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Abstract—In this paper, a novel monitoring method for the 

repetitive batch operation with two-dimensional dynamic 
behavior is proposed. It combines dynamic multiway principal 
component analysis (DMPCA) and hidden segmental 
semi-Markov models (HSMM) to resolve the problem caused by 
the two-dimensional behavior of batch processes. DMPCA 
utilizes the batch-to-batch dynamic characteristics and 
eliminates the batch correlation among process variables. 
HSMM is used to construct the temporal behavior among 
process variables during each batch run. The proposed method 
has the temporal property of HSMM and the batch-to-batch 
dynamic characteristics of DMPCA. To demonstrate the 
performance of the proposed method, data from the monitoring 
practice in a fed-batch penicillin cultivation process are 
conducted.  
 

Index Terms—Batch monitoring; Hidden segmental 
semi-Markov model; Multiway principal component analysis 

I. INTRODUCTION 

n order to increase capabilities of meeting the need of 
constantly changing market situations, batch and 

semi-batch processes play an important role in most 
industries. This especially rings true in the processes mainly 
involved in the production and processing of high-quality 
and value-added specialty chemicals (e.g. polymers, 
pharmaceuticals, biochemicals, food, semiconductors and 
agricultural chemicals). Batch processes are characterized by 
the precise sequencing and automation of all stages in the 
sequence.  They convert raw materials into products within 
the finite duration. Therefore, in order to have safe operation 
and consistent good quality products, on-line process 
monitoring is imperative. In recent years, several statistical 
techniques for mining process information of the operating 
measurement profiles have been developed. Nomikos and 
MacGregor (1994) first used multiway principal component 
analysis (MPCA) to analyze three-way batch data [1]. Since 
then, batch process monitoring based on the multivariable 
statistical control process had been developed increasingly 
because of easy implementation of associated theoretical 
concepts [2,3]. In fact, the batch system is considered as a 
two-dimensional model that represents the functions of the 
operation number in the trial domain and of the operation 
time in the time domain. This assumption of the entire stage 

bounded as a single one does not necessarily hold true for the 
behavior in a two-dimensional manner.  

 
This work was sponsored in part by National Science Council, R.O.C.  

Due to high dimensionality in time space and variable 
space, multiphase characteristics of each batch, and 
batch-to-batch dynamic variation, MPCA is not able to deal 
with the two-dimensional batch operation because it assumes 
that the batch data are independent and identically distributed. 
Despite the characteristics of the two-dimensional batch 
process, less effort has been devoted to improving the 
monitoring scheme of batch processes in the past. The 
moving window MPCA approach was a strategy that 
generated a model by incorporating batch-to-batch 
information [4]. Another two-dimensional PCA (2DPCA) 
approach representing the batch process in a 
two-dimensional space was presented [5]. However, the 
above methods assumed that the statistical indices followed 
Gaussian distribution for easy construction of the control 
limits.  The assumption is not realistic in the practical 
situation. 

Hidden Markov models (HMM) are recognized as being 
appropriate for time sequence data [6]. However, the 
modeling of HMM is limited by the Markov property in 
processing realistic duration of different stages. It cannot 
accurately provide representation of the structure of 
multiphase operations due to the limitation of state duration 
of HMM to one with exponential nature. An extended model 
of HMM, called the hidden semi-Markov model (HSMM), 
has been developed [7]. Several problems related to HSMM 
were further investigated [8]. To our best knowledge, the full 
potential of HSMM models has not yet been recognized in 
the development of the batch monitoring. 

With the integration of the HSMM framework, a statistical 
model of two-dimensional dynamic process variables for the 
batch process is developed using HSMM and dynamic 
MPCA (DMPCA) in this paper. The dynamic data array is 
constructed by incorporating both static and dynamic process 
characteristics using the prior and the current batches. The 
strongest relations of the scores are extracted by DMPCA. 
The HSMM model is trained with the extracted scores 
obtained from MPCA method to enhance the capability of 
statistical process monitoring. Thus, the control charts for a 
two-dimensional batch are developed in this research. The 
charts can not only analyze the two-dimensional 
spatial-temporal measurements but also capture the statistical 
characteristics of the practical data. 
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II. TWO-DIMENSIONAL DMPCA-HSMM MODELS 
In many batch processes, the same run is carried out 
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repeatedly. The same time varying trajectories are used batch 
after batch. Batch process operations are by nature much 
more dynamic and they involve several transitions that cover 
large operating envelopes of phase durations. This means that 
the multiplicity of the operation phases is an inherent nature 
of many batch processes and each phase exhibits 
significantly different underlying behaviors. 
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Fig. 1. The structure of hidden semi-Markov models 

 

A. Hidden Semi-Markov Model (HSMM) 
HSMM is modified from HMM, allowing arbitrary 

state-durations to be used here [9]. The basic structure of 
HSMM is illustrated in Fig. 1. At the bottom of Fig. 1, it 
consists of a pair of discrete-time stochastic processes { }ks  

and { }ky , { }1k ∈ " K . For simple explanation and 
convenience of notation reasons, the observation process 
{ }ky  is assumed to be a single variable in the above 
expression. The extension to the multivariable case will be 
treated later. The observed process { }ky  is linked to the 

hidden, i.e. non-observed state process { }ks  by the 
conditional distribution ( )

ks kb y  depending on the state 
process,  
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which implies the fact that the output process at time k  
depends only on the state of the underlying semi-Markov 
chain at time k . Due to the sojourn in each of the state, the 
entire sequence of states { }1 2, , , Ks s s"  can be reduced into the 
sequences of state { }1 2, , , Lh h h"  which have been visited 
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where τ  is the maximum duration with the state . For a 
fixed macro-state sequence, the observation probability of a 
batch run given the model 

lh

λ  can be written  
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where { }1 1 1

K
Ky y y y= "  and { }1 1 2

L
Lh h h h= "  are 

the observed as well as the state sequences of a batch duration. 
The parameters of the HSMM model λ  include the initial 
state { }1hπ π= , the state transition probability { }1l lh hA = e 

observation probability 

a
−

, th

{ }ksB b  a= nd the state duration 

probability { }( )
lh lD p q= . In this study, the state output is a 

mixture of Gaussian distribution characterized by the mean 
,lh vμ , the variance ,lh vΣ  and the mixing weight  for each 

node ( ), and the duration distribution is a single Gaussian 
distribution characterized by the mean  and the variance 
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To estimate the model λ , the expectation-maximization (EM) 
algorithm for HSMM can be formulated as 
 

1arg max ( )KP y
λ

λ λ=  (6)
 
This probability ( 1( KP y )λ ) is the summation of the 

probability over all the possible state sequences 
( { }1 1 2

K
Ks s s s= " ).  
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The join probability of 1

Ky  and 1
Ks , i.e. the probability that 

1
Ky  and 1

Ks will occur simultaneously, is the product of 

1 1( ,K KP y s
1

L

 (2)

)λ  and 1( KP s )λ . The training consists of two steps: 

finding the HSMM parameters λ  that maximize the 
probability and computing the joint probability. It is a 
recursive algorithm. Each iteration of the EM algorithm 
increases 1( KP y

 
where the state l ,  is macro-states shown in Fig. 
1. Each macro-state consists of several single states, which 
are called micro-states (

h 1,2, ,l = "

{ }1 1 11 2, , ,
l l l lq q q qs s s
− − −+ + +" ). Thus, 

HSMM is like an HMM except that each state can emit a 
sequence of observations. Note the sojourn time lq  is a 
discrete non-negative random variable with a occupancy 
distribution . The sojourn of the unobserved process 
of the time length  in the state is denoted by a 
distribution 

( )
lh lp q

min( , )lq τ∈

)λ  and generally, the sequence of the 

re-estimated parameters λ  converges to a local maximum of 
1( )KP y λ . 
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Fig. 2. Time-wise unfolding used for constructing the batch lagged window 
 

B. Dynamic Batch HSMM Model 
To capture information in the previous batches, a dynamic 

batch model should be constructed. It is not only concerned 
with the correlation in the sequence batch but also with the 
autocorrelation of the process variables. The serial 
correlation is taken into account when all the variables and 
their time histories of the previous batches are augmented 
into the data matrix for the current batch. Fig. 2 shows an 
approach to an incorporation of batch-to-batch information. 
Each horizontal slice K J×  is put side by side to the right, 

starting with the slice corresponding to the first batch run 
until 1d +  batch window lengths. The resulting 
two-dimensional matrix has dimensions of ( 1)K d J× + . 
Likewise, the second two-dimensional matrix is constructed 
starting with the second batch run. Keep doing the same 
procedures until I d−  two-dimensional matrices are 
completed. Concatenate these two-dimensional matrices 
vertically, padding the matrices automatically to make a large 
two-dimensional array, 
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where the observation of variable  at the time point k  in 
batch run l  is represented as 

j

,
i
j kx . Here all the batches have 

equal duration and are synchronized. To reduce the variables, 
the data array is decomposed. the PCA model is now 
considered as 
 

  N N
exp exp

D D T
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where  is the loading matrix which retains the first P R  

principal component loadings.   is a residual vector which 

cannot be explained by the PCA model. The score matrix is 
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Next, each D

lT  in the batch matrix DT  is extracted to form a 

observation sequence { },1 ,2 ,1

KD D D D
l l l l⎡ ⎤ =⎣ ⎦T t t t" K

d

 , 

1,2, ,l I= −" . Now the new variables 
1

KD
l⎡ ⎤⎣ ⎦T  that are linear 



 
 

 

combinations of the original ones are uncorrelated with each 
other. The above procedure enables us to easily model 
HSMM because it is only necessary to perform the diagonal 
covariance matrices ( ) in Eq. (5), in contrast to the 
standard ones. Furthermore, instead of building HSMM upon 
the training data of one batch set only, data tying across all 
simultaneous batch sets are applied to training the HSMM 
model in the reduced space. Tying increases the amount of 
training data to avoid over-fitting the HSMM model and 
achieve the robust training result.  

,lh vΣ

III. MONITORING CONTROL CHART BASED ON 
MPCA-HSMM 

Once the HSMM model is trained, the most likely state 
sequence for an observed sequence could be found. Each 
observed sequence infers a corresponding hidden state path. 
However, there are potentially many state paths that can 
generate the same sequence. For the description of the 
process operation, the best state path of HSMM for each 
batch should be found in the trained model. The best state 
path should also be able to maximize the path probability for 
a given observation. The optimal state sequence is used 
instead of all the possible state sequences for more efficient 
classification. For a given model and an observation score 
sequence { }1 21

KD D D
K⎡ ⎤ =⎣ ⎦T t t t" D , the most likely 

underlying state sequence ( ( ) { }* * * *
1 1 2
L

Lh h h h= " ) can be 

found. 
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A recursive Viterbi algorithm with dynamic programming 
can be used to find out the most likely state sequence [10]. 
Repeat the same procedure for all the collected sets to 
compute the most likely state sequences for each set. Not all 
the sets follow the same best path. Different selected states 
for different sets account for the fact that the observed values 
of the process variables do not perfectly conform to the 
deterministic model. This variability is resulted from the 
uncertain variations and disturbances among the hidden 
variables that affect the system. Fig. 3 shows a pictorial 
display of the output score distribution ( ( ), 1 1( D K K

l kP s s , )λt ) 

based on the selected optimal state path at each time point for 
all the batches. The distribution can help assess what the 
status of the current operating batch is and if the operation 
batch is in control.  

With the developed probability distribution that reflects 
the normal operation, the control limit for the selected state at 
each time point is required to detect any departure of the 
process from its standard behavior 
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The score matrix by projecting the data ( ) mentioned 
above onto the loading matrix ( P ) can be computed:  
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Fig. 3. The output distribution based on the selected optimal state path at 
each time point 
 
The data corresponding to 95% of the confidence limit is 
taken to get a likelihood threshold ( ) at time point . ( )thP k k

The corresponding unexplained part can be gotten by 
applying DMPCA 
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The  statistics for the deviations from the model 

behavior (residuals) of the process variation at sample k is 
defined 

SPE

 
  ( ) ( ) ( )T

c cSPE k k k= e e (20)
 
Note that the row vector  represents the residuals at time 
point  of the current batch. The confidence limits of 

 cannot be determined directly from a particular 
distribution. The kernel density estimation is used to 
determine the confidence limits [11]. 
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IV. EXAMPLES 
A benchmark simulation of fed-batch penicillin 

production is used here to demonstrate the application of the 
proposed method. The system has nonlinear dynamics and 
multi-phase characteristics. During the initial pre-culture 
phase, the necessary cell mass is generated. Then penicillin 
starts to be generated at the exponential growth rate and 
continues to be produced until the stationary phase. The 
simulation condition and the relevant parameters are referred 
to Birol, et al. [12]. The system switching itself from batch 
modes to the fed-batch modes of operation depends on 
whether glucose concentration reaches its threshold value 
( 0.4 g L ). Due to input variations, the batch/fed-batch switch 
times are quite different for different batch runs. In the 



 
 

 

iterative operation, the initial condition of each batch may not 
be reset to the desired initial condition or inside a 
neighborhood of the desired initial condition, because small 
amounts of biomass and substrate in the previous batch run 
are remained in the tank. Thus, the initial concentrations of 
biomass ( ) and substrate ( ) at the 
starting point ( k  are the mixing of the biomass in the feed 
( ( ,f

sC i k  the previous batch ( (sC i − well 
as the mixing of the substrate in the feed ( ( ,f

mC i k = e 
previous batch ( ( 1,mC i k− ctively. 

( , 1)mC i k = ( , 1)sC i k =

1

 
 

The first batch (normal) is monitored at each time point. 
Two different models, 2DPCA and DMPCA-HSMM, are 
used to monitor the operating batch for a comparison. In 
2DPCA, the dynamic batch data of time-wise dimension and 
batch-wise dimension are used for batch process modeling. 
Appling 2DPCA gives the results presented in Fig. 4(a). 
There is still some false detection between the 40th hour and 
the 50th hour when the transition of two different phases 
occur. Again, DMPCA-HSMM is applied to the same test 
batch. In Fig. 4(b), the  and SPE log ( | , )k kP s λt  charts at each 
time point are obtained from the proposed DMPCA-HSMM. 
It is evident from the charts that DMPCA-HSMM can 
capture the dominant behavior without getting wrong 
conclusions. In 2DPCA, Fig. 5 also shows the normal 
probability plot of the first scores of the stage PCA model. It 
indicates that there is a problem with the normality 
assumption. As a result, 2DPCA (Fig. 4(a)) has false 
detections when applying the and  test statistics. 2T SPE

= )
= ) and k K= ) as 

) and th
K= ), respe

1) 1, )

1)

)

To build up a DMPCA-HSMM based monitoring system, 
the normal operating condition of the penicillin fermentation 
is simulated in this study. In the normal condition, a total of 
11 process variables ( J ) with six states ( L ) and two 
Gaussian functions ( ) are considered to train 
DMPCA-HSMM. Two additional batches, comprising one 
normal batch and one abnormal batches, are generated for 
testing. In the abnormal batch, it is assumed that the substrate 
feed rate is linearly decreased from 0.04 to 0.028 from the 
60th hour till the end of the batch.  
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 Fig. 5. Normal distribution plot of (a) score 1 and (b) score 2 from 2DPCA. 
 

Fig. 4. Control charts for on-line monitoring of the normal batch in the 
example: (a) 2DPCA, and (b) DMPCA-HSMM. Each chart contains 95% 
(solid line) control limit. The dashed line represents the normal batch 
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Fig. 6.  Control charts for on-line monitoring of the normal batch in the 
example: (a) 2DPCA, and (b) DMPCA-HSMM. Each chart contains 95% 
(solid line) control limits. The dashed line represents the abnormal batch. 

 
For the first abnormal batch, the monitoring outcomes of 

three models are shown in Fig. 6. The initial time of the fault 
is induced at the 60th hour and until the end of cultivation. 
The decrease in the feed rate results in a reduction of 
penicillin production. As shown in Fig. 6 (a), the  or T  
monitoring charts of 2DPCA cannot detect this fault in the 
whole operating duration. Moreover, there are false 
detections of 2DPCA around time point 40. The detection 
abilities of DMPCA-HSMM have been significantly 
improved and the fault is able to be detected earlier after 
applying DMPCA-MSMM to characterizing the temporal 
dynamics between batches. In Fig. 6(b), after the 150th hour 

 has increased remarkably and fallen outside of the 95% 
confidence limit and 

SPE 2

SPE
log ( | , )k kP s λt  also fallen outside of the 

95% confidence limit after the 220th hour. 

V. CONCLUSION 
On-line process monitoring has been attracting increasing 

interest in the field of process safety and quality control. In 

the past research, most of the tools used for the detection of 
disturbance assumed that the process data follow a Gaussian 
distribution. The assumption is not necessarily satisfied in 
batch operation processes with complex and dynamic 
characteristics.  

In this research, the conventional multivariate SPC based 
on MPCA are extended by incorporating the HSMM 
structure to solve the detection problem for the 
two-dimensional batch operation. At the first stage, the 
current and the past batch measurements are stacked together 
to take into account the batch-to-batch serial correlations. In 
this stage, the temporal evolution of the two-dimensional 
batch operation behavior can be tracked. At the extracting 
feature stage, the MPCA scheme is used to determine the 
correlation between the measurements within the adjacent 
batch runs as well as among other non-adjacent batch runs. 
The objective of the feature extraction stage is to increase the 
robustness of the two-dimensional pattern by reducing the 
dimensionality of the data and retains most of the essential 
features. In order to quantitatively discriminate the 
probability distribution of multiphase operations, HSMM is 
applied at the modeling probability distribution stage. The 
two-dimensional patterns can be trained. In comparison with 
conventional 2DPCA model, the proposed MPCA-HSMM 
model shows negligible erroneous judgment on the normal 
operation condition and efficient monitoring capability to 
detect the time of occurrence of the process fault. 
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