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Abstract—Competitive global markets oblige the firms to 

reduce their overall costs while maintaining the same 
customer service level and this can be achieved just through a 
precise and efficient management of their supply chain 
network. The Fixed Charge Transportation Problem (FCTP) 
which is a more comprehensive type of Transportation 
Problem (TP) has several applications from different aspects 
in this network. Since the problem is NP-hard and solving this 
problem with decisive methods and heuristics will be 
computationally time consuming and expensive, two Genetic 
Algorithm are applied for this problem and also two fuzzy 
logic controllers are developed to automatically tune two 
critical parameters (Pc and Pm) of one of these two GAs. 
Finally the results from the simple conventional GA and 
automatically tuned GA are compared together. This 
comparison demonstrated that the GA that is tuned with FLC 
reach the local optimum remarkably faster. 
 

I. INTRODUCTION 
N nowadays globalized markets, since the 
competitiveness is dreadfully increasing, supply chain 

design has been gaining importance and attention [2]. 
Companies have to at least keep the same customer service 
level, while the market’s competitiveness forces them to 
reduce their overall costs to maintain their profit margins. 

A Supply Chain (SC) is a network of facilities and 
distribution centers that is responsible for procuring the 
materials, making intermediate and finished products out of 
those materials, and distributing the products to customers, 
and Supply Chain Management (SCM) is the strategy of 
integrating these functions together in order to facilitate the 
synchronization of all parts of this chain. A supply chain 
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network consists of five major chains: R&D chain, 
purchasing chain, production chain, quality chain and 
logistic chain [20, 21].  

Indubitably logistic chain is an important function of 
business and is evolving into strategic supply chain 
management. Logistics is often defined as the art of 
bringing the right amount of the right product to the right 
place at the right time and usually refers to supply chain 
problems [13].  

Among logistics activities, transportation network design 
provides a remarkable potential to reduce the overall costs 
and also to improve the service level. The transportation 
problem (TP) is a well-known basic network problem 
which was originally proposed by Hitchcock [1]. This 
problem is a very complicated supply chain problem and is 
considered as NP-Hard problem [20, 21]. 

In order to make the transportation problem more 
practical, many research papers assume that a fixed cost is 
also incurred along with variable cost of each commodity. 
The Fixed Charge Transportation Problem (FCTP) is 
introduced in the origins of the Operations Research [17]. 
In a FCTP, a single commodity is shipped from origin 
(source, supply) locations to destination (sink, demand) 
locations. The objective is to find the combination of routes 
that minimizes the total variable and fixed costs while 
satisfying the supply and demand requirements of each 
origin and destination. While similar to the transportation 
problem, the FCTP is much more difficult to solve due to 
the presence of fixed costs which causes discontinuities in 
the objective function [19]. It has been shown that this 
problem is an NP-hard problem [17]. Since the problem is 
NP-hard, the computational time to obtain exact solution 
increases in a polynomial manner and very quickly 
becomes extremely difficult and long as the size of the 
problem increases. 

Some old researches have turned to heuristic algorithms 
for solving FCTP because the methods are constrained by 
limits on computer time. Adlakha and Kowalski [3] 
proposed a simple heuristic algorithm for solving a small 
FCTP, which was more time consuming than the algorithms 
for solving a regular transportation problem. Glover, Amini, 
and Kochenberger [18], developed a parametric ghost 
image processing for this problem. Many researches 
consider the problem as mixed integer programming and 
solve it with the solutions such as the branch-and-bound 
and the cutting plane methods, but these methods are 
generally inefficient and computationally expensive [4], as 
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they did not take advantage of special network structure of 
FCTP.  

Different encoding schemes and representations are used 
for the Fixed-Charge Transportation Problems. Gottlieb, 
and Paulmann [16] developed and compared two GAs, one 
with permutation representation and another with matrix 
representation and at last they come to conclusion that GA 
with matrix representation yield better results. Gen, Li, and 
Ida [5], utilized the Prüfer number encoding to propose the 
spanning tree-based genetic algorithms for fixed-charge 
transportation problems. Su, and Zhan [15] developed a 
Genetic Algorithm with the sorted set of edge(S-ES) 
encoding scheme.  

Jo, Li, and Gen [7] proposed a new feasibility criteria 
and repairing procedure for spanning-tree based 
chromosomes in GA. However Hajiaghaei-keshteli, Molla-
Alizadeh-Zavardehi, and Tavakkoli-moghaddam [12], 
designed the chromosomes just with feasible solutions, 
which saved the computational time of repairing procedure 
in previous works. They also utilized the Taguchi 
experimental design to apply a robust calibration and ensure 
the best performance of the GA.  

Since adjusting the crossover and mutation ratios has a 
great effect on GA’s performance, a Fuzzy Logic Controller 
is also applied to automatic fine tuning of these ratios, 
according to Wang, Wang, and Hu [8]. 

II. MATHEMATICAL MODEL 
The FCTP can be considered as a distribution problem in 
which there are m sources (suppliers, warehouses or 
factories) and n destinations (customers or demand points). 
Shipping the commodities are possible from each of the m 
sources to any of the n destinations at a shipping cost per 
unit cij (unit cost for shipping from source i to destination j) 
plus a fixed cost fij, adopted as route’s founding cost. Each 
source i = 1, 2, . . . , m has ai units of supply, and each 
customer j = 1, 2, . . . , n has a demand of bj units. The 
objective is to determine which routes are to be established 
and the size of the shipment on those routes, so that the 
total cost of satisfying the supply constraints, in order to 
meet the demands, is minimized. Standard FCTP 
formulation is shown as follows: 

Minimize ∑∑
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where xij is the unknown variable to be shipped on the route 
(i, j) from supplier i to customer j, cij is the shipping cost 
per unit from supplier i to customer j. ai is the number of 
units available at supplier i, and bj is the number of units 
demanded at costumer j. The transportation cost for 
shipping per unit from supplier i to customer j is cij×xij. fij is 
the fixed cost related to route (i, j). The transportation 
problem assumed to be balanced in this paper, as the 
unbalanced problems could simply be converted to 
balanced one, through adding a dummy supplier or a 
dummy customer. 

III. GENETIC ALGORITHM 
As the problem proved to be NP-hard [17], and due to 

taking too much time to consider all the possible 
combinations, utilizing the conventional methods can only 
be applied for the small size problems with a few number of 
variables. In this case, a genetic algorithm is developed for 
this problem. 

The GA searches a problem space with a population of 
chromosomes, each of which represents an encoded 
solution. A fitness value is assigned to each chromosome 
according to its performance in which the more desirable 
the chromosome, the higher the fitness value becomes. The 
population evolves by a set of operators until some stopping 
criterion is met. A typical iteration of a GA, a generation, 
proceeds as follows. The best chromosomes of the current 
population are copied directly to the next generation 
(reproduction). A selection mechanism chooses 
chromosomes of the current population in such a way that 
the chromosome with the higher fitness value has a greater 
probability of being selected (roulette wheel). The selected 
chromosomes mate and generate new offspring (crossover). 
After the mating process, each offspring might mutate by 
another mechanism called mutation. The new population is 
then evaluated again, and the whole process is repeated 
[14]. 

A. Representation 
The spanning-tree based representation is used for 

genetic chromosomes since it would be appropriate for 
transportation problems. Gen and Cheng [6], introduced the 
use of the Prüfer number which can equally and uniquely 
represent all the possible trees in a network graph, for 
solving various network problems. 

In this paper, the Prüfer number is created from randomly 
generated 2−+ nm digits in range [1, m+ n]. The Prüfer 
number would be considered feasible only if the number of 
connected arcs to suppliers’ side is equal to the number of 
connected arcs to customers’ side, which is formulated as 
follows: 
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Previously all the researches consider this criterion just in 
repairing phase, but Hajiaghaei-keshteli, Molla-Alizadeh-
Zavardehi, and Tavakkoli-moghaddam [12], put an end to 



it. They save the time by eliminating the need for 
recognizing the infeasible solutions and repairing them by 
generating only feasible chromosomes. They convert the 
above formula to the following formulas: 
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A string of n-1 digits from set of suppliers and a string of 
m-1 digits from set of customers are generated randomly, 
and finally the two produced strings are combined together 
at random to design a feasible chromosome. 

The uniqueness of the Prüfer number for a special 
shipment strategy can be determined through decoding it. 
The same decoding procedure as [12] is utilized in this 
paper: 

Step 1: Let P(T) be the original Prüfer number and let P'(T) 
be the set of all the nodes that are not part of P(T) 
and designed as eligible for consideration. 

Step 2: Repeat the following process – (2.1) – (2.5) – until 
no digits are left in P(T). 
2.1 Let i be the lowest numbered eligible node in            

P'(T). Let j be the leftmost digit of P(T). 
2.2 If i and j are not in the same set O or D, add the 

edge (i, j) to tree T. Otherwise, select the next 
digit k from P(T) that is not included in the same 
set with i, exchange j with k, and add the edge 
(i,k) to the tree T. 

2.3 Remove j (or k) from P(T) and i from P'(T). If j 
(or k) does not occur anywhere in the remaining 
part of P(T), put it into P'(T). 

2.4 Assign the available amount of units to xij = 
min{ai,bj} (or xik = min{ai, bk}) to the edge (i, j) 
or (i,k)) where i ∈  O and j, k ∈  D. 

2.5 Update availability ai = ai–xij and bj = bj–xij (or 
bk = bk–xik). 

Step 3: If no digits remain in P(T) then there are exactly 
two nodes, i and j, still eligible in P'(T) for  
consideration. Add edge (i, j) to tree T and form a 
tree with 2−+ nm edges. 

Step 4: If there are no available units to assign, then stop. 
Otherwise, there are y plants with 0>a  units, and z 
costumers with 0>b  demands yet. One of these 
states occurs: 

I. If 1=y and 1=z , Add the edge between 
the plant and the customer to the tree and 
assign the available amount to the edge. 

II. If 1>y
 
and 1=z , Add the edge between 

the plants and the customer to the tree and 
assign the available amount to the edge. 

III. If 1=y  and 1>z , Add the edge between 
the plant and the customers to the tree and 
assign the available amount to the edge. 

IV. If 1>y  and 1>z , Consider them as a 
new transportation model with y plants 
and z customers, then generate Prüfer 
number, and Repeat step 1 to 4.  

If a cycle exists; remove the edge that is assigned zero flow. 
A new spanning tree is formed with 2−+ nm edges. 

B. Initialization 
Each generated chromosome is considered as an 

individual solution to the problem. In the first generation 
chromosomes are generated as many as population size. 
The random method is applied for generating the initial 
population. 

C. Selection mechanism 
As the total transportation cost including variable and 

fixed costs should be minimized in this problem, better 
solutions are those results with lower objective functions. 
The higher fitness value considered the better chromosome, 
so the applied function is formulated as follows: 

Function Objective
1Value Fitness =   

Since the Roulette-Wheel selection mechanism is 
deployed, the chromosomes with higher fitness values have 
more chance to be selected.  

D. Genetic operators 
Reproduction 

The pr% of the chromosomes with higher fitness values 
are transferred to the next generation (elite strategy). 

 
Crossover 

Crossover combines the two selected chromosomes’ 
features in order to create two better offsprings. The 
remaining (pc=1-pr%) of the chromosomes in next 
generation going to be generated from crossover operation. 
The one-point crossover is used in the algorithm in such a 
way that the feasibility criterion has been met. It means that 
after selecting the point from which the parents are 
separated into two different parts, the first parts are directly 
copied to the associated offspring, but the second part is 
inherited from the opposite parent, regarding the two 
previously mentioned feasibility criteria.  

 
Mutation 

The mutation operator is an important process of any 
successful GA that reorganizes the structure of the genes so 
that the algorithm can escape from searching just in local 
optimum area. It can also be regarded as a simple local 
search technique.  

Performing the crossover operation, offspring are going 
to be mutated with the probability of pm. It means that a 
random number in range [0,1] is generated for each of the 
offsprings. If this number was less than pm then the 



mutation operation is going to be performed. The inversion 
mutation is utilized in this paper. In this operator two genes 
are randomly selected from an offspring and their positions 
are inverted. Since the chromosomes are feasible after 
crossover, the mutated offsprings are also going to be 
feasible. 

IV. FUZZY LOGIC CONTROLLER 
Being one of the most popular applications of Lotfi 

Zadeh’s Fuzzy Set Theory [11], Fuzzy Logic Controllers 
(FLCs) are demonstrated initially by Mamdani [10] in 
1974. FLCs are knowledge-based controllers that are 
usually derived from a knowledge acquisition process or are 
automatically synthesized from a self-organizing control 
architecture [9].  

Creating a balance between exploration and exploitation 
plays a significant role in GA’s performance. Therefore, 
regulating the GA parameters such as population size, 
number of generations, crossover probability, and mutation 
probability is one of the crucial subjects for providing this 
balance.  

Two FLCs are used for automatically tuning the pc and 
pm based on the changes in the average fitness of the 
population [8]. Let ∆f(t) be the difference between average 
fitness function of the tth and t-1th generations and  ∆f(t −
1) be the difference between t-1th and t-2th generations, then 
the crossover and mutation ratios for the next generation is 
done using the following IF–THEN concept: 

• If |∆f(t) − ∆f(t − 1)| < ε, is a small positive 
number near to zero), then rapidly increase the pc 
and pm for the next generation. 

• If  ∆f(t) − ∆f(t − 1) < −ε then decrease the pc 
and pm for the next generation. 

• If  ∆f(t) − ∆f(t − 1) > ε then pc and pm for the 
next generation. 

The inputs for both FLCs are  ∆f(t) and ∆f(t − 1). The 
output for one FLC is the change in crossover ratio, ∆c(t), 
and for another one is the change in mutation ratio, ∆m(t). 
The membership functions of two inputs are illustrated in 
fig. 1, the membership function of ∆c(t) is illustrated in fig. 
2, and the membership function of ∆m(t) is illustrated in 
fig. 3.  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
 

 

After obtaining the inputs, ∆f(t) and ∆f(t − 1), from GA, 
the FLC sets the inputs to their associated membership 
functions. According to available rules in fuzzy decision 
table, which is shown in table.1, a fuzzy value is extracted 
from each of the nine membership functions, and at last 
these function values are converted to one crisp output for 
each FLC. 
Table 1 Fuzzy Decision Table 

 ∆f(t − 1) 
NR NL NM NS ZE PS PM PL PR 

∆f(t) 

NR NR NL NL NM NM NS NS ZE ZE 

NL NL NL NM NM NS NS ZE ZE PS 

NM NL NM NM NS NS ZE ZE PS PS 

NS NM NM NS NS ZE ZE PS PS PM 

ZE NM NS NS ZE PM PS PS PM PM 

PS NS NS ZE ZE PS PS PM PM PL 

PM NS ZE ZE PS PS PM PM PL PL 

PL ZE ZE PS PS PM PM PL PL PR 

PR ZE PS PS PM PM PL PL PR PR 

After achieving the outputs, the crossover probability and 
mutation probability for the next generation, t+1, is 
calculated through following equations: 

𝑃𝑃𝑃𝑃(𝑡𝑡 + 1) = 𝑃𝑃𝑃𝑃(𝑡𝑡) + ∆𝑃𝑃(𝑡𝑡) 

𝑃𝑃𝑃𝑃(𝑡𝑡 + 1) = 𝑃𝑃𝑃𝑃(𝑡𝑡) + ∆𝑃𝑃(𝑡𝑡) 

where Pc(t) is the crossover ratio at generation t, and Pm(t) 
is the mutation ratio at generation t. 

 
Fig. 1. The membership function for both inputs:  ∆f(t − 1) 
and ∆f(t) 

 
Fig. 2. The membership function for the output  ∆c(t) 

 
Fig. 3. The membership function for the output  ∆m(t) 

NR, negative larger; NL, negative large; NM, negative medium; NS, 
negative small; ZE, zero; PS, positive small; PM, positive medium; PL, 
positive large; PR, positive larger. 



V. NUMERICAL EXPERIMENTS 

In order to investigate the proposed algorithm’s 
effectiveness and efficiency, its results are compared with 
the results obtained from simple GA (without FLC).  

The problem sizes, stopping criterion, and population 
size are the same as Jo, Li, and Gen [7]. The problem sizes, 
total supplies (or total demands) and the ranges of the fixed 
costs which are generated randomly are demonstrated in 
table 2. The unit variable costs are integer values in the 
range 1 to 8 in both test problems which are shown in tables 
3 and 4. 
Table 2.   Total supply (demand) and ranges of fixed cost 
Problem size 
(m×n)  Total supply Range of fixed cost 

4×5   275  [50,100] 
5×10   1485  [150,500] 

Each problem size is run 10 times. Other genetic 
algorithm parameters that are common in both test 
problems are, population-size= 100, Pc= 0.5, and Pm= 0.3. 
The maximum number of generation in this test problem is 
500. 

The local optimal solution with the objective function of 
1484 was found in both algorithms, but with a major 
difference. Running each algorithm ten times, the average 
generation number for getting to this local optima was 43 
for the GA-FLC, while it was 72 for the simple GA. This is 
illustrated in fig. 4. 

 

 
For the test problem 2, which has the size 5×10, the 

maximum number of generations is 1000.  
Running both algorithms for test problem 2, the 

comparative result is represented in fig. 5. As it can be 
perceived from this figure, GA-FLC has more expeditious 
steps towards the local optima. Additionally, the simple GA 
represents 6442 as the average of best objective functions 
after running for 1000 generations; while the GA-FLC 
performs better and exhibits 6406 as its final outcome. 

 

 

VI. CONCLUSION AND FUTURE WORKS 

This paper considered a transportation network between 
two parties in a supply chain, i.e supplier and customer, and 
tried to reduce the overall transportation costs to its 
minimum point, regarding both variable (per shipping 
product) and fixed (per route) costs, in such a way that all 
supply constraints, and also all demand constraints should 
be satisfied.  

The spanning-tree based genetic algorithm was employed 
to solve the non-linear fixed charge transportation problem, 
which is considered to be NP-hard and couldn’t be solved 
by traditional methods. For obtaining better results from 
GA, a Fuzzy Logic Controller is also employed to 
automatically tune the crossover probability and mutation 
probability of the algorithm. Comparing the simple GA and 
the GA with FLC, the latter showed an outstanding speed 
towards finding the local optimum. 

Since FCTP is a kind of network model that can be used 
in several various fields such as transportation, computer 
science, manufacturing, decision support systems, 
scheduling, and etc., there are great potential opportunities 
for developing further research in this field, for instance 
tuning more critical parameters from a genetic algorithm 
dynamically, such as population size or maximum number 
of generations, or creating a heuristic to find an appropriate 
initial population, or even adding a local search technique  
like simulated annealing to genetic algorithm. 
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Table 3.  Unit variable cost and fixed costs in 4×5 problem 
Costumers 

 Shipping costs cij  Fixed costs dij 

Plants 1 2 3 4 5  1 2 3 4 5 

1 8 4 3 5 8  60 88 95 76 97 

2 3 6 4 8 5  51 72 65 87 76 

3 8 4 5 3 4  67 89 99 89 100 

4 4 6 8 3 3  86 84 70 92 88 

Fig. 4. Comparing GA-FLC and GA in test problem 1 

Fig. 5. Comparing GA-FLC and GA in test problem 2 
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Table 4. Unit variable cost and fixed costs in 5×10 problem  
     Costumers   
  Shipping costs cij   Fixed costs dij   

Plants 
 

1 2 3 4 5 6 7 8 9 10   1 2 3 4 5 6 7 8 9 10 

1  8 4 3 5 2 1 3 5 2 6   160 488 295 376 297 360 199 292 481 162 

2  3 3 4 8 5 3 5 1 4 5   451 172 265 487 176 260 280 300 354 201 

3  7 4 5 3 4 2 4 3 7 3   167 250 499 189 340 216 177 495 170 414 

4  1 2 8 1 3 1 4 6 8 2   386 184 370 292 188 206 340 205 465 273 

5  4 5 6 3 3 4 2 1 2 1   156 244 460 382 270 180 235 355 276 190 
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