
 

  
Abstract—It is noted that the wireless sensor networks 

(WSN) based on the rapid progress of wireless communications 
and embedded micro electro mechanical systems technologies 
are becoming important part in our daily life.  However, the 
security of the WSN becomes one of the major concerns in its 
applications. Even elliptic curve cryptography (ECC) 
prominently offers great potential benefits for WSN security 
there is still a lot of work needs to be done due to WSN has 
very restraint running conditions such as limited energy 
source, capability of computing, etc.  Also it is well known that 
scalar multiplication operation in ECC accounts for about 
80% of key calculation time on wireless sensor network motes.  
In our current paper we present an optimized dynamic 
window based on our previous research works. The whole 
quality of service (QoS) has been improved under this algorism 
in particularly the power consuming is more efficiently. The 
simulation results showed that the average calculation time, 
due to fuzzy conditions decreased from previous 26 to current 
9 as a whole the calculation time, decreased by approximately 
17% in comparison to our previous algorithms in an ECC 
wireless sensor network. 
 

Index Terms— Elliptic curve cryptography (ECC), scalar 
multiplication, non-adjacent form, slide window, fuzzy 
 

I. INTRODUCTION 
 HE high demand for various applications shows the fact 
that the rapid progress of wireless communications has 

become popular in our daily life. With the growth in very 
large scale integrated (VLSI) technology, embedded 
systems and micro electro mechanical systems (MEMS) has 
enabled   production of inexpensive sensor nodes, which 
can transit data over a distances with free media and 
efficient use of power [1, 22, 23]. In the WSN systems, the 
sensor node will detect the interested information, processes 
it with the help of an in-built microcontroller and 
communicates results to a sink or base station. Normally the 
base station is a more powerful node, which can be linked to 
a central station via satellite or internet communication to 
form a network. There are many deployments for wireless 
sensor networks  depending on various applications such as 
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environmental monitoring e.g. volcano detection  [2,3], 
distributed control systems [4], agricultural and farm 
management [5], detection of  radioactive sources [6], and 
computing platform for tomorrows’ internet [7]. Generally 
speaking, a typical WSN architecture can be shown in 
Figure 1. 

Contrast to traditional networks, a wireless sensor 
network normally has many resource constraints [4] due to 
the limited size. As an example, the MICA2 mote consists 
of an 8 bit ATMega 128L microcontroller working on 7.3 
MHz. As a result nodes of WSN have limited computational 
power. Radio transceiver of MICA motes can normally 
achieve maximum data rate of 250 Kbits/s, which restricts 
available communication resources. The flash memory that 
is available on the MICA mote is only 512 Kbyte. Apart 
from these limitations, the onboard battery is 3.3.V with 2A-
Hr capacity. Therefore, the above restrictions with the 
current state of art protocols and algorithms are expensive 
for sensor networks due to their high communication 
overhead.   

 
Figure 1: A Typical WSN architecture 

Recalled that the Elliptic Curve Cryptography was first 
introduced by Neal Koblitz [9] and Victor Miller [10]  
independently in the early  eighties. The advantage of ECC 
over other public key cryptography techniques such as RSA, 
Diffie-Hellman is that the best known algorithm for solving 
elliptic curve discrete logarithm problem (ECDLP) which is 
the underlying hard mathematical problem in ECC which 
will take the fully exponential time. On the other hand the 
best algorithm for solving RSA and Diffie-Hellman takes 
sub exponential time [11]. In summary, the ECC problem 
can only be solved in exponential time and, to date, there is 
a lack of sub exponential methods to attack ECC. 
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An elliptic curve E over GF(p)  can be defined by  
baxxy ++= 32  where a, b ∈ GF(p) and 0274 23 ≠+ ba    

in the GF(p).  
   The point (x, y) on the curve satisfies the above equation 
and the point at infinity denoted by ∞ is said to be on the 
curve.  

If there are two points on the curve namely, P (x1, y1), Q 
(x2, y2) and their sum is given by point R(x3, y3) the algebraic 
formulas for point addition and point doubling are given by 
following equations: 
We have: 21
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(a) Addition: P + Q = R (b) Doubling: P+P = R 

Figure 2: Point addition and point doubling on elliptic curve. 
 

Here, the addition, subtraction, multiplication and inverse 
are the arithmetic operations over GF(p), which can be 
shown in Figure 2. 

II. ELLIPTIC CURVE DIFFIE-HELLMAN SCHEME (ECDH) 
PROPOSED FOR WSN 

Before we get into our innovation method, we need to 
have a closer look at the popular legacy scheme for WSN. 
As per [13] the original Diffie-Hellman algorithm with RSA 
requires a key of 1024 bits to achieve sufficient security but 
Diffie Hellman based on ECC can achieve the same security 
level with only 160 bit key size.  

The classical Elliptic Curve Diffie Hellman scheme 
operates as shown in the Fig. 3 

Initially Alice and Bob agree on a particular curve with 
base point P. They generate their public keys by multiplying 
P with their private keys namely KA and KB. After sharing 
public keys, they generate a shared secret key by 
multiplying public keys by their private keys. The secret key 
is R = KA*QA = KB*QB. With the known values of QA, QB 
and P, it is computationally intractable for an eavesdropper 
to calculate KA and KB which are the private keys of Alice 
and Bob.  As a result, adversaries cannot calculate R the 
shared secret key.  

In ECC two heavily used operations are involved: scalar 
multiplication and modular reduction. Gura et. al. [14] 

showed that 85% of execution time is spent on scalar 
multiplication. Scalar Multiplication is the operation of 
multiplying point P on an elliptic curve E defined over a 
field GF(p) with positive integer k which involves  point 
addition and point doubling. Operational efficiency of kP is 
affected by the type of coordinate system used for point P 
on the elliptic curve and the algorithm used for recoding of 
integer k in scalar multiplication. 

This research paper proposes an innovative algorithm 
based on one’s complement for representation of integer k 
which accelerates the computation of scalar multiplication 
in wireless sensor networks. 

The number of point doubling and point addition 
operations in scalar multiplication depends on the recoding 
of integer k. Expressing integer k in binary format highlight 
this dependency.  

 

 
Figure 3: Diffie-Hellman protocol based on ECC 
 

The number of zeros and number of ones in the binary 
form, their places and the total number of bits will affect the 
computational cost of scalar multiplications. The Hamming 
weight as represented by the number of non-zero elements, 
determines the number of point additions and bit length of 
integer K determines the number of point doublings 
operations in scalar multiplication.  
One point addition when P ≠ Q requires one field inversion 
and three field multiplications [13]. Squaring is counted as 
regular multiplication. This cost is denoted by 1I + 3M, 
where I denotes the cost of inversion and M denotes the cost 
of multiplication.   
     One point doubling when P = Q requires 1I + 4M as we 
can neglect the cost of field additions as well as the cost of 
multiplications by small constant 2 and 3 in the above 
formulae. 
 
Binary Method    

Scalar multiplication is the computation of the form Q = 
kP, where P and Q are the elliptic curve points and k is 
positive integer. This is obtained by repeated elliptic curve 
point addition and doubling operations. In binary method 
the integer k is represented in binary form: 
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The cost of multiplication when using binary method 

depends on the number of non-zero elements and the length 
of the binary representation of k. If the representation has kl-

1 ≠ 0 then binary method require (l − 1 ) point doublings and 
(W−1) where l is the length of the binary expansion of k, 
and W is the Hamming weight of k (i.e., the number of non-
zero elements in expansion of k). For example, if k = 629 = 
(1001110101)2, it will require (W−1) = 6 − 1 = 5 point 



 

additions and l − 1 = 10 − 1 = 9 point doublings operations. 
The binary method scans the bits of K either from left-to-

right or right-to-left. The binary method for the computation 
of kP is given in the following algorithm 1, as shown 
below: 
 
Algorithm 1: Left to right binary method for point 
multiplication  
 
Input: A point P ∈ E (Fq), an 

l  bits integer 
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Output: Q = kP   

1. Q ← ∞    
2. For j = l � 1 to 0 do:    

2.1 Q ← 2 Q,   
2.2 if  kj = 1 the Q ← Q + P.  

3. Return Q.  
 
Signed Digit Representation Method   

The subtraction has virtually the same cost as addition in 
the elliptic curve group.  The negative of point (x, y) is (x, 
−y) for odd characters. This leads to scalar multiplication 
methods based on addition–subtraction chains, which help 
to reduce the number of curve operations. When integer k is 
represented with the following form, it is a binary signed 
digit representation.  
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When a signed-digit representation has no adjacent non 

zero digits, i.e. Sj Sj+1 = 0 for all j ≥ 0 it is called a non-
adjacent form (NAF). 

The following algorithm 2 computes the NAF of a 
positive integer given in binary representation. 
 
Algorithm 2: Conversion from Binary to NAF 
 

Input: An integer 
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Output: NAF   
}1,0,1{   ,2

0

−∈= ∑
=

j

l

j

j
j SSk

 
1. C0 ← 0 
2. For j = 0 to l do: 
3. Cj+1 ←   [(Kj + Kj+1 + Cj)/2] 
4. Sj ← Kj + Cj − 2Cj+1  
5. Return (Sl … S0) 

 
NAF usually has fewer non-zero digits than binary 

representations. The average hamming weight for NAF 
form is (n − 1)/3.0. So generally it requires (n − 1) point 
doublings and (n − 1) /3.0 point additions. The binary 
method can be revised accordingly and is given another 
algorithm for NAF, and this modified method is called the 
Addition Subtraction method.   

III. DYNAMITIC WINDOW WITH FUZZY CONTROLLER IN 
ECC PROPOSED ALGORITHM BASED 

 
We are going to use the algorithm based on subtraction 

by utilization of the 1’s complement is most common in 
binary arithmetic. The 1’s complement of any binary 
number may be found by the following equation [19-22]: 

NC a −−= )12(1                   (1) 
where C1 = 1’s complement of the binary number, a = 

number of bits in N in terms of binary form, N = binary 
number 

From a closer observation of the equation (1), it reveals 
the that any positive integer can be represented by using 
minimal non-zero bits in its 1’s complement form provided 
that it has a minimum of 50% Hamming weight. The 
minimal non-zero bits in positive integer scalar are very 
important to reduce the number of intermediate operations 
of multiplication, squaring and inverse calculations used in 
elliptical curve cryptography as we have seen in previous 
sections.  

The equation (1) can therefore be modified as per below: 
)12( 1 −−= CN a

              (2) 
For example, we may take N =1788 then it appears 
N= (11011111100)2 in its binary form  
C1= 1’s Complement of the number of N= 

(00100000011)2   

a is in binary form so we have a = 11 
After putting all the above values in the equation (2) we 

have: 
1788 = 211 − 00100000011 − 1, this can be reduced as 

below:        
1788 = 100000000000 − 00100000011−1           (3) 
So we have 
1788= 2048 − 256 − 2 − 1 − 1  
As is evident from equation (3), the Hamming weight of 

scalar N has reduced from 8 to 5 which will save 3 elliptic 
curve addition operations.   

The above recoding method based on one’s complement 
subtraction combined with sliding window method provides 
a more optimized result.  

Let us compute [763] P (in other words k = 763) as an 
example, with a sliding window algorithm with K recoded in 
binary form and window sizes ranging from 2 to 10. It is 
observed that as the window size increases the number of 
pre-computations also increases geometrically. At the same 
time number of additions and doubling operations decrease. 
Now we present the details for the different window size to 
find out the optimal window size using the following 
example: 
Window Size w = 2 

763 = (1011111011)2   
No of precomputations = 2w – 1 = 22 – 1 = [3] P 
763 = 10  11  11  10  11 
The intermediate values of Q are  
P, 2P 4P, 8P, 11P, 22P, 44P, 47P, 94P, 95P, 190P, 380P, 

760P, 763P 
Computational cost = 9 doublings, 4 additions, and 1 pre-

computation. 



 

We continue to derive the remaining calculations for 
Window Size w = 6, Window Size w = 7, Window Size w = 
8, Window Size w = 9, and Window Size w = 10.  The 
results for all calculations are presented in Table 1. 

The effects of “doublings” and “additions” as shown in 
Table 1 are further considered in the next section. 

 
Algorithm for sliding window scalar multiplication on 

elliptic curves. 
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TABLE 1 

WINDOW SIZE VS NO OF DOUBLINGS, ADDITIONS AND PRE COMPUTATIONS 

It is interesting to note that Figure 4 shows the charts 
obtained from table 1(in order to see the relation clearly, we 
used so-called amplified chart because of the range is only 
limited 0 to 10 in window size).  As we would like to know 
the further details about the relations between “Doubling” 
and “Addition”, from Figure 4 it clearly shows that the 
“Pre-computation” and “doubling” are the dominated 
factors hence we need to focus on this factor  in our 
discussion of window size.    

IV. FUZZY CONTROLLER SYSTEM IN ECC 
It is clear, from above description that there is a tradeoff 

between the computational cost and the window size as 
shown in Table 1. However, this tradeoff is underpinned by 
the balance between computing cost (or the RAM cost) and 
the pre-computing (or the ROM cost) of the node in the 
network. 

It is also clear that, from above description that the 
variety of wireless network working states will make this 
control complex and calculations could be relatively more 
expensive.  

Therefore, we propose a fuzzy dynamic control system, to 
provide dynamic control to ensure the optimum window 

size is obtained by tradeoff between pre-computation and 
computation cost.   

 
Fig. 4: amplified chart (focus on limited range) for the Table 1  

     The fuzzy decision problem introduced by Bellman 
and Zadeh has as a goal the maximization of the minimum 
value of the membership functions of the objectives to be 
optimized.  Accordingly, the fuzzy optimization model can 
be represented as a multi-objective programming problem as 
follows [21]: 
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 In above equation, the objective is to maximize the 

minimum membership function of all delays, denoted by D, 
and the difference between the recommend value and the 
measured value, denoted by U. 

The Fuzzy control system is extended from and shown in 
Figure 5. For accurate control, we designed a three inputs 
fuzzy controller. The first input is storage room, which has 
three statuses, showing storage room in one of the three, 
namely (a) low, (b) average, and (c) high. The second input 
is pre-computing working load (PreComputing) in one of 
three states, namely (a) low, (b) average, and (c) high. The 
third input is Doubling, expressing how much working load 
for the calculation “doubling” which has three cases, namely 
(a) low, (b) average, and (c) high. The output is one, called 
WindowSize, to express the next window size should be 
moved in which way,  which has three states for the window 
sizes, namely (a) down, (b) stay, and (c) up.  

 

 
Figure 5: Three inputs fuzzy window control system 

There are only 9 Fuzzy Rules listed as follows (weight 

Window 
Size 

No of 
Doublings 

No of 
Additions 

No of Pre 
computations 

2 9 4 1 
3 7 3 3 
4 6 2 7 
5 5 1 15 
6 4 1 31 
7 3 1 61 
8 3 1 127 
9 1 1 251 

10 0 0 501 



 

are unit) due to StorageRoom in Figure 5 can be ignored 
due to the results of Figure 4 although it is a factor needs 
to be appeared in terms of this control system. 

1. If (PreComputing is low) and (Doubling is low) then 
(WindowSize is Up)   

2. If (PreComputing is low) and (Doubling is average) 
then (WindowSize is Up)  

3. If (PreComputing is low) and (Doubling is high) 
then (WindowSize is stay)  

4. If (PreComputing is average) and (Doubling is low) 
then (WindowSize is Up)  

5.  If (PreComputing is average) and (Doubling is 
average) then (WindowSize is Up)   

6. If (PreComputing is average) and (Doubling is high) 
then (WindowSize is stay)   

7. If (PreComputing is high) and (Doubling is low) 
then (WindowSize is Up)   

8. If (PreComputing is high) and (Doubling is average) 
then (WindowSize is stay)  

9. If (PreComputing is high) and (Doubling is high) 
then (WindowSize is stay)  

The number at each fuzzy condition with a bracket is the 
weight number, currently it is unit. Later we shall change it 
with different number according to the running situations as 
described in the next. The three inputs with 9 fuzzy rules in 
Mamdani model running fuzzy controller part. The three 
inputs are StorageRoom, PreComputing and Doubling. The 
output is WindowSize. It is noted if we did not take the 
advantage of Figure 4, there will be at least 26 fuzzy rules 
need to be considered as shown in our previous paper [23]. 
This is because that the “StorageRoom” has low, average, 
high with other two parameters’s combinations. 

 The output with StorageRoom and PreComputing is 
shown in Figure 6. The surface StorageRoom vs. Doubling 
is shown in Figure 7.  

 
Figure 6: The output of the surface for the StorageRoom vs. PreComputing. 

From above figures, it is clearly observed that in the low 
window size side, if the storage room is low the dominated 
function of “doubling” will play role as Figure 6 shown but 
if the window size is at the high side, the storage room will 
be fairly stay at the middle either for PreComputing or 
Doubling, which is the doubling will sharply increased 
when window size a little bit larger that also can be shown 
from Table 1. 
  From Figure 7 it is clearly to show when the storage room 

is getting big, it would be nice to have larger window size 
for the “doubling”.   

Now if we change the weight for above fuzzy rules as 
such the rules 1,5 10, 13, 14, 15, 16, 18, 20 ,21, 22, 23, 25, 
and 26 are set in 0.5 (the rest will keep the same) due to the 
major functions are controlled by the storage room, and 
doubling will rapidly increasing by the window size larger. 
The outputs will changed as the average storage room will 
increased 0.04% and the other two inputs are decreased by 
0.02% the output become window staying a little wider side 
by 0.003%.    

    Figure 7: The output of the surface for the StorageRoom vs. Doubling. 
It is clear that this fuzzy controller for the dynamic 

window is also involved a tradeoff between accuracy and 
control costs. For example the same system may go further 
for the second order parameters, not just check the changes 
about the input variables but also check the change 
tendencies of the variables, which will be discussed in 
another paper. 

 
Figure 8: The output of the surface for the StorageRoom = constant (0.4) 
and PrecComputing vs. Doubling. 

If we keep the StorageRoom constant, e.g. StorageRoom 
= 0.4, and the output of the “PreComputing” vs. “Doubling” 
is shown in Figure 8. Now in order to show the 
“StorageRoom” is not dominated factor as we discussed 
above, we took another value, “StorageRoom” = 0.8 and the 
output of the “PreComputing” vs. “Doubling” is shown in 
Figure 9.  

 It is observed that the output of the “PreComputing” vs. 
“Doubling” is not much difference between Figures 8 and 9.  



 

From Figures 6 and 7 we can observe that the “dominated 
factor” is not the members of the “StorageRoom” in Figure 
8 due to the fact that the StorageRoom goes to large than 
40% (or 0.4) the factors PreComputing and Doubling are 
dominated in Fig. 6 and Fig. 7 separately. The StorageRoom 
cannot play a role in the process of the dynamic window, 
which is underpinned by the fact that has been shown in 
Figures 4. The simulations of the example described in 
above were implemented. Also it is noted that with equation 
(2), the computational cost has been reduced from 3 
additions as in the binary method to only 1 addition in one’s 
complement subtraction form. The number of pre-
computations has remained the same.   

 
Figure 9: The output of the surface for the StorageRoom = constant (0.8) 
and PreComputing vs. Doubling. 

In our simulations, the proposed method together with 
a fuzzy window size controller makes the ECC 
calculation in the current algorism is about 17% more 
efficient than the methods in [23] with the same QoS 
level.   

V. CONCLUSION 
The positive integer in point multiplication may be 

recorded with one’s complement subtraction to reduce the 
computational cost involved in this heavy mathematical 
operation for wireless sensor network platforms. As the 
NAF method involves modular inversion operation to get 
the NAF of binary number, the one’s complement 
subtraction can provide a very simple way of recoding the 
integer. There is always a decision between pre-computing 
and computing, the former is related to the storage and the 
latter is associated with computing capability and capacity. 
The window size may be the subject of trade-off between 
the available RAM and ROM at a particular instance on a 
sensor node, which can be controlled by fuzzy controller. 
The final simulation in a sensor wireless network shows that 
about 17% more efficient than our previous method [23] can 
be obtained with an ECC sensor network. 
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