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Abstract—This paper addresses the problem of im-
proving the unknown syndrome representations to de-
velop algebraic decoding of the (17,9,5) and (23,12,7)
binary quadratic residue codes up to true minimum
distance, respectively. The proposed unknown syn-
drome representations are expressed as binary poly-
nomials in terms of the single known syndrome, which
is different from the known syndrome in [Chang-Lee,
Algebraic decoding of a class of binary cyclic codes
via Lagrange interpolation formula, IEEE Trans. Inf.
Theory, 2010]. Programs written in C++ language
have been executed to obtain the optimal unknown
syndrome representations for these two quadratic
residue codes.
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1 Introduction

The binary block code with length 23 and error-correcting
capacity 3 was first introduced by Golay [1] in 1949. The
Golay code, which is also a binary quadratic residue code,
has been widely used in deep space communication[2].
In 1987, an efficient decoding algorithm of binary Golay
code was introduced by Elia [3]. This algebraic algorithm
consist of three steps. First, calculate the known syn-
dromes. Next, determine the error locator polynomial.
Finally, find the roots of the error locator polynomial. In
order to reduce decoding time, the shift-search method [4]
is applied to decode three errors of the Golay code. Re-
cent research on decoding binary quadratic residue code
is based on Zech logarithmic calculation [5], syndrome-
weight determination [6], lookup table [7], unknown syn-
drome [8], and general error locator polynomial [9]-[10].

The aim of this paper is to develop algebraic decoding
of the (17,9,5) and (23,12,7) binary quadratic residue
codes based on the proposed unknown syndrome presen-
tations. These results have been verified by software sim-
ulation. Programs in C++ language have been executed
to check all correctable patterns for the two quadratic
residue codes. Moreover, the computational complexity
of the developed decoding algorithm is slightly reduced.
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2 (17,9,5) Quadratic Residue Code

Throughout this paper, let F2 = {0, 1}. The quadratic
residue set Q17 = {j2 (mod 17) | j = 1, 2, ..., 16} =
{1, 2, 4, 8, 9, 13, 15, 16} is the collection of all nonzero
quadratic residues modulo 17. Moreover, the set Q17 is
exactly a cyclotomic coset modulo 17, denoted by C1 =
{1× 2j | j = 0, 1, ..., 7}. The (17, 9, 5) binary quadratic
residue code C is the double-error-correcting cyclic code
generated by the polynomial g(x) =

∏
i∈Q17

(x − βi),

where β = α15 is a primitive 17th root of unity in the
finite field E = F28 .

Traditionally, the syndrome Si is defined to be Si =
(βl1)i + (βl2)i + · · · + (βlv )i, where βlj for 1 ≤ j ≤ v
are called the error locators and v ≤ 2. For a binary
quadratic residue code of length n, there is an obvious
relation among syndromes, namely, S2i = S2

i , with sub-
indices modulo n, if necessary. This implies that S2 = S2

1

and S4 = S4
1 for arbitrary binary quadratic residue code.

Let the code polynomial c(x) = c0 + c1x + · · · + c16x
16,

ci ∈ F2, be transmitted through a noisy channel to obtain
the received polynomial of the form r(x) = c(x) + e(x),
where e(x) = e0 + e1x+ · · ·+ e16x

16, ei ∈ F2, is an error
polynomial. The known syndromes Si, i ∈ Q17 can be
obtained by evaluating r(x) at the roots of the generator
polynomial g(x) = 1 + x3 + x4 + x5 + x8, i.e.,

Si = r(βi) = c(βi) + e(βi) = e(βi). (1)

On the other hand, the other syndromes Sk, where k =
3, 5, 6, 7, 10, 11, 12, 14, are called the unknown syndromes.

It was shown in [8] that the finite field version of Lagrange
interpolation formula found in [11] is employed to derive
the unified representation for the primary unknown syn-
drome S3. For the (17,9,5) binary quadratic residue code,
the unknown syndrome S3 can be expressed as a polyno-
mial function in terms of the first known syndrome S1, i.e.
S3 = S3

1(1+ (S17
1 )3 + (S17

1 )5 + (S17
1 )6 + (S17

1 )7). Further-
more, it is interesting to know the unified representations
for the other unknown syndromes S5, S6, S7, S10, S11,
S12, and S14. Lagrange interpolation method has been
verified by software simulation by a computer. Programs
in C++ language have been executed to derive all un-
known syndrome representations listed in Table 1. From
this table, it is easy to see that the unknown syndrome



Table 1: Unknown Syndrome Representations for the (17, 9, 5) Quadratic Residue Code

unknown syndrome polynomial representation weight degree note

S3 S3
1 + S54

1 + S88
1 + S105

1 + S122
1 5 [8]

S5 S5
1 + S39

1 + S56
1 + S73

1 + S124
1 5

S6 S6
1 + S40

1 + S74
1 + S91

1 + S108
1 5

S7 S7
1 + S24

1 + S75
1 + S109

1 + S126
1 5

S10 S61
1 + S95

1 + S112
1 3

S11 S11
1 + S62

1 + S79
1 + S96

1 + S113
1 + S130

1 + S147
1 7

S12 S46
1 + S63

1 + S80
1 3 lowset optimal

S14 S14
1 + S31

1 + S48
1 + S82

1 + S116
1 + S133

1 + S150
1 7

S12 is expressed as a polynomial of the lowest degree 80
and weight 3. Such a polynomial is optimal in algebraic
decoding of the (17,9,5) quadratic residue code. The
computational complexities of the unknown syndromes
S3 and S12 are compared in respect of the numbers of
finite field additions/multiplications and shift cycles as
shown in Table 2.

Now we are ready to propose an algebraic decoding of
the (17,9,5) binary quadratic residue code. The proposed
algorithm consists of three steps. In Step 2, the Inverse-
Free Berlekamp-Massey Algorithm (IFBMA) is used to
efficiently determine the error locator polynomial of a
cyclic code. For more detailed procedures, see Appendix.

Input: r(x). Output: c(x) = r(x)− e(x).

1. Syndrome Calculation
S1 = r(β), S2 = S2

1 , S4 = S2
2 ,

S12 = S12
1 (S17

1 )2(1 + S17
1 + (S17

1 )2), S3 = S64
12 .

2. Inverse-Free Berlekamp-Massey Algorithm
σ(z) =IFBMA(S1, S2, S3, S4).

3. Chien Search Method
e(x) = 0
for k from 0 to 16 do
if σ(β−k) = 0 then e(x) = e(x) + xk

3 (23,12,7) Quadratic Residue Code

The set of quadratic residues modulo 23 defined in Sec-
tion 2 is Q23 = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}. Let β =
α89 be a primitive 23rd root of unity in E = F211 . If α is
a root of the primitive polynomial p(x) = 1 + x2 + x3 +
x4 + x8, then the generator polynomial of the (23,12,7)
quadratic residue code is g(x) =

∏
i∈Q23

(x−βi) = 1+x+

x2+x4+x6+x7+x8. Denote I(x) = i0+i1x+· · ·+i11x
11

by the information polynomial. Utilization of the system-
atic encoder

c(x) = I(x) · x11 + [I(x) · x11 mod g(x)] (2)

yields the code polynomial c(x) of degree 23.

In this quadratic residue code, there are eleven unknown
syndromes Sk, where k =5,7,10,11,14,15,17,19,20,21,22.
In [8], the (23,12,7) binary quadratic residue code pos-
sesses the unknown syndrome representation

S5 = S28
1 + S51

1 + S74
1 + S166

1 + S258
1 + S281

1

+S304
1 + S396

1 + S534
1 + S580

1 + S649
1 + S672

1

+S1155
1 + S1316

1 + S1408
1 + S1546

1 + S1569
1 (3)

To decode the (23,12,7) quadratic residue code, we pro-
pose the unknown syndrome representation for S11 de-
veloped in this paper instead of S5 in [8]. The unknown
syndrome S11 is a binary polynomial of degree 1184 in
terms of the known syndrome S1 as follows:

S11 = S11
1 + S34

1 + S57
1 + S149

1 + S172
1 + S195

1

+S356
1 + S402

1 + S448
1 + S517

1 + S540
1 + S586

1

+S609
1 + S770

1 + S816
1 + S1092

1 + S1184
1

= S11
1 (1 + (S23

1 )1 + (S23
1 )2 + (S23

1 )6 + (S23
1 )7

+(S23
1 )8 + (S23

1 )15 + (S23
1 )17 + (S23

1 )19

+(S23
1 )22 + (S23

1 )23 + (S23
1 )25 + (S23

1 )26

+(S23
1 )33 + (S23

1 )35 + (S23
1 )47 + (S23

1 )51). (4)

The computational complexities of the unknown syn-
dromes S5 and S11 are compared in respect of the num-
bers of finite field additions/multiplications and shift cy-
cles as shown in Table 2.

The received word is really a codeword if the known syn-
drome S1 calculated by the received polynomial is zero.
If S1 is not equal to zero, then the errors occur in the
received word and the following decoding algorithm to
decode (23,12,7) quadratic residue code is needed. This
algorithm consists of three steps.



Table 2: Complexity of Unknown Syndrome Representations for Two Quadratic Residue Codes

code length unknown syndrome addition multiplication shift

17 S3 4 7 6

S12 2 5 5

23 S5 16 25 6

S11 16 24 6

Input: r(x). Output: c(x) = r(x)− e(x).

1. Syndrome Calculation
S1 = r(β), S2 = S2

1 , S4 = S2
2 , S3 = S64

4 , S6 = S2
3 ,

S11 in (4), S5 = S128
11 .

2. Inverse-Free Berlekamp-Massey Algorithm
σ(z) =IFBMA(S1, S2, S3, S4, S5, S6).

3. Chien Search Method
e(x) = 0
for k from 0 to 22 do
if σ(β−k) = 0 then e(x) = e(x) + xk

4 Conclusions

This paper has presented the optimal unknown syndrome
representation to slightly improve algebraic decoding of
two binary quadratic residue codes up to actual minimum
distance.
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Appendix

Inverse-Free Berlekamp-Massey Algorithm: The symbol
C(k)(x) is defined to be the error-locator polynomial in
the stage k. The known syndrome Sk will be used to
calculate the discrepancy �(k). The symbols A(k)(x),
�(k), and η(k) are auxiliary variables for finding the error-
locator polynomial at the same stage. The five steps of
the IFBMA are given as follows.
Step 1) Initialize k = 1, η(0) = 1, C(0)(x) = 1, A(0)(x) =

1, and �(0) = 1.
Step 2) Compute the discrepancy

�(k) =

�(k−1)∑
j=1

c
(k−1)
j−1 Sk−j+1.

Step 3) Compute the error-locator polynomial

C(k)(x) = η(k−1)C(k−1)(x)−�(k)A(k−1)(x) · x.
Step 4) Transform the auxiliary variables

A(k)(x) =

{
x ·A(k−1)(x), if �(k) = 0 or 2�(k−1) > k − 1
C(k−1)(x), if �(k) �= 0 and 2�(k−1) ≤ k − 1

�(k) =

{
�(k−1), if �(k) = 0 or 2�(k−1) > k − 1
k − �(k−1), if �(k) �= 0 and 2�(k−1) ≤ k − 1

η(k) =

{
η(k−1), if �(k) = 0 or 2�(k−1) > k − 1
�(k), if �(k) �= 0 and 2�(k−1) ≤ k − 1

Step 5) Update index number k = k + 1 if k < 2t, then
return Step 2). Otherwise, stop.
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Table 3: Unknown Syndrome Representations for the (23, 12, 7) Quadratic Residue Code

unknown syndrome polynomial representation weight degree note

S5 S28
1 + S51

1 + S74
1 + S166

1 + S258
1 + S281

1 17 [8]

+S304
1 + S396

1 + S534
1 + S580

1 + S649
1 + S672

1

+S1155
1 + S1316

1 + S1408
1 + S1546

1 + S1569
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1 17 lowest optimal

+S356
1 + S402

1 + S448
1 + S517

1 + S540
1 + S586

1

+S609
1 + S770

1 + S816
1 + S1092
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1

S14 S14
1 + S106

1 + S152
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1 + S313
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+S359
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+S681
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1 + S1532
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1 17

S15 S38
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1

+S521
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1

+S1073
1 + S1096

1 + S1188
1 + S1556

1 + S1602
1

S17 S17
1 + S86

1 + S178
1 + S201

1 + S224
1 + S270

1 17

+S293
1 + S385

1 + S408
1 + S546

1 + S592
1 + S1029

1

+S1052
1 + S1098

1 + S1121
1 + S1282

1 + S1328
1

S19 S19
1 + S42

1 + S88
1 + S226

1 + S272
1 + S387

1 17

+S456
1 + S548

1 + S594
1 + S778

1 + S801
1 + S1169

1

+S1192
1 + S1284

1 + S1376
1 + S1537

1 + S1560
1

S20 S43
1 + S89

1 + S112
1 + S135

1 + S204
1 + S273

1 17

+S296
1 + S526

1 + S549
1 + S641

1 + S664
1 + S1032

1

+S1124
1 + S1170

1 + S1216
1 + S1538

1 + S1584
1

S21 S44
1 + S67

1 + S90
1 + S136

1 + S182
1 + S251

1 32

+S343
1 + S389

1 + S412
1 + S481

1 + S504
1 + S550

1

+S665
1 + S688

1 + S734
1 + S757

1 + S780
1 + S872

1

+S1010
1 + S1056

1 + S1125
1 + S1148

1 + S1171
1 + S1217

1

+S1240
1 + S1332

1 + S1378
1 + S1424

1 + S1516
1 + S1562

1

+S1585
1 + S1608

1

S22 S22
1 + S68

1 + S114
1 + S137

1 + S298
1 + S321

1 17

+S344
1 + S390

1 + S712
1 + S804

1 + S896
1 + S1034

1

+S1080
1 + S1172

1 + S1218
1 + S1540

1 + S1632
1
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