Experimental environment.

system to confirm the practicality. Fig. 6 shows the exper-
imental environment of our proposed system. The devices
and software specifications used in this test bed are shown
in TABLE II.

TABLE II
SPECIFICATION OF DEVICES IN EXPERIMENTS.

Intel Core2Duo 3GHz, 4GB RAM
Verifier/ Ubuntu Linux 9.10 kernel-2.6.31
Issuing Authority gcc-4.4.1, OpenSSL-0.9.8g, GMP-4.3.1

Java-1.6.018, apache-tomcat-5.5.28
Intel Atom 1.33GHz, 1GB RAM

Prover/ Windows XP Home Edition SP3
Joining-User Atheros AR928X Wireless Adapter

MinGW-5.1.6, OpenSSL-0.9.8g,
GMP-4.3.1, Java-1.6.019

B. Evaluation

Fig. 7 shows the total processing times of the authentica-
tion protocol in the AND relation and the user registration
protocol. The total time of the authentication protocol in-
cludes the proving time, verification time, and the communi-
cation time during the process. This time varies from917 ms
to 927 ms, where the number of attributes are from1, 500
to 15, 000. It is from 904 ms to912 ms for the OR relation.
The communication time is measured from sending the
proof until receiving the response of authentication process
from the verifier with excluding the verification time. The
communication time is about120 ms. The time of the user
registration protocol varies from809 ms to 828 ms, as the
number of attributes increases from1, 500 to 15, 000. This
small variation is derived from accumulator computation
and fetching the public key. In addition, our system has
an advantage that the sizes of the proofs for AND and OR
relation proving are constant at about1324 Byte and1424
Byte, respectively. The size of issued certificate is constant
at about272 Byte.

Fig. 8 shows the processing times of the proving and
verification for the AND relation and the size of the public
key as the number of attributes varies. The times of the
proving and verification vary from642 ms to 649 ms and
from 153 ms to154 ms, respectively. This small variation is
derived from the process of fetching the public key. However,
these times are constant by ignoring such process. On the
other hand, the times in proving the OR relation are635 ms
and152 ms. Unfortunately, this system has a drawback that

 700

 750

 800

 850

 900

 950

 1000

 2000 4000 6000 8000 10000 12000 14000

T
im

es
 [

m
s]

Number of attributes

Authentication process
User Registration process

Fig. 7. Total processing times.

the size of public key varies from601 kB to 6 MB. However,
in the current mobile PC environments, the data size is
sufficiently practical, since the public key is not changed
after it is distributed in the user registration.

 0

 100

 200

 300

 400

 500

 600

 700

 2000 4000 6000 8000 10000 12000 14000

T
im

es
 [

m
s]

 /
 S

iz
e

[x
 1

/1
0
0

 M
B

]

Number of attributes

Proving time
Verification time

Size of public key

Fig. 8. Processing times and size of public key.

VI. CONCLUSION

We have presented an implementation of a pairing-based
accumulator for the anonymous credential system with ef-
ficient proofs of AND and OR relations of attributes to
the application of eID. In the prototype system, the user
registration and authentication protocols are processed within
a second, and thus we conclude that the system is sufficient
practical. To achieve more efficient proofs and reduce the
size of the public key are our future works.

ACKNOWLEDGMENT

This work was partially supported by Grant-in-Aid for
Scientific Research (21300004) from Japan Society for the
Promotion of Science (JSPS).

REFERENCES

[1] J. Camenisch and A. Lysyanskaya, “Dynamic accumulators and appli-
cation to efficient revocation of anonymous credentials,” inAdvances
in Cryptology — CRYPTO 2002, ser. LNCS 2442. Springer–Verlag,
2002, pp. 61–76.

[2] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator based
on bilinear maps and efficient revocation for anonymous credentials,” in
Proc. 12th International Conference on Practice and Theory in Public
Key Cryptography (PKC 2009), ser. LNCS 5443. Springer–Verlag,
2009, pp. 481–500.

[3] J. Camenisch and T. Groß, “Efficient attributes for anonymous creden-
tials,” in Proc. ACM Conference on Computer and Communications
Security 2008 (ACM-CCS’08), 2008, pp. 345–356.

[4] A. Sudarsono, T. Nakanishi, and N. Funabiki, “Efficient proofs of
attributes in anonymous credential systems using a pairing-based ac-
cumulator,” in Computer Security Symposium 2010 (CSS2010), 2010,
pp. 801–806.

[5] P. Bichsel, J. Camenisch, T. Groß, and V. Shoup, “Anonymous creden-
tials on a standard java card,” inProc. ACM Conference on Computer
and Communications Security 2009 (ACM-CCS’09), 2009, pp. 600–610.

[6] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
Advances in Cryptology — CRYPTO 2004, ser. LNCS 3152. Springer–
Verlag, 2004, pp. 41–55.

[7] M. Akane, Y. Nogami, and Y. Morikawa, “Fast Ate pairing computation
of embedding degree 12 using subfield-twisted eliptic curve,”IEICE
Trans. Fundamentals, vol. E92-A, no. 2, pp. 508–516, 2009.

