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Abstract—The use of multiple sensors typically re-
quires the fusion of data from different type of sensors.
The combined use of such a data has the potential to
give an efficient, high quality and reliable estimation.
Input data from different sensors allows the introduc-
tion of target attributes (target type, size) into the
association logic. This requires a more general as-
sociation logic, in which both the physical position
parameters and the target attributes can be used si-
multaneously. Although, the data fusion from a num-
ber of sensors could provide better and reliable es-
timation but abundance of information is to be han-
dled. Therefore, more extensive computer resources
are needed for such a system. The parallel processing
technique could be an alternative for such a system.
The main objective of this research is to provide a
real time task allocation strategy for data processing
using multiple processing units for same type of mul-
tiple sensors, typically radar in our case.

Keywords: Target Tracking, Data Fusion, Sensor level,

Parallel Processing.

1 Introduction

Basically multi-sensor system is a net formed by num-
ber of different or similar types of sensors such as radar,
sonar, infrared sensor and cameras etc. Multiple sen-
sors can be deployed as co-located and non-co-located
systems. The co-located system for example can be de-
scribed by a warship which is mounted with different sen-
sors; radar, sonar, infra-red and cameras. The netting
of radars/sensors is an example of non-co-located sen-
sors which is considered in this research. The first step
in developing a multiple sensor system is the choice of
the architecture of the system for the data processing.
In fact only two architectures [1, 2, 3] are available for
the data processing, firstly the distributed architecture
which consists of a computer at each radar/sensor site
performing the tracking functions as an independent sin-
gle target tracking system. The tracks formed at each
radar site are then sent to a command (computer) site
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where a single multi-sensor track for each target is main-
tained. Secondly, the centralized architecture consist
of a single (main) computer which receive the observa-
tion/measurement data from the different sensor sites.
These observations are then processed to obtain a single
multi-sensor track for each target. There is a possibility
of a third architecture which could be combination of the
two architectures described above. In text the distributed
architecture is sometimes called as sensor level tracking
and the centralized architecture is known as central level
tracking and we are using and investigating the later de-
scription for the architecture, similar kind of work has
also been investigated in reference [4].

1.1 Sensor Level Fusion

In this setup each sensor is coupled with an indepen-
dent tracking system, which is responsible for track ini-
tialization, data association, track prediction and track
update. Each tracking system individually performs the
above mentioned tracking functions and finally all the up-
dated tracks are sent to a common place (computer) for
fusion of tracks to obtain a single global track for each
target. Fundamental to the problem of combining sen-
sor level tracks is determining whether two tracks from
different tracking systems potentially represent the same
target. Consider two track estimates x̂i and x̂j with cor-
responding covariance matrices Pi and Pj from the two
tracking systems i and j. If the estimation errors on the
two estimates are assumed to be uncorrelated then the
common test statistics [5]

dij P−1 dT
ij ≤ Dth (1)

can be used to decide whether the two estimates are from
the same target. Where

dij = (x̂i − x̂j) (2)

and

P = Pi +Pj (3)

Because dij is assumed to have the Gaussian distribution,
therefore equation 1 will have a χ2 distribution with the
number of degrees of freedom equal to the dimension of
the estimate vector. Therefore, when equation 1 using a
threshold Dth obtained from a χ2 distribution is satisfied



then the two estimates represents the same target. When
the estimates are determined to be from the same target,
they are combined. The combined estimate vector x̂c

which minimizes the expected error is

x̂c = x̂i +C(x̂i − x̂j) (4)

where

C =
Pi

Pi +Pj
(5)

When the estimation errors of the two estimates are not
independent the covariance defined above in equation 3
for the two estimates is not strictly valid because of the
error correlation between the two sensor estimates. Bar-
shalom [6] has proposed a statistical test, to account for
the correlation between the two estimates, this method
is summarized from references [1, 7]. In this method the
difference between the two estimates given by dij is nor-
malized by the covariance;

E[dij d
T
ij ] = E[{(x̂i−x)−(x̂j−x)}{(x̂i−x)−(x̂j−x)}T ]
= Pi +Pj −Pij −PT

ij (6)

where x is the true state (noise free) of the two estimates
and

Pij ≈ E[(x̂i − x) (x̂j − x)T ] (7)

reflects the correlation between the two estimates. There-
fore the new proposed (by Bar-Shalom) test statistics to
check two estimates represent the same target is

(x̂i − x̂j) (Pi +Pj −Pij −PT
ij)

−1 (x̂i − x̂j)
T ≤ Dth (8)

When the estimates are determined to be from the same
target they are combined using equation 4 and the value
of C is now given as

C =
(Pi − Pij)

Pi +Pj −Pij −PT
ij

(9)

Initially the cross covariance matrix Pij is assumed zero
that is

Pij(0/0) = 0 (10)

after that for n > 0 the values of Pij(n/n) are computed
recursively by the following relationship

Pij(n/n) = Ai(n) F(n− 1) AT
j (n) (11)

where

Ai(n) = I−Ki(n) H (12)

Aj(n) = I−Kj(n) H (13)

F(n− 1) = Φ Pij(n− 1/n− 1) ΦT + Γ Q ΓT (14)

Matrices Φ,K,H,Q and Γ are the same State Transi-
tion, Kalman Gain, Measurement, Covariance of Mea-
surement Noise and Excitation respectively used for stan-
dard Kalman filter [8]. It is evident that if the number of
sites are more than two or if more than two tracks rep-
resent the same target the above procedure will be quite
complex due to the number of calculations involved. The
above described procedure has one big advantage, that
is apart from the straight line motion target path, it can
also be used for maneuvering target as well. The tar-
get estimates strictly for targets moving in a straight line
path from two tracking systems i and j can also be com-
bined using the following relationships [2]

x̂c = Pc (
x̂i

Pi
+

x̂j

Pj
) (15)

where

Pc = [
1

Pi
+

1

Pj
]−1 (16)

1.2 Central Level Fusion

In this setup the measurements from different sensor sites
are received at a central system as shown in figure 1. In
contrast to a sensor level tracking system initialization
of tracks, data association, track prediction and track
update is processed only at a central place (computer).
The data processing is done by considering all the in-
formation (measurements) available from all the sensors.
The track loss rate and mis-correlations in central level
tracking are fewer than in the case with sensor level track-
ing. Also more accurate tracking should be expected if
all the data (measurements) are processed at the same
place. A target track that consists of measurements from
more than one sensor should be more accurate than the
track which could be established on the partial data re-
ceived by the individual tracking system. Finally, the ap-
proach whereby all data are sent directly to the central
processor should, in principle, lead to faster and efficient
computation. The overall time required to develop sensor
level tracks and then to combine these tracks is generally
greater than the time required for central level process-
ing of all data at once [1]. On the other hand branching
of tracks may occur in a central level tracking if similar
tracks are not merged due to some reasons and multiple
tracks may also be initiated at the time of track initializa-
tion. Also if the data from one of the sensor is degraded it
will effect the central level tracks. In this study a straight
line model for the target dynamics have been assumed,
therefore using the same technique given in eqns. 15 and
16, the combined measurement vector and its covariance
are obtained instead of the combined estimate vector and
the covariance of the estimate. Consider for example the
two measurement vectors zi and zj with the correspond-
ing measurement error covariances Ri and Rj from the



two sensor sites, then the combined measurement vec-
tor zc and the combined measurement error covariance
matrix are

zc = Rc (
zi
Ri

+
zj
Rj

) (17)

where

Rc = [
1

Ri
+

1

Rj
]−1 (18)

The approximate statistics given by equation 1 is now
modified as to test the nearness of two measurements
instead of the estimates that is

(zi − zj) R
−1
a (zi − zj)

T ≤ Dth (19)

where
Ra = Ri +Rj (20)

When the two measurements using the above statistical
test equation 19 are determined to be from the same tar-
get they are merged using equations 15, 16.

Figure 1: Central Level Architecture

2 Implementation

In this study central level architecture is simulated on a
network of computers for the measurement to measure-
ment fusion. For simplicity only two sensors are con-
sidered for the system typically sensors provide data in
polar coordinates that is the range and bearing of the
targets. The tracking however, is performed in Carte-
sian coordinates so the data is transformed from polar
to Cartesian coordinates. The dynamics of the target
considered in this study are modeled as straight line mo-
tion target. The data from the host computer is sent
in the form of array called the measurement vector to
the other processing units. The first processor which
is directly connected with the host computer has seven
modules/processes namely merge measurements, initial-
ization of tracks, distribution of data (measurements and
tracks), state estimation update, local similarity, storage
of tracks and unused measurements and finally sending
of track estimates to host. Merging of measurements and
data distribution modules are explained in the following
paragraphs.

2.1 Merging of Measurement

After receiving the two measurement vectors correspond-
ing to the two radars the merge measurement task first of
all sets the used/unused flag of each measurement in the
two measurement vectors to 0.0, then it starts perform-
ing the statistical test described in equation 19 for each
measurement pair in the two measurement vectors. For
a successful test the two measurements are merged using
eqns. 17 and 18 provided the used/unused flags of each
measurement is 0.0. After that the used/unused flags of
the two merged measurements are set to 1.0 which indi-
cates that these measurements have been used in merg-
ing. Therefore a measurement from a sensor (1) can be
merged only once with another measurement of sensor
(2), this option was used to avoid merging of a single
measurement from sensor (1) with a number of measure-
ments in the second sensor (2) when multiple measure-
ments from other targets occurs in the same neighbor-
hood. For example, consider a case of four crossing tar-
gets and assume that the used/unused flag for the two
measurement vectors are not set to 1.0, when these mea-
surements are merged. As long as the targets are distinct
(separate from each other) there will be no problem, be-
cause only the two corresponding measurements from a
common target will be merged. However, consider the
situation at the time of crossing, the merge measurement
task will take the first measurement from sensor (1) and
starts performing the statistical test given in equation
19 with every measurement in the second sensor (2) and
because the measurements are very close to each other
therefore possibly every measurement of sensor (2) will be
likely candidate for merging with the first measurement
of sensor (1). But if the used/unused flags are set to 1.0
after each successful comparison it will prevent merging of
the same measurement with another measurement. How-
ever, the setting of used/unused (1.0) flag do not guaran-
tee for the correct merging of two measurements when
ambiguity occurs, but probably provides equal chance
to other measurements belonging to the two sensors for
merging. For situations when the two measurements from
the same target do not satisfy the statistical test equation
19 both measurements from the two sensors are kept, this
means track splitting will occur but the similarity crite-
rion should take care of such situations. Finally all the
merged measurements are stored in a new measurement
vector.

2.2 Distribution of Tracks and Observations

For the distribution of observations and tracks among
the different processors an intelligent procedure described
in reference [4] is used. In which the new measurement
vector is checked for data ambiguity and if there is no
ambiguity data distribution task divides the number of
tracks among the available processors as equally as pos-
sible and sends all measurements of the new measure-



Table 1: Parameters for the Two Radars
Parameters Values

Initial position of radar 1 (Xp1, Yp1) (20.0, -30.0)

Initial velocity of radar 1 (Vp1) 0.0 Km/sec

Initial position of radar 2 (Xp2, Yp2) (-20.0, -30.0)

Initial velocity of radar 2 (Vp2) 0.0 Km/sec

Probability of Detection (1 & 2) 1.0

Scan Sector w.r.t y-axis (1 & 2) ±900

Bearing Resolution (1 & 2) 5.00

Range Resolution (1 & 2) 0.02 Km

Clutter Density (1 & 2) 0.0

Maximum Range (1 & 2) 50.0 Km

Minimum Range (1 & 2) 5.0 Km

Scan Interval (1 & 2) 1.0 sec.

Range variance σ2
r (1 & 2) 0.001 K2

m
Bearing variance σ2

θ
(1 & 2) 0.004 Radians2

ment vector to all the processors. In the case of am-
biguity, measurements of the new measurement vector
are divided as equally as possible to the available proces-
sors and all the tracks are sent to every processor. Af-
ter the distribution of data, the state estimation update
is done using the standard Kalman filter and after up-
dating, tracks are compared to eliminate similar tracks.
Finally, last module store the tracks from all processors
and also sends the position estimates to the host com-
puter for real time display.The performance of the multi-
sensor central level (measurement measurement fusion)
algorithm implemented is investigated by considering the
speed up achieved using multiple processing units as par-
allel processors. Therefore, simulations were performed
by considering typical scenarios and the processing time
with a single as well as with four processing units were
obtained for comparison. Initial parameters for the two
radars to simulate the data for targets are given in ta-
ble 2.2. A number of scenarios were considered to test
the proposed algorithm, each simulation was performed
5 times by generating data with 5 random seeds. A sam-
ple scenario is shown in figure 2. The processing time
with a single and a network of 4 processors was obtained
for these scenarios and it was discovered that a speed up
of over 50 % is achieved with the current setup of archi-
tectures having 4 processors.

3 Summary

In this investigation a multi-sensor system using two sim-
ilar kinds of radars was implemented on a network. The
main object was to demonstrate that parallel architecture
can be used for a real time development of a multi-sensor
system. Although a very simple approach was used for
the implementation but in a similar way a more general
data association procedure can be developed for the fu-
sion of data coming from different type of sensors. The
merging of measurements instead of tracks is better ap-
proach when crossing target scenarios are under consid-
eration, because if the later approach is used the merging
process at the crossing point can merge all the target
tracks into one global track which can lead to track in-
stability (loss). The simulations have shown that a rea-
sonable speed up of upto 50 % is achievable.

Figure 2: Example Scenario
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