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Abstract—The paper investigates delay-dependent control
and stability analysis for T−S fuzzy systems with a sensor
delay. Based on a Lyapunov-Krasovskii function (LKF), a less
conservative delay-dependent stability condition in the form of
parameterized linear matrix inequalities (PLMIs) is established.
In the derivation process, Jensen inequality is introduced to
estimate the upper bound of the derivative of LKF for T−S
fuzzy systems with a sensor delay. Networked-controller in the
form of bilinear matrix inequalities (BMIs) is designed. Since
BMIs are very complicated and difficult to solve the problem,
BMIs are substituted for PLMIs using some mathematical
techniques. Sequentially, to fully exploit the convexity of fuzzy
weighting functions, we shall replace the derived PLMIs by a
finite set of linear matrix inequalities (LMIs) by considering all
possible conditions associated with fuzzy weighting functions.
Numerical example is provided to illustrate the effectiveness
and the benefit of the proposed approach.

Index Terms—T–S fuzzy systems, Sensor delay, Jensen in-
equality, Parameterized linear matrix inequality (PLMI)

I. INTRODUCTION

REAL phenomena such as biological process, network
and mechanics can be represented by dynamic systems

with a time-delay as theoretical models. Because of these
time delays, the systems frequently cause performance degra-
dation or system instability. Thus, many efforts and attention
have been made to solve this problem over the last decades.
Particularly, the stability analysis for the complex nonlinear
time-delayed systems has received much attention.

Complex nonlinear systems can be represented by a
Takagi-Sugeno (T-S) fuzzy system, effectively [1]. There
have appeared some stability analysis and controller design
of T-S fuzzy systems with a time-delay [2-6]. We can
classify the existing stability criteria into two types: delay-
independent and delay-dependent criteria. It is well known
that the delay-dependent stability criteria are generally less
conservative than the delay-independent stability criteria for
small delays. Thus, recent efforts have focused on deriving
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the delay-dependent criteria for the stability analysis of T-S
fuzzy systems with a time-delay. As for the delay-dependent
criteria, the Lyapunov-Krasovskii functional (LKF) approach
is widely used and the free-weighting matrix approach [7-
12] is proposed to derive an improved stability criterion with
respect to a time delay. However, the bounding techniques
for cross-terms and delay terms in the derivative of the LKF
frequently lead to conservative results. Thus, there is still a
matter for further investigations when estimating the upper
bound of the derivative of LKF for T-S fuzzy systems with
a time-delay.

Control systems with a sensor delay replace the traditional
control system since the computer network technology has
been developed rapidly [13-16]. The stability analysis and
controller design of these systems also have received much
attention recently. The sensors of the system must transmit
the data using networks since the direct connection of the
sensor and the controller is impossible in Endless hot rolling
process and robot-soccer[17]. The system to model these
cases can be expressed as a networked control system without
controller-actuator delay. So networked channel including a
sensor delay is spanned only between the sampler and the
controller.

Motivated by the above problem, in this paper, we con-
centrate on improving the stability conditions and designing
sensor-delayed controller for T-S fuzzy systems. To this end,
we establish an appropriate LKF and propose some mathe-
matical techniques including Jensen inequality to develop the
BMIs for substituted solvable LMIs. On the basis of these
approaches, we obtain a less conservative stability condi-
tion in the form of parameterized linear matrix inequalities
(PLMIs) depend on fuzzy weighting functions. Since solving
the PLMIs is equivalent to solving an infinite number of
linear matrix inequalities (LMIs), we substitute the derived
PLMIs by a finite set of LMIs by considering all possible
conditions associated with fuzzy weighting functions [18].

II. PROBLEM STATEMENT

In this paper, all matrices are assumed to have compatible
dimensions. The identity matrices and zero matrices are
denoted by I and 0, respectively. The notation (*) denotes
the symetric block in a symmetric matrix.

Generally, a nonlinear dynamic system can be represented
by the T–S fuzzy systems which expresses the nonlinear
system as a weighted sum of linear systems. the ith IF–THEN
rule of the fuzzy system:

Rule i : IF θ1(t) is M i
1 and · · · and θg(t) is M i

g

THEN ẋ(t) = Aix(t) +Biu(t), (1)

where x(t) and u(t) denote state vector and input vector,
respectively, Ai and Bi (i = 1, · · · , k) are constant matrices



with appropriate dimensions, k is the number of fuzzy
rules, M i

s are the fuzzy sets, θ1(t), · · · , θg(t) are the known
premise variables.

The fuzzy system (1) is inferred as

ẋ(t) =

k∑
i=1

hi(θ(t)) (Aix(t) +Biu(t)) , (2)

where M i
s(θs(t)) is the membership value of θs(t) in M i

s,

θ(t) = [ θ1(t) θ2(t) · · · θg(t) ]T ,

hi(θ(t)) =

∏g
s=1M

i
s(θs(t))∑k

i=1

∏g
s=1M

i
s(θs(t))

,

k∑
i=1

hi(θ(t)) = 1, hi(θ(t)) ≥ 0, ∀i.

A state feedback T–S fuzzy model based controller:

Rule j : IF θ1(t) is M j
1 and · · · and θg(t) is M j

g

THEN u(t) = Kjx(ikh), (3)
t ∈ {ikh+ τik , k = 1, 2, . . .}

The output of the controller (4) is given by

u(t) =

k∑
j=1

hj(θ(t))Kjx(t− d(t)). (4)

The time-varying delay, the sensor delay, d(t) satisfies

d1 ≤ d(t) ≤ d2. (5)

Combining (1) and (4), the closed-loop system can be
obtained

ẋ(t)=

k∑
i=1

k∑
j=1

hi(θ(t))hj(θ(t)) [Aix(t)+BiKjx(t− d(t))] ,

t ∈ {ikh+ τik , ik+1h+ τik+1
}. (6)

The fuzzy system (6) can be rewritten as follows:

ẋ(t) = A(Θ(t))x(t) +B(Θ(t))K(Θ(t))x(t− d(t)), (7)

where [
A(Θ(t)) B(Θ(t))K(Θ(t))

]
(8)

4
=

k∑
i=1

k∑
j=1

hi(θ(t))hj(θ(t))
[
Ai BiKj

]
and Θ(t) denotes a vector of time-varying fuzzy weighting
functions hi(θ(t)) at time t.

III. MAIN RESULT

A. Stability Condition
Choose a The Lyapunov-Krasovskii functional candidate

of the following form:

V (t) = V1(t) + V2(t) + V3(t), (9)

V1(t) = xT (t)Px(t),

V2(t) =

∫ t

t−d1
xT (α)Q1x(α)dα+

∫ t−d1

t−d2
xT (α)Q2x(α)dα,

V3(t) =

∫ 0

−d1

∫ t

t+β

d1ẋ
T (α)R1ẋ(α)dαdβ (10)

+

∫ −d1
−d2

∫ t

t+β

d21ẋ
T (α)R2ẋ(α)dαdβ,

where P , Qi, and Ri (i = 1, 2) are symmetric
positive definite matrices and d21 = d2 − d1. For later
convenience, we define an augmented state ζ(t) as ζ(t) =[
xT (t) xT (t− d1) xT (t− d(t)) xT (t− d2)

]T
and

A =
[
A(Θ(t)) 0 B(Θ(t))K(Θ(t)) 0

]
.

The time derivative of V (t):

V̇1(t) = 2ẋT (t)Px(t), (11)

V̇2(t) = xT (t)Q1x(t)− xT (t− d1)Q1x(t− d1)

+ xT (t− d1)Q2x(t− d1)− xT (t− d2)

×Q2x(t− d2),

V̇3(t) = ẋT (t)(d2
1R1 + d2

21R2)ẋ(t)

−
∫ t

t−d1
d1ẋ

T (α)R1ẋ(α)dα

−
∫ t−d1

t−d2
d21ẋ

T (α)R2ẋ(α)dα.

Applying Jensen inequality, we can obtain

−
∫ t

t−d1
d1ẋ

T (α)R1ẋ(α)dα

≤−
[

x(t)
x(t− d1)

]T [
R1 −R1

−R1 R1

] [
x(t)

x(t− d1)

]
,

(12)

−
∫ t−d1

t−d2
d21ẋ

T (α)R2ẋ(α)dα

= −
∫ t−d1

t−d(t)

d21ẋ
T (α)R2ẋ(α)dα

−
∫ t−d(t)

t−d2
d21ẋ

T (α)R2ẋ(α)dα

<−

 x(t− d1)
x(t− d(t))
x(t− d2)

T  R2 −R2 0
−R2 2R2 −R2

0 −R2 R2

 x(t− d1)
x(t− d(t))
x(t− d2)

 .
(13)

Then V̇ (t) can be upper bounded by the following form:

V̇ (t) ≤ ζT (t)Ψ11ζ(t) + ζT (t)AT
(
d2

1R1 + d2
21R2

)
Aζ(t)

(14)

= ζT (t)
[
Ψ11 +AT

(
d2

1R1 + d2
21R2

)
A
]
ζ(t),

and V̇ (t) ≤ 0 can be represented by ψ ≤ 0 using Shur
decomposition method, where

Ψ =

[
Ψ11 (∗)
Ψ21 Ψ22

]
,

Ψ11 =


AT (Θ(t))P + PA(Θ(t)) +Q1 −R1

R1

KT (Θ(t))BT (Θ(t))P
0

(∗) (∗) (∗)
−Q1 +Q2 −R1 −R2 (∗) (∗)

R2 −2R2 (∗)
0 R2 −Q2 −R2

 ,
Ψ21 =

[
d1A(Θ(t)) 0 d1B(Θ(t))K(Θ(t)) 0
d21A(Θ(t)) 0 d21B(Θ(t))K(Θ(t)) 0

]
,

Ψ22 = diag{−R−1
1 ,−R−1

2 }.



Theorem 1: Given d1, d2, and K(Θ(t)), the fuzzy system
(1) is asymptotically stable if there exist symmetric matrices
P > 0, Q1 > 0, Q2 > 0, R1 > 0, and R2 > 0 such that the
following condition holds:

0 > Ψ, (15)

where

Ψ =

[
Ψ11 (∗)
Ψ21 Ψ22

]
,

Ψ11 =


AT (Θ(t))P + PA(Θ(t)) +Q1 −R1

R1

KT (Θ(t))BT (Θ(t))P
0

(∗) (∗) (∗)
−Q1 +Q2 −R1 −R2 (∗) (∗)

R2 −2R2 (∗)
0 R2 −Q2 −R2

 ,
Ψ21 =

[
d1A(Θ(t)) 0 d1B(Θ(t))K(Θ(t)) 0
d21A(Θ(t)) 0 d21B(Θ(t))K(Θ(t)) 0

]
,

Ψ22 = diag{−R−1
1 ,−R−1

2 }.

B. Controller Design

To design the controller, we develop the Theorem 1
using pre- and post-multiply both sides of (15) with X̃ =
diag{X,X,X,X, I, I} and its transpose. Let us define
X = P−1, Q̃1 = XQ1X , Q̃2 = XQ2X , R̃1 = XR1X ,
R̃2 = XR2X , and Y (Θ(t)) = K(Θ(t))X .

0 > X̃ΨX̃T = Ω,

where

Ω =

[
Ω11 (∗)
Ω21 Ω22

]
,

Ω11 =


XAT (Θ(t)) +A(Θ(t))X + Q̃1 − R̃1

R̃1

Y T (Θ(t))BT (Θ(t))
0

(∗) (∗) (∗)
−Q̃1 + Q̃2 − R̃1 − R̃2 (∗) (∗)

R̃2 −2R̃2 (∗)
0 R̃2 −Q̃2 − R̃2

 ,
Ω21 =

[
d1A(Θ(t))X 0 d1B(Θ(t))Y (Θ(t)) 0
d21A(Θ(t))X 0 d21B(Θ(t))Y (Θ(t)) 0

]
,

Ω22 = diag{−XR̃−1
1 X,−XR̃−1

2 X}.

Since X > 0, we have

(R̃1 −X)R̃−1
1 (R̃1 −X)>0, (R̃2 −X)R̃−1

2 (R̃2 −X)>0
(16)

which are equivalent to

−XR̃−1
1 X < R̃1 − 2X, −XR̃−1

2 X < R̃2 − 2X (17)

Theorem 2: Given d1 and d2, the fuzzy system (1) is
asymptotically stable with a feedback gain K(Θ(t)) =
Y (Θ(t))X−1 if there exist symmetric matrices X > 0,
Q̃1 > 0, Q̃2 > 0, R̃1 > 0, and R̃2 > 0 such that the
following condition holds:

0 > Ω, (18)

where

Ω =

[
Ω11 (∗)
Ω21 Ω22

]
,

Ω11 =


XAT (Θ(t)) +A(Θ(t))X + Q̃1 − R̃1

R̃1

Y T (Θ(t))BT (Θ(t))
0

(∗) (∗) (∗)
−Q̃1 + Q̃2 − R̃1 − R̃2 (∗) (∗)

R̃2 −2R̃2 (∗)
0 R̃2 −Q̃2 − R̃2

 ,
Ω21 =

[
d1A(Θ(t))X 0 d1B(Θ(t))Y (Θ(t)) 0
d21A(Θ(t))X 0 d21B(Θ(t))Y (Θ(t)) 0

]
,

Ω22 = diag{R̃1 − 2X, R̃2 − 2X}.

C. Relaxed Condition
Since solving the PLMIs of Theorem 2 is equivalent

to solving an infinite number of LMIs, it needs to find
a finite number of solvable LMI conditions from PLMIs.
The following development gives a relaxed delay-dependent
stability condition in the form of a finite set of LMIs.

Another representation for (15):

0 > L(h(θ(t))) (19)

4
= L0 +

k∑
i=1

hi(θ(t))
(
Li + LTi

)
+

k∑
i=1

h2
i (θ(t))Lii

+

k∑
i=1

i−1∑
j=1

hi(θ(t))hj(θ(t))Lij

+

k∑
j=i+1

hi(θ(t))hj(θ(t))LTij


where

L0
4
=



Q̃1 − R̃1 (∗) (∗)
R̃1 −Q̃1 + Q̃2 − R̃1 − R̃2 (∗)
0 R̃2 −2R̃2

0 0 R̃2

0 0 0
0 0 0

(∗) (∗) (∗)
(∗) (∗) (∗)
(∗) (∗) (∗)

−Q̃2 − R̃2 (∗) (∗)
0 R̃1 − 2X (∗)
0 0 R̃2 − 2X

 ,

Li
4
=


AiX 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

d1AiX 0 0 0 0 0
d21AiX 0 0 0 0 0

 ,

Lii
4
=


0 0 (∗) 0 0 0
0 0 0 0 0 0

Y Ti B
T
i 0 0 0 (∗) (∗)

0 0 0 0 0 0
0 0 d1BiYi 0 0 0
0 0 d21BiYi 0 0 0

 ,



Lij
4
=


0 0 0
0 0 0

Y Ti B
T
j + Y Tj B

T
i 0 0

0 0 0
0 0 d1BiYj + d1BjYi
0 0 d21BiYj + d21BjYi

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

 .
By the S-procedure

0 > L(h(θ(t))) +N (h(θ(t))), (20)

where 0 ≤ N (h(θ(t))) is given by (
∑k
i=1 hi(θ(t))=1,

0 ≤ hi(θ(t)) ≤ βi, 0 ≤ hi(θ(t))hj(θ(t)))

N (h(θ(t))) = C1 + CT1 +

k∑
i=1

C2i(Λi + ΛTi )

+

k∑
i=1

k∑
j=1,j 6=i

C3ij(Σij + ΣTij),

0 = C1
4
=


I

h1(θ(t))
...

hk(θ(t))


T 

I
−I

...
−I

 [ W0 W1 · · ·

Wk

]


I
h1(θ(t))

...
hk(θ(t))

 ,

0 ≤ C2i
4
= −h2

i (θ(t)) + βihi(θ(t)),

0 ≤ C3ij
4
= hi(θ(t))hj(θ(t)),

for 0 < Λi + ΛTi and 0 < Σij + ΣTij . With some algebraic
manipulations, the constraint 0 ≤ N (h(θ(t))) can be repre-
sented as follows:

0 ≤ N (h(θ(t)))

= N0 +

k∑
i=1

hi(θ(t))(Ni + NT
i ) +

k∑
i=1

h2
i (θ(t))Nii

+

k∑
i=1

i−1∑
j=1

hi(θ(t))hj(θ(t))Nij

+

k∑
j=i+1

hi(θ(t))hj(θ(t))N
T
ij

 , (21)

where N0 = W0+WT
0 , Ni=βiΛi−W0+Wi, Nii = −(Λi+

ΛTi )− (Wi +WT
i ), and Nij = −(Wi +Wj) + (Σij + Σji).

Hence, the condition (20) becomes

0 > Γ0 +

k∑
i=1

hi(θ(t))(Γi + ΓTi ) +

k∑
i=1

h2
i (θ(t))∆i

+

k∑
i=1

i−1∑
j=1

hi(θ(t))hj(θ(t))Φij

+

k∑
j=i+1

hi(θ(t))hj(θ(t))Φ
T
ij

 , (22)

where

Γ0 = L0 + N0 = L0 +W0 +WT
0 ,

Γi = Li + Ni = Li + βiΛi −W0 +Wi,

∆i = Lii + Nii = Lii − (Λi + ΛTi )− (Wi +WT
i ),

Φij = Lij + Nij = Lij − (Wi +Wj) + (Σij + Σji).

The condition (22) boils down to

0 >
[
I h1(θ(t))I · · · hk(θ(t))I

]
L̃[

I h1(θ(t))I · · · hk(θ(t))I
]T
, (23)

where

L̃ 4=



Γ0 (∗) (∗) · · · (∗)
Γ1 ∆1 (∗) · · · (∗)

Γ2 Φ21 ∆2
. . .

...
...

...
. . . . . . (∗)

Γk Φk1 · · · Φk(k−1) ∆k

 , (24)

IV. NUMERICAL EXAMPLE

In this section, The numerical example will be presented
to illustrate the approach developed in this paper.

Example: Consider the truck-trailer system [19], that can
be represented by the following T–S fuzzy system.

Rule 1 : IF θ(t) = x2(t) + a
vt̄

2L
x1(t)

+ (1− a)
vt̄

2L
x1(t− d(t)) is about 0,

THEN ẋ(t) = A1x(t) +B1u(t),

Rule 2 : IF θ(t) = x2(t) + a
vt̄

2L
x1(t)

+ (1− a)
vt̄

2L
x1(t− d(t)) is about π or − π,

THEN ẋ(t) = A2x(t) +B2u(t),

where

A1 =

 −a
vt̄
Lt0

0 0

a vt̄
Lt0

0 0

a v
2 t̄2

2Lt0
vt̄
t0

0

 , B1 =

 vt̄
lt0
0
0

 ,
A2 =

 −a
vt̄
Lt0

0 0

a vt̄
Lt0

0 0

adv
2 t̄2

2Lt0
dvt̄
t0

0

 , B2 =

 vt̄
lt0
0
0

 .
(25)

The model parameters are given as l=2.8, L=5.5, v=-1.0, t̄ =
2.0, t0 = 0.5 and d = 10t0

π . The fuzzy weighting functions
are employed

h1(Θ(t)) =

(
1− 1

1 + exp(−3(Θ(t)− 0.5π))

)
(

1− 1

1 + exp(−3(Θ(t) + 0.5π))

)
,

h2(Θ(t)) = 1− h1(Θ(t)). (26)



Fig. 1. The response of the states

Fig. 2. Control input curve

Applying the LMIs of above relaxed condition, we get the
maximal allowable sensor delay σ = 0.34 and the feedback
gain matrices which are feasible

K1 =
[

0.6984 −0.3023 0.0077
]
, (27)

K2 =
[

0.7010 −0.3200 0.0082
]
.

We used the fuzzy controller with a sensor delay u(t) =
h1K1x(t−d(t))+h2K2x(t−d(t)) under the initial condition
x(0)=[5 -3 2] to control the original dynamic nonlinear
system. The Figure 4.1 and the Figure 4.2 show the response
of the states and the control input curve which can be
obtained by simulation, respectively. Although the entire
system has a sensor delay, these simulation results clearly
represent that the closed-loop system is asymptotically stable.

V. CONCLUSION

This paper investigated stability analysis and delay-
dependent control for T-S fuzzy systems with a sensor delay.
We developed robust stabilization for nonlinear systems with
a sensor delay based on T-S fuzzy model approach. To make
our delay-dependent stability conditions, we introduced a
LKF and proposed some mathematical techniques including
Jensen inequality. BMIs was substituted for PLMIs to solve
the control problem. And then, we considered all possible
conditions suitable for fully exploiting the convexity of fuzzy
weighting functions during the process of replacing the
derived PLMIs by a finite set of LMIs. Finally the results
of the computer simulation showed that the states and the

control input of the closed-loop system are asymptotically
stable.

The disadvantage of the simulation result is that the
maximum allowable sensor delay is relatively small. To
obtain a less conservative stability condition with respect to
a sensor delay is challenging work.
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