
 

 
Abstract—This paper is proposed an algorithm, Genetic 

Algorithm (GA) based fixed-structure Η loop shaping control, 
to the problem-solving of conventional Η loop shaping, such 
as high-order and difficult to be usable in general.   In this 
approach, a structure of controller is specified combine Η 
loop shaping method is solved by GA algorithm. Additionally, 
in the proposed technique, the desired performance weighting 
function, which is defined by using GA. The performance and 
robustness of the proposed controller are investigated in a 
pneumatic servo system in comparison with that of the 
controller designed by conventional Η loop shaping. Results 
of simulation demonstrate the advantages of simple structure 
and robustness against plant perturbations and disturbances of 
the proposed controller. Experiments are performed to verify 
the effectiveness of the proposed technique. 
 

Index Terms—Η loop shaping, Genetic Algorithm, 
pneumatic servo system 

I. INTRODUCTION 

ver the past several years, high performance control in 
pneumatic servo system has been investigates area of 
research. Controlling of these servo systems is 

controlled in such a way that the controlled piston can move 
to any target position therefore in previous research works, 
high performance control techniques [1-3] have been 
successfully applied to design a controller for pneumatic 
servo system, such as H∞ control with Mirror Feedback  by 
Kimura T., Hara S. and Takamori T. in 1996 [1], fuzzy state 
feedback control by H. Schulte and H. Hahn in 2004 [2], 
block-oriented approximate feedback linearization by Fulin 
Xiang and Jan Wikander in 2003 [3], and etc. Moreover in 
high performance controller, the robust controller has 
become an interesting for pneumatic servo system because it 
can be guaranteed in perturbed condition. These controllers 
mentioned above have high order and complicated to design 
controllers then produce an effect in generally industrial 
applications. 

To solve a problem, several approaches proposed a fixed-
structure cooperate with robust control method [4-6]. To 
produce an effect, these controllers have simple structure 
and acceptable controller order. In [4], a fixed-structure with 
robust Η optimal control problem was solved by using 

 
This work was supported in part by Faculty of Engineering, King 

Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand.  
Piyapong and Somyot are with the Department of Electrical 

Engineering, Faculty of Engineering, King Mongkut’s Institute of 
Technology Ladkrabang, Bangkok 10520, Thailand. Email : 
kksomyot@kmitl.ac.th. 

 

genetic algorithm (GA). The intelligent genetic algorithm to 
solve the mixed Η2/ Η optimal control problem was 
proposed in [5]. Moreover the fixed-structure robust control 
mentioned above, fixed-structure with Η loop shaping 
control [6] was proposed which is easy to design weighting 
function in this method more than in [4-5]. Η loop shaping 
control [7] technique requires only two specified weights, 
pre-compensator and post-compensator weights, for shaping 
the nominal plant so that the desired open loop shape is 
achieved. The fixed structure robust based on searching 
algorithms such as genetic algorithm, particle swarm 
optimization technique, tabu-search, etc., can be employed 
in area of research.  

By the advantage mentioned above, the fixed-structure 
with Η loop shaping control is simple and effective than 
other robust control techniques because the selection of 
weighting function is based on the concept of classical loop 
shaping. However, the weighting function of Η loop 
shaping in [6-7] is chosen by trail and error method. To 
overcome this problem, GA based fixed-structure Η loop 
shaping is proposed to synthesize optimal fixed-structure Η 
loop shaping controller and weighting function at the same 
time. In this paper, GA is employed to find the parameters 
of the weighting functions which can to defined 
performance of the proposed controller. In addition, the 
proposed controller is applied in fuzzy model which can be 
guaranteed robustness in the long-stroke actuator. 
Simulation results show that the controller designed by the 
proposed approach has a good performance and robustness 
as well as simple structure.  

The remainder of this paper is organized as follows. 
Section II covers the pneumatic servo system modeling. In 
section III, conventional Η loop shaping and the proposed 
technique are discussed as well as GA algorithm. The 
design examples and results are demonstrated in section IV.  
And in section V the paper is summarized. 

 

II. PNEUMATIC SERVO SYSTEM 

A Dynamic model of a pneumatic system can be 
presented with the following state space [8]. 
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where y(s) is output (position) , u(s) is input (value voltage) , 
C is the viscous friction coefficient , M is piston mass ,  is 
the ratio of specific heat (= 1.4) , R is ideal gas constant , TS 
is temperature , Gi is the coefficient of the linearized air 
mass flow rate , A is areas of piston , Vpo and Vno is the 
volume of chambers p and n at the operation point , P is 
pressure in chamber Fig.1. shows the experimental setup of 
the pneumatic system.  
 

 
Fig. 1. Experimental setup of the pneumatic servo system. 

III. H LOOP SHAPING CONTROL AND PROPOSED 

TECHNIQUE 

A. Standard Η Loop Shaping 

H loop shaping control is an important method to design 
a robust controller. The basic principle of Η loop shaping 
design require two weighting functions, pre-compensate and 
post-compensate the nominal plant (G) to shape the open 
loop frequency domain. The shaped plant (GS = W1GW2) by 
using a pre-compensator (W1) and post-compensator (W2) as 
shown in Fig.2. 

1 2K W K W

2 1SG WGW

1W G

K 
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Fig. 2.  H loop shaping design. 

 
In the method, the robust stabilization of the system is 

formulated as normalized coprime factors. The normalized 
left coprime factorization of the shaped plant is written as 

1( ) ( )s M s s N sG M N
              (2) 

Where MS and NS are normalized denominator and 
nominator, respectively. 
   Ms and Ns are uncertainty transfer functions in 
denominator and nominator factor, respectively. 

The normalized left co-prime factor can by stabilized by 

,Ns Ms 


   ,  is the uncertainty boundary called 

stability margin. To determine optimal stability margin 
(opt), there is a unique method as follow [9]. 

 1/ 2
max(1 ( ))opt XZ              (3) 

where X and Z are the solutions of two Riccati in (4) and (5) 
respectively, max is the maximum eigenvalue.  
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where DDIS T , R = I+DDT. In this approach, stability 
margin () is chosen less than the optimal stability margin 
(opt) to synthesize H loop shaping controller (K) that 
satisfies.  

  1 1[ ]zw s s

I
T I G K I G

K
 


 

 
   
 

           (6) 

where 
zwT is the infinity norm from the disturbances w to 

state z. The details of this solving the optimal controller 
problem in (6) are available in [9]. The usable feedback 
controller (K) for the nominal plant is determined as follow  

1 2K W K W                              (7) 

Fig. 2 shows the controller in H loop shaping control. 
 

B. Proposed technique  

In the proposed technique, genetic algorithm (GA) is 
applied to design optimal fix structure Η loop shaping 
controller with weighting function. This algorithm is more 
adaptable to any complex optimization problem. Moreover, 
it is requires only upper, lower bounds of solution and GA 
parameters which is easy to implement. GA is an iterative 
algorithm which applies the concept of chromosomes. In 
each iteration, called generation, the new populations are 
obtained by three genetic operators (crossover, mutation, 
and reproduction) [10] which are shown in Fig. 3. Genetic 
operators are evaluated by decoding floating number to 
binary number, and the fitness values of chromosomes are 
calculated. Maximum fitness value is selected and kept in 
the current generation. 
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Fig. 3.  Genetic operations. (a) Crossover , (b) Mutation and (c) 

Reproduction. 

 
The proposed algorithm is explained as follows. Assume 

that the predefined structure controller K(p) has satisfied 
parameters p and the performance weighting function W1(x) 
has satisfied the parameter x. Based on the concept of Η 
loop shaping, Genetic algorithm is to find  the parameters p 
in the controller K(p) and the parameters x in  the weighting 
function W1(x) that minimize infinity norm from 
disturbances w to states z, Tzw which is subjected to be 
minimized can be written as.  
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Where 1 1
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  , from final feedback 

controller in (7) then Assuming that W1 and W2 are 
invertible. In many cases, the weight W2 is selected as 
identity matrix I because high performance sensor is used in 
output feedback can neglect sensor noise effect. The 
optimization in this problem can be written as  
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2 01

1

( ) [ ]
( ) ( ) s

I
I W G K p I G

W x K p
 





 
 

 
 

Subject to : 

  

1,min 1 1,max

2,min 1 2,max

,min ,maxi i i

p p p

p p p

p p p

 

 

 


 ,     

1,min 1 1,max

2,min 2 2,max

,min ,maxi i i

x x x

x x x

x x x

 

 

 


, 

Constrains in time domain : 
Maximum Overshoot  <  OV  

                                 Settling Time  <  ST       
                         Steady State Error  <  SE 

Constrains in frequency domain : 
          Bandwidth  >  BW 

                          Gain( low freq )  >  LG 

                        Gain( high freq )  <  HG 

Where pi,min , xi,min is the lower bound values of the 
parameter pi and xi in the parameter vector p and x, 
respectively. 

 pi,max , xi,max is the upper bound values of the 
parameter pi and xi in the parameter vector p and x, 
respectively.  
 

OV is the acceptable maximum overshoot.  
ST is the acceptable settling time. 
SE is the acceptable steady state error. 
BW is the bandwidth of the desired loop shape. 
LG is the gain in low frequency range of the 

desired loop shape. 
HG is the gain in high frequency range of the 

desired loop shape. 
  

As shown in the constraints of the above optimization 
problem, the performance specifications are specified in 
terms of algebraic or functional inequalities. In this paper, 
the performance specifications are evaluated by plotting the 
desired open-loop shape and time domain response of the 
candidate of controller and weighting function. Thus, the 
fitness function in the controller synthesis can be written as 
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The fitness is set to a small value (in this case is 0.0001) if K 
does not stabilize the plant. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

In this section, the dynamic model of a pneumatic servo 
system is met by using the system identification. To 
identify, input signal (value voltage) is fed by Pseudo 
Binary Random Signal (PBRS) then input signal and output 
signal (position: meter) are kept and used for the system 
identification. In this paper, output error (OE) model is 
applied approximate model’s output which error between 
output signal and model’s output is minimized [11]. In our 
experiments, the sampling time in this pneumatic servo 
system is 0.011 sec. Fig. 4, the comparison of the simulated 
model’s output and the measured output is shown. The 
results show that the plant model is accurately approximated 
by the identified model. The time delay is realized in the 
plant transfer function by its 2 order Pade’s approximation 
which the time delay is 0.154 sec. From the procedure 
discussed previously, the identified plant model is found to 
be 
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Fig. 4. Comparison between simulated and measured outputs. 

 

A PID with first-order derivative filter is chosen for a 
proposed fixed-structure robust controller. The controller 
structure K(p) and weighting function (W1) are expressed in 
(11) and (12), respectively. Kp, Ki, Kd τd, x1 and x2 are 
parameters to be evaluated by GA.  
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The weight and controller parameters range are selected as 
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GA parameters and constraint ranges of the performance 
specification used in this paper are given in Table 1. 
 

Table 1 GA parameters and constraint ranges of the performance 
specification. 

Parameter value 
crossover probability 0.7 
mutation probability 0.2 

population size 200 
maximum generation 30 

OV (%) 0.05 
SE (%) 0.005 
ST (sec) 1 

BW (rad/sec) 4 
Gain(ωlow freq=0.1) 20 

 
 

The stability margin of the proposed controller for the 
genetic search is shown in Fig. 5. As a result, the optimal 
controller and weighting function are found to be 
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Fig. 5. Convergence of the fitness value. 

 
By applying the Η loop shaping method, the optimal 

stability margin (opt) is founded at 0.5853 ( = 1.7084). 
This value indicates that the selected weighting function is 
compatible with the robust stability requirement. The  = 
0.5560 ( = 1.7983), which is less than the optimal stability 
margin, is chosen to synthesis the controller. Based on the 
conventional technique in Section III, the conventional Η 
loop shaping controller can be synthesized as follows. 
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As shown in (15), the controller is 7th order and 
complicated in structure. Fig. 6 shows the simulation results 
of the step responses of the proposed controller. Clearly, the 
settling time and overshoot of the response from proposed 
controller are close to those of the H loop shaping 
controller.  
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Fig. 6. Responses from the proposed controller and H loop shaping 

controller. 
 
 
 
 
 
 
 
 
 



 

Table 2 Identified Local dynamic models of the fuzzy model [12] 
position Gi(s) 
0.1 2

0.132
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In the proposed technique, we use the average of stability 
margin of some specified operating points as our objective 
function. Firstly, we specify a set of operating points which 
is used to represent the fuzzy model [12] shown in table 2. 
In practice, the number of these selected points should be 
large enough. Average stability margin can be defined as: 
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  (16) 

where av is stability margin average, q is the number of 
selected operating points (= 7), The optimal average 
stability margin (av) obtained is 0.4099. Robustness of the 
proposed controller can be guaranteed robust performance 
of the global system. 
   

 
Fig. 7. Experimental results (nominal plant) with proposed controller. 

 

    
Fig. 8. Experimental results (load mass = 7kg, supply pressure = 500 kPa) 

with proposed controller. 
 

Experimental results of the proposed controller are 
shown in Fig. 7 and 8. Fig. 7 shows the output responses at 
nominal plant of the proposed controller. Settling time 
(about 1 second) and rise time of the responses from this 
controller is almost the same as the simulation results. There 
is no overshoot and steady state error in the responses. To 
verify the robustness of the proposed technique, we changed 
the supply pressure of the pneumatic system (400 kPa  
500 kPa) and load mass (5kg  7kg), equivalent to 
parameter variations in the plant. The step response of the 
perturbed plant of the proposed controller is almost the 
same as that in the nominal plant which is shown in Fig. 8. 
Clearly, the performance of the proposed controller can 
guarantee the robust performance when parameters in the 
plant are changed. 

V. CONCLUSIONS 

The application of structure specified and Η loop 
shaping method to the design of a fixed-structure Η loop 
shaping controller for a pneumatic servo system is 
proposed. The genetic algorithm (GA) can applied in this 
problem which can not be solved by the classical 
mathematic. A proposed controller is obtained by GA when 
fitness function is defined by important variable, stability 
margin ( ). This variable is used to indicate robustness and 
performance of the proposed controller. Form the simulation 
and experiment results, the simple structure and robustness 
against plant perturbations and disturbance of the proposed 
controller can be achieved. In this paper, a fuzzy model 
assures that the proposed technique is guarantee as long as 
all range actuator. 
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