
 

  
Abstract—This paper proposes an adaptive TSK-type fuzzy 

network control (ATFNC) system for synchronization of a 
coupled nonlinear chaotic system. The design of the proposed 
ATFNC system is comprised of a neural controller and a fuzzy 
compensator. The neural controller uses a 
Takagi-Sugeno-Kang (TSK)-type fuzzy neural network (TFNN) 
to online mimic an ideal controller and the fuzzy compensator is 
designed to dispel the approximation error between the ideal 
controller and the neural controller without occurring 
chattering phenomena. Sine the weights of the output layer use 
a functional-type form in TFNN instead of a singleton-type 
form in fuzzy neural network (FNN), the TFNN provides more 
powerful representation than FNN. All the controller 
parameters of the proposed ATFNC system are tuned in the 
sense of Lyapunov theorem, thus the stability of the closed-loop 
system can be guaranteed. Finally, some simulation results 
verify the proposed ATFNC system can achieve favorable 
synchronization performance for a coupled nonlinear chaotic 
system. 
 

Index Terms—applications; adaptive control, neural control, 
coupled nonlinear chaotic system, synchronization 
 

I. INTRODUCTION 
AKING the advantage of neural networks in learning 
from processes, this is an active research topic in the area 

of fuzzy neural networks (FNNs) [1, 2]. Generally, FNNs can 
be divided into two types, which are Mamdani-type FNN and 
Takagi-Sugeno-Kang type FNN (TFNN) [3, 4]. The TFNN 
was widely used due to its high learning performance and 
good generalization capability [3]. Since the parameterized 
FNNs and TFNNs can approximate an unknown system 
dynamics, the FNN-based adaptive network control approach 
has grown rapidly in many previous published papers [5-8]. 
It is important the basic issue of the FNN-based adaptive 
network control technique is to provide online learning 
algorithms that don’t require preliminary off-line training. 

Since the number of hidden neurons in FNN and TFNN is 
finite for the real-time practical applications, the 
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approximation errors cannot be evitable. To ensure the 
stability of the control system, many published papers have 
been proposed several compensators [9-12]. In [9], a 
switching compensator has been developed to ensure system 
stable; however, the switching compensator causes the 
chattering phenomena in the control effort to wear the 
bearing mechanism. Wu et al. presented a smooth 
compensator to guarantee system stable without occurring 
chattering phenomena in [10]. The tracking error can 
exponentially converge to a small neighborhood of the 
trajectory command. Some researchers used the ∞H  tracking 
control theory to attenuate the effects of approximation error 
in [11, 12]. The better tracking performance can be achieved 
as specified attenuation level is chosen smaller. However, the 
control effort may lead to a large control signal. 

Synchronization and control of chaotic systems has 
become more and more interesting topics to engineering and 
science communities [13-16]. This paper considers a coupled 
nonlinear chaotic system with a gap junction. An adaptive 
TSK-type fuzzy network control (ATFNC) system is 
proposed to synchronize the coupled nonlinear chaotic 
system. The proposed ATFNC system is composed of a 
neural controller and a fuzzy compensator. The neural 
controller utilizes a TFNN to online mimic the ideal 
controller and the fuzzy compensator is designed to dispel the 
approximation error between the ideal controller and neural 
controller. Sine the weights of the output layer use a 
functional-type form in TFNN instead of a singleton-type 
form in FNN, the TFNN provides more powerful 
representation than FNN. All the parameters of the proposed 
ATFNC system are tuned in the sense of Lyapunov theorem, 
thus the stability of the closed-loop system can be guaranteed. 
Finally, some simulation results validate the favorable 
synchronization performance can be achieved by using the 
proposed ATFNC system. 

II. COUPLED NONLINEAR CHAOTIC SYSTEMS 
Chaotic system is a nonlinear deterministic system that 

displays complex, noisy-like and unpredictable dynamic 
behavior; it has been found in many engineering systems 
such as in biological system, chemical reactions, laser 
physics, secure communication and biomedical [13]. The 
issue of chaotic control system design has become a 
significant research topic in the physics, mathematics and 
engineering communities. This paper considers a model of 
two neurons coupled chaotic systems with a gap junction 
shown as Fig. 1 [16].  
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Fig. 1. The circuit diagram of two coupled neurons. 

 
The interest in chaos synchronization is the problem of 

how to design a controller to drive a slaver system to track a 
master system closely. Consider two neurons coupled chaotic 
systems as 
Master system: 
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where iX  and iY  )2 ,1( =i  are rescaled membrane voltage 
and recovery variable of two neurons, respectively; g  is the 

coupling strength of gap junction; tAI ω
ω

cos=  is the 

external electrical stimulation with A  and fπω 2=  are the 
amplitude and frequency, respectively; and u  is the control 
effort. The parameters of the coupled nonlinear cable model 
chaotic system are selected as 1.0=A , 1=b , 10=r  and 

1271.0=f . As shown in Figs. 2 and 3, respectively, if the 
coupling strength of the gap junction 5.0≤g  ( 01.0=g  in 
Fig. 2), the synchronization cannot occur; the 
synchronization occurs when 5.0>g  ( 0.1=g  in Fig. 3). 

To synchronize the two neurons coupled chaotic systems 
with a gap junction, define 211 XXe −=  and 212 YYe −= , 
then the error dynamical system can be expressed as 
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Then the system dynamic can be rewritten as 

])([ uz −+= xbAee&  (4)  

where TXX ],[ 21=x  is the state vector; Tee ],[ 12=e  is the 

state error vector; ⎥
⎦
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−−

=
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A ; T]1,0[=b ; and 

)1)(1()1)(1()( 222111 rXXXrXXXz −−−−−=x  is the 
system dynamic function. Assume all the parameters in (4) 
are well known, there exists an ideal controller as [17] 

kex += )(* zu  (5)  
where ],[ 21 kk=k  is the feedback gain vector. Substituting (5) 
into (4), the error dynamic becomes to 

ΛeebkAe =−= )(&  (6)  
where bkAΛ −= . Suppose the feedback gain vector k  is 
chosen to correspond with the coefficients of a Hurwitz 

polynomial, it implies that 0lim =
∞→

e
t

 for any starting initial 

conditions. Since the system dynamic function )(xz  may be 
unknown or perturbed in the practical applications, the ideal 
controller (5) cannot be precisely obtained. 
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Fig. 2. The portraits on different planes without control for 

01.0=g . 
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Fig. 3. The portraits on different planes without control for 

0.1=g . 
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Fig. 4. Block diagram of the ATFNC for a coupled nonlinear 
chaotic system. 

III. ATFNC SYSTEM DESIGN 
 
This paper proposes an ATFNC system as shown in Fig. 4 

which is composed of a neural controller and a fuzzy 
compensator, i.e. 

fcncafn uuu += . (7)  

The neural controller ncu  utilizes a TFNN to mimic the ideal 
controller in (5) and the fuzzy compensator fcu  is used to 
compensate for the difference introduced by the neural 
controller. 

A. TFNN 
Figure 5 shows the configuration of TFNN. The signal 

propagation and the basic function in each layer are as 
follows:  
Layer 1 - Input layer: No function is performed in this layer. 
The node only transmits input values to layer 2. 
Layer 2 - Membership layer: In this layer, each node 
performs a membership function and acts as a unit of memory. 
The Gaussian function is adopted as the membership function. 
For the jth node 
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where ijc  and ijσ  are the mean and variance of the Gaussian 

function in the jth term of the ith input linguistic variable ix , 
respectively, and m  is the total number of the linguistic 
variables with respect to the input nodes. 
Layer 3 - Rule layer: According to the fuzzy AND operation 
by the algebraic product, the firing strength of the kth rule is 
calculated by 

∏
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ikkkk φσc , mk ,...,2,1= . (9)  

where T
kkk cc ][ 21=c  and T

kkk ][ 21 σσ=σ . 
Layer 4 - TSK layer: The TSK layer represents the linear 
combination function in the consequent part of the fuzzy 
system. Each node in this layer is denoted by 

ξαT
kkkkk eeu =++= 22110 ααα  (10)  

where T
kkkk ],,[ 210 ααα=α  is the parameter vector designed 

by the designer and Tee ],,1[ 21=ξ . 
Layer 5 - Output layer: The output node together with links 
connected it act as a defuzzifier. The single node computes 
the overall output as the summation of all incoming signals. 
The output of TFNN can be represented as 

∑
=

Φ=
m

k
kkkknc uu

1

),( σc . (11)  

Then, the output of TFNN can be represents in a vector form 
as 

),( σcΦαT
ncu =  (12)  

where TT
m

T ],...,[ 1 ααα = ; TT
m

T ],...,[ 1 ξξΦ ΦΦ= ; 
TT

m
T ],...,[ 1 ccc =  and TT

m
T ],...,[ 1 σσσ = . 

In this paper, the TFNN is used to online mimic an ideal 
controller. By the approximation property, an ideal TFNN 
can be obtained as 

∆+=∆+= ****** ),( ΦασcΦα TTu  (13)  

where ∆  is the approximation error; *α  and *Φ  are the 
optimal parameter vectors of α  and Φ , respectively; and *c  
and *σ  are the optimal parameter vectors of c  and σ , 
respectively. An estimation TFNN is defined as 



 

ΦασcΦα ˆˆ)ˆ,ˆ(ˆˆ TT
ncu ==  (14)  

where α̂  and Φ̂  are the estimated parameter vectors of α  
and Φ , respectively; and ĉ  and σ̂  are the estimated 
parameter vectors of c  and σ , respectively. Then, the 
estimation error is obtained as 

ncuuu ˆ~ * −=  

ΦαΦα ˆˆ** TT −∆+=  
∆+++= ΦαΦαΦα ~~~ˆˆ~ TTT  (15)  

where ααα ˆ~ * −=  and ΦΦΦ ˆ~ * −= . The Taylor expansion 
linearization technique is employed to transform the 
nonlinear function into a partially linear form [7], i.e. 

hσΦcΦΦ σc ++= ~~~ TT  (16)  

where ccc ˆ~ * −= ; σσσ ˆ~ * −= ; h  is a vector of high order 

terms; ccc cc
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ˆ~ˆ~ˆ~ TTT  (17)  

where αΦccΦα cc
ˆ~~ˆ TTT =  and αΦσσΦα σσ

ˆ~~ˆ TTT =  are used since 

they are scalars; and ∆++= Φαhα ~~ˆ TTε  denotes the lump of 
approximation error and is assumed to be bounded by 

E≤ε . 
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Fig. 5. Network structure of TFNN. 

B. Fuzzy Compensator Design 
Assume the fuzzy compensator has 3 fuzzy rules in the rule 

base as given in the following form [18] 
Rule 1: If PbeT  is PE, then fcu  is 1r   (18)  

Rule 2: If PbeT  is ZO, then fcu  is 2r   (19)  

Rule 3: If PbeT  is NE, then fcu  is 3r   (20)  
where the triangular-typed functions and singletons are used 
to define the membership functions of IF-part and 
THEN-part, respectively. P  is a symmetric positive definite 
matrix that satisfies the equation 

QPΛPΛ −=+T  (21)  
in which Q  is a positive definite matrix. The defuzzification 
of the output is accomplished by the method of 
center-of-gravity 
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where  10 1 ≤≤ w ,  10 2 ≤≤ w  and  10 3 ≤≤ w  are the firing 
strengths of rules 1, 2, and 3, respectively; and the relation 

1321 =++ www  is valid according to the special case of 
triangular membership function-based fuzzy system. In order 
to reduce the computation loading, let rr ˆ1 = , 02 =r  and 

rr ˆ3 −= . Hence, for any value of input, only one of four 
conditions will occur as 
Condition1: Only rule 1 is triggered ( a

T s>Pbe ,  11 =w , 
032 == ww ) 

rru fc ˆ1 == . (23)  
Condition2: Rules 1 and 2 are triggered simultaneously. 
( a

T s≤< Pbe0 ,  1,0 21 ≤< ww , 03 =w ) 

111 ˆwrwru fc == . (24)  
Condition3: Rules 2 and 3 are triggered simultaneously. 
( 0≤< PbeT

bs , 01 =w ,  1,0 32 ≤< ww ) 

333 ˆwrwru fc −== . (25)  

Condition 4: Only rule 3 is triggered. ( b
T s≤Pbe , 

021 == ww ,  13 =w ) 
rru fc
ˆ

3 −== . (26)  
Then, the (23)-(26) can be rewritten as 

)(ˆ 31 wwru fc −= . (27)  
Moreover, it can see that 

0)()( 3131 ≥−=− wwww TT PbePbe . (28)  

C. Design of ATFNC System 
Substituting (7) into (4), the error dynamic equation can be 

obtained as 
])([ fcnc uuz −−+= xbAee& . (29)  

Using (5) and substituting (22) into (21) and using 
approximation error equation (20), (21) can be rewritten as 
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To guarantee the stability of the proposed ATFNC system, a 
Lyapunov function is defined as 
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where the positive constants αη , cη  and ση  are the learning 
rates. Taking the derivative of Lyapunov function in (31) and 
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If the adaptation laws of the neural controller are chosen as 
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then (32) can be rewritten as 
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If the following inequality 
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holds, then the sliding condition 01 ≤V&  can be satisfied. 
Owing to the unknown lumped uncertainties, the value r̂  
cannot be exactly obtained in advance for practical 
applications. According to (37), there exists an ideal value *r  
as following to achieve minimum value  

κ
ε

+
−

=
31

*

ww
r  (38)  

where κ  is a positive constant. Thus, a simple adaptive 
algorithm is utilized in this study to estimate the ideal value 
of *r , and its estimated error is defined as 

rrr ˆ~ * −=  (39)  
where r̂  is the estimated value of the optimal value of *r . 
Then, define a new Lyapunov function candidate in the 
following form 

2
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2
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where rη  is the learning rate with a positive constant. 
Differentiating (40) with respect to time and using (30), 
(33)-(35), it is obtained 
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Choose the fuzzy tuning law as 
PbeT
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and using (37), (41) becomes 
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As a result, the stability of the proposed ATFNC system can 
be guaranteed. 

IV. SIMULATION RESULTS 
It should be emphasized the development of the ATFNC 

system doesn’t need to know the system dynamic of the 
controlled system. The parameters of the ATFNC system can 
be online tuned by the proposed adaptive laws. The 
parameters for the ATFNC system are selected as 421 == kk , 

10=αη , 1== σηηc  and 1.0=rη . All the parameters are 
chosen through some trials considering the requirement of 
stability. The simulation results of the ATFNC system are 
shown in Figs. 6 and 7 for 01.0=g  and 0.1=g , 
respectively. The phase portraits on plan of 11 YX −  are 
shown in Figs. 6(a) and 7(a); the phase portraits on plan of 

22 YX −  are shown in Figs. 6(b) and 7(b); the phase portraits 
on plan of 21 XX −  are shown in Figs. 6(c) and 7(c); and the 
phase portraits on plan of 21 YY −  are shown in Figs. 6(d) and 
7(d), respectively. It can be seen that there is no chattering 
phenomena in the control effort and perfect tracking response 
can be obtained after initial transient response. 
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Fig. 6. The simulation results of the ATFNC system for 

01.0=g . 
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Fig. 7. The simulation results of the ATFNC system for 

0.1=g . 

V. CONCLUSION 
This paper has successfully developed an adaptive 

TSK-type fuzzy network control (ATFNC) system. All the 
parameters of the proposed ATFNC system are online tuned 

based on the Lyapunov stability theorem; thus the stability of 
the closed-loop control system can be guaranteed. Finally, 
the proposed ATFNC system is applied to a coupled 
nonlinear chaotic system. The effectiveness of the ATFNC 
system using a fuzzy compensator is verified by some 
simulations. The fuzzy compensation controller design uses a 
simple fuzzy system can remove completely the chattering 
phenomena. 
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