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Robust Control of Space Robot for Moving
Target Capturing

Takuro KOBAYASHI and Shinichi TSUDA

Abstract—Space Robot is extensively utilized in space
program, such as the Space Station Freedom. Furthermore the
space robot is expected to maintain failed satellites and to
capture space debris in the autonomous manner in the near
future. This paper deals with the robust control of space robot in
capturing operation of the target and controlling the spacecraft

motion under unknown parameters, like mass and inertia tensor.

The sliding mode control is applied to obtain the above robust
control. Numerical simulations were conducted and the validity
of our approach is demonstrated.

Index Terms—Space robot, Robust Control, Sliding mode
control

I. INTRODUCTION

Space robot technology has been rapidly developed and
extensively used in the space station program. Most of these
space rtobots are a kind of remote manipulator systems
controlled by astronauts from inside or outside of space ships.
Inthe space application more intelligent system is desirable to
reduce the workload and hazardous risk of those astronauts.
Therefore in the near future this technology will be expected
to perform the wider range of operations, such as to maintain
failed satellites and to capture space debris in the autonomous
manner by the space robot. This capability will tremendously
decrease the extravehicular operations of astronauts, which
are most time consuming and terribly exhausting. In this
respect the autonomy will be mandatory.

In the space robot operation there are a few features like the
reactive behavior of attitude motion of the space robot by
robot arm operation and the parameter change in attitude

dynamic equations of motion by capturing the target and so on.

Generally speaking the failed target and debris will not be
well known a priori and freely rotating, that is, some of
physical parameters are unknown. In the above respect some
kind of robustness of the space robot control must be
incorporated

This study deals with the space robot operation, ie.,
controlling the attitude of the space robot and controlling the
robot arm under the changed mass property. The sliding mode
control™ is applied to the control of attitude motion and the
robot arm in which the absolute supremum value method®!
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was used to assure the robustness.

1I. MODEL OF SPACE ROBOT

The Model of a space robot is illustrated in Fig.1. A robot
arm 1s mounted on the body of the spacecraft. The robot arm
is articulated with 3 rotary joints and the motion of the robot
arm 1s assumed to be two dimensional. This assumption is not
inconsistent with reality. The out of plane motion can be
separated from the in-plane motion.

Link lengths of robot arm are given by /(i=0]1,2.3). The
position of the space robot in the inertia space is denoted by
the coordinates X ¥ and angles of joints are 8(;=0,1,2,3) in

which 0, gives the attitude angle of space robot body.

Fig.1 Model of Space Robot

m. EQUATIONS OF MOTION

Dynamical equations of motion for space robot are derived
using Lagrange formula. Those equations are summarized as
in eq.(l), where Af(#) is the inertia matrix and

#(0,6) includes centrifugal and Coriolis terms. u(f) 1is

translational control force, attitude control and joint control
torque vector for space robot.

M(OYG(£)+ h(6,0) = u(t) (1)
where
g=lx ¥ 6 4 & af

9:[90 8 & QS]T'

Further we assume the following relations:
M(8)=M"(6)+ M (6) @
h6.8) =1 (6,0)+ Lh(6,6) 3)
In which A¢%(8) and %°(&,0) are defined as nominal value matrix
and vector, and M (&) and (B, 0) are called deference from
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nominal values and absolute supremum values are defined as
bellow;

[ (6) <21, ¢6) @)
|[ie.0)<h 6.6 )

And further, absolute supremum values of elements of time
derivative MU {8) of matrix A(&) was also defined in the

following manner;

[t @) <M (0) (6).
The absolute supremum value v (g,2) will be given as follows;
G AGIESNCRY .

IV. SLIDING MODE CONTROL

The shiding mode control restricts the trajectory of plant
states on a hyper plane by the control and slides it to the
equilibrium point in an asymptotic manner.

First let us design the switching hyper plane. The target
trajectory is given by g, and controlling errors are defined by
the followings;

e(t)=q(f)—qq () (®)

é(t)=q(0)—qa(0 ©.
And then we give the switching hyper plane as an equation
(10).

(1) = Ae(r) + é() (10)
where

A=diag(h,---,A) 4 =0.
If () =0 holds, then, e(f) in eq.(10) satisfies the asymptotic
stable differential equation and e{ec) — 0 1s assured. In order

to secure the state is approaching to the hyper plane, the
following Lyapunov function is introduced. And the negative
definiteness of its time denivative will be proved.
V(U):%UTMO' (11
The time derivative of eq.(11) is given by
V= %O’TMO'Jr oTMe
:%O'TMO'Jr ol (MAe+Mg—Mi,) (12).
= %O’TMO'-&- ol (MAé—h+u—Miy)
Let us defineu(?) as follows;
u(t) =—M () Ae+ 1% (0,8)—Po—Osgn(o) (13)
where
P = diag(P (7)., By, (D)
Q=diag(Q (D), .0, (1)),
then, we obtain

V= %O’TMO'+O'T[MAé—h—MEjd]
Fipr [fMOAé+h° 7PO'7QSgn(O')]
i (14).
= 70'T[P77M}0'
2
+O'T[7ngn(0')+AMAé+Athgd ]

Here we choose P and ¢ which satisfy F(s)<0.
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In the first place elements of the diagonal matrix Q are
determined as below;

Q“(r):Z{/\/}A}U 6|+ +3, (15).
j=1
Then we have
ol osenio) = o7 [AMAé - Ah—Mg, ] (16,

And the second term of eq.(l4) becomes negative
semi-definite. In the next place if we define elements of
diagonal matrix P as follows;

i ~
Pi(h=) My/2+k k>0 (17,

j=1

then, the first term Pf%M of eq.(14) is given by the

following,
i, g , , , .
ZMU_MH — My — My,
i=1
Y ok = g 2
1| -My, D My -My, —M,, +K  (18).
2 J=1
s ] - i 7 - s
~ My ~ My ZM@*MWJ
J=1

By the Gershgorin’s theorem, for an arbitrary matrix 4 =[a;],

if the following inequality is satisfied;

i
e > Z‘alk‘

k=1,k=i
then, the matrix A is positive semi-definite. Therefore if we
apply 4 >0 to the eq.(18), then, we have the negative
definiteness of the first term in eq.(l4) This means
V<0 .The above concludes the proof of the negative

definiteness of the Lyapunov function.
And in order to avoid the chattering phenomena, we
introduce saturation function in place of sgn function.

{19},

1 o>¢
saticle)=<0/le |o-| < 20)

-1l o<-¢
V. NUMERICAL SIMULATIONS

We conducted numerical simulations for the space robot
model defined in Fig.l. And to perform the mission two
phases are introduced.

PHASE T

To capture the target the robot arm follows the motion of the
target for 10 seconds. By this operation grasping operation
will be completed

In order to realize to follow the target, a goal
trajectory r;(r) for the position of endeffector of the robot

arm is defined and then, the joint trajectory for g, is
calculated. The position of the center of target is X; and ¥;,

and the distance between the center of the target and the
grasping point is given by »; . And the target has the rotational

motion. Then we have the following relations;

IMECS 2011



Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol II,

IMECS 2011, March 16 - 18,2011, Hong Kong

Xr-s-ri cos{ J
ri()=| ¥; +r -sin ( 2360 J (21)
K
| 360 2 |
. 0=[0 00 8; 6, 6yl (22)

PHASE I
After the grasping operation the velocity of the endeffector
will be controlled to be 0 [m/sec].

To realize the above operation a goal trajectory for the
joint velocity 1s given by linear functions of time which
reduce the velocity to 0 [m/sec] after the 30 [sec]. The joint
velocity vector is given by eq.(23).

The su;[:rremum value 1s determined by Table 1.

GO=0 0 0 8,0 b, 6,0)] 23)

Table 1 Parameters of the Target

Tagert Assumed
Value for
determining
the
Suremum
Value
Mass[Kg] 500 600
Moment of 333.33 400
Inertia[Kem® ]
Rotational 0.5 0.5
Velocity [deg/ 5]
Size 2[m]*2[m] 2[m]=2[m]

In Table 2 parameters for the space robot are defined.

Table 2 Parameters of the Space Robot

Body | Link | Link | Link
1 2 3

Mass[Kg] 1500 40 40 30
Link 1.5 1.5 1.5 1.0
Length[s]
Moment of 1000 30 30 10
Inertia
[Kgm® ]
Initial 0 45 o0 -45
Angle
[deg]

Other parameters are assumed as follows;
by =y = oy = kg = ks = kg =100
A=Ay =154 =104, = As=As=5
=8y =8 =84 =8 =& =0.05.
Some of the above parameters are determined by iterative
manner.
Positions of the space robot and and the target at 0 and
10 seconds are illustrated in Fig 2.
Results of the Phase I are shown in Figs.3-9.
The performance of tracking the target is satisfactory and
the error of tracking was below 1 [mm].
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Fig.2 Target and Space Robot Position at ¢ and 10 [sec]
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Results of Phase 11 control are given by Figs. 10-19.

The control of position and velocity of the space robot 1s
satisfactory and control input for spacecraft position and joint
angles is sufficiently small, for instance, the maximum torque
for both the space robot attitude control and joint control is
smaller than 1 [Nm]. These values are consistent with the
space application.
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vI. CONCLUSION

In this study robust control of space robot for unknown
target capturing operation was discussed. The target initially
has freely rotating motion, therefore we defined two phases,
in which we have operations of grasping the target and
stabilizing both the space robot and the target. The sliding
mode control was applied to have the robustness of control.
Numerical simulations were conducted and the results show
the consistency with space application requirement. This
validates our approach.
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