
 

 
Abstract—In this paper, the design, implementation and 

experimental results of an effective data communication 
protocol implemented on a distributed PIC microcontroller 
architecture based Automated Guided Vehicle (AGV) named 
ROVER II (Roaming Vehicle for Entity Relocation) is 
presented. The main objective of the research was to design 
and implement a seven-bit speed control signal for ROVER 
II’s speed and position control allowing for one percent duty 
cycle increment.  
 

Index Terms—Mobile robot, speed/position control, 
data packets, encapsulation/ decapsulation, Pulse Width 
Modulation (PWM). 
 

I. INTRODUCTION 
Recently, many studies have focused on the development 

of AGV’s [1] and [2] and the area of mobile robotic has 
become a very active topic of research. This is fueled by 
recent advances in microprocessor and sensor technologies 
and the potential applications offered to the manufacturing 
and service industries by mobile robotic systems [3]. A 
typical application within manufacturing environment is an 
AGV which is a driverless vehicle that performs material 
handling transportation within a facility [4]. Despite the 
various problems associated with the installation and 
maintenance of AGV systems [2], they find wide 
applications in warehousing, assembly and transfer of tool 
drums and in factories in general [5], in nuclear plants [6], 
in household use [7] and indoor security application [8], to 
mention a few.  

Borenstein and Koren [7] designed an indoor nursing 
robotic system whose control system, based on the principle 
of a cross-coupling controller, measures the difference in 
the speed of the two motors used for locomotion. Based on 
this difference in speeds, the control system increases the 
speed of the slower motor and then decreases the speed of 
the faster motor at the same time. Thus, the corrected value 
of speed depends upon the errors in the speeds of both 
motors.  

For the past few years, the School of Engineering and 
Physics (SEP) at the University of the South Pacific (USP) 
have been conducting research on the use of mobile robots 
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used in manufacturing facilities [2]. The present paper 
presents the outcome of the study on providing improved 
solution to the design and implementation of robust motion 
controller for the guide-path following mobile vehicles, 
customized for material handling transportation within a 
manufacturing facility, namely ROVER I & II designed in-
house [1] .The proposed advanced speed control 
architecture highlighted in this paper will improve ROVER 
II’s drive system, which proposes to use seven bits of data 
for speed control allowing for duty cycle to be incremented 
at one percent duty cycle compared to three bit speed 
control data with only seven possible distinct duty cycles 
[1].  

This paper is organized as follows. The second section of 
the paper gives an overview of related works that has been 
carried out. Section III introduces ROVER II and its 
existing Star distributed architecture, hardware framework, 
and speed control architecture. In sections IV-VI, the newly 
proposed advanced speed control architecture is provided. 
Section VII discusses about the different tests that has been 
carried out. A general conclusion ends the paper and 
presents some perspectives. 

II. RELATED WORKS 
The first application to robotics appears in the 90’s with 

the works of R. Brooks inspired from ant’s colonies [9] and 
[10]. He proposed several architectures based on reactive 
behaviors and machine learning. Recently, many studies 
have focused on the development of an effective speed 
control for robotics drive system [2]. 

To mention a few, firstly the Sliding mode control of an 
induction motor [11]. In this project Field-oriented control 
(FOC) was combined to robust sliding mode for motor 
speed control and a smooth continuous function was added 
in order to overcome chattering caused by Sliding Mode 
Controller (SMC). The SMC mode does not require an 
accurate model of the motor, which might necessitate only 
information on parameters value. 

The Fuzzy Logic Control for Speed Control of Induction 
Motor using Space Vector Pulse Width Modulation [12]. It 
presents the design and implementation of a voltage source 
inverter type space vector pulse width modulation 
(SVPWM) for controlling the speed of induction motor. 
This scheme led to adjust the speed of the motor by 
controlling the frequency and amplitude of the stator 
voltage, while the ratio of stator voltage to frequency was 
kept constant.  
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The Mobile robotic platform controller with an effective 
data communication protocol [2] has also been 
implemented. The control system was designed for the 
drive wheels of robot, namely ROVER III designed in-
house, for independently controlling closed-loop motion of 
each robotic wheel without the inclusion of a line tracer 
sensor unit on the robot. For this reason, only components 
essential to the design and implementation of the control 
system were used on the robotic platform. The robotic 
motion control model designed in this project takes into 
account the turning motion, by keeping the control system 
of one wheel completely independent of the other wheel. 
The errors in the speeds of each wheel are corrected to the 
value of the input speed command of each wheel. Errors 
from the difference in the two wheel speeds are not 
compared, neither are they cross-coupled as done in the 
project of Borenstein and Koren [7].  

Distributed PIC Microcontroller Architecture for AGV 
Application [1] has also been designed. This project deals 
with multi-objective task that is getting path data 
information, obstacle and station detection, line and node 
tracing, battery voltage monitoring, and speed and position 
control with feedback controlled by five PIC16F877 
microcontrollers arranged in a Star distributed architecture. 
Due to the limited number of pins available on the motor 
co-controller PIC16F877 boot loader board, only three-bit 
speed control signal was used to control the speed and 
position of ROVER II. Since ROVER II deals with 
travelling along complex guide path using line tracing 
sensors, a more advanced speed controller was required and 
hence speed control architecture similar to ROVER III’s 
drive system [2] has been adopted. 

III. DESIGN OF THE MOBILE ROBOT 
This section details the design of the distributed 

Peripheral Interface Controller (PIC) microcontroller-based 
AGV at the University of the South Pacific, which is 
referred to as ROVER II.  ROVER II has been designed in-
house with application of five PIC16F877 microcontrollers 
arranged in a Star distributed architecture. Four of these 
microcontrollers are dedicated as co-controllers for motor 
speed/position control, sensor control, power supply control 
and keypad/liquid crystal display (LCD) control while the 
fifth PIC microcontroller, which is the master controller, 
overlooks and coordinates the functionality of the four co-
controllers. 

A. Operation of the AGV 
The AGV (ROVER II) which has been developed is 

capable of following any predefined route of a complex 
guide path for material handling and transportation within 
a manufacturing system. The user firstly has to provide user 
authentication by the verification of password followed by 
specifying and uploading a particular path data using the 
keypad and LCD module, which is then transferred and 
stored on the master controller. Table I shows the respective 
two bit logic path data coordinates that needs to be 
appropriately entered by the user depending on the path 
actions while Figure 2 shows the complex guide path. The 
master controller uses this path data to control the co-PIC 
motor controller to follow the predefined route by 
appropriately varying the speeds of the two 12V, DM08GN 
direct current (DC) motors. 

The left and right line tracing sensors controlled by the 
sensor co-controllers are used to keep the AGV on track 
and additional front and side infra red (IR) ranging sensors 
are used to detect obstacles and stations respectively. As the 
stations are detected the AGV stops for 5seconds to 
load/offload materials using the conveyor unit. Whereas, if 
the obstacles are detected, the AGV stops until the obstacles 
are removed from the front of the sensors. In both these 
cases, whenever the AGV restarts after stopping, it 
remembers the operation which it was performing before 
being interrupted to stop and hence continues performing 
the same task which it was doing before stopping. As a 
result, ROVER II has memory capability to remember the 
task that it was performing before stopping and recalls this 
when it resumes operation. The co-PIC sensor controller 
reads in all this sensor input as hardware interrupt inputs 
and hence generates interrupt signals as either of these 
sensors is activated. 

A power management co-PIC power supply controller is 
also incorporated which automatically swaps the AGV’s 
supply battery with a backup battery, once the voltage of the 
supply battery falls below a specified threshold. Figure 3 
shows the mobile robotic platform. 
 
 
 

 
 
Fig. 1.  ROVER II’s distributed Star microcontroller architecture 
  

 

 
Fig. 2.  Complex guide path 

TABLE I 
BINARY REPRESENTATION OF ROVER II’S PATH ACTIONS. 

Action Path Data [Binary] 

Stop 
Turn Right 
Turn Left 
Go Forward 

00 
01 
10 
11 

 



 

B. Speed Control architecture of ROVER II 
 The PWM signal supplied by PIC16F877 to the 

Universal PWM H-bridge motor driver circuits has been 
used to drive the DM08GN, 12V drive wheel motors of the 
robot. Due to limited number of input pins available, three-
bit input control signals generated by Master controller 
were used to generate eight distinct duty cycles as shown in 
Table II.  

These duty cycle combinations were easily generated 
using equation 1, with a special condition applied to 
generate zero percent duty cycle when three-bit inputs are 
[000]. The Master controller provides two separate PWM 
control signals for the left and right DC motors. 

% Duty Cycle = [(3-Bit Input) * 6.25] + 50                (1) 

IV. CONTROL SYSTEM DESIGN 
The control system was designed for the drive wheels of 

the robot. The main objective of the research was to design 
and implement a seven-bit speed control for the robotic 
wheel with the line tracing sensor unit on the robot, 
allowing for duty cycles to be incremented at one percent.  

Complete single control system allows sending of two 
different input speeds to each of the drive wheels.  Errors 
from the difference in the two wheel speeds are compared 
and corrected to the value of the reference wheel speed. 

 
A. Hardware control system 
The proposed three wire bus, n-bit serial latched 

communication system used in the mobile robotic platform 
controller is shown in Figure 4, while a block diagram 
showing the data flow between Master controller  and 
motor co-controller of the robotic platform is presented in 
Figure 5. 

The system had to be designed such that the robotic 
platform would be able to follow any predefined route of a 
complex guide path as shown in Figure 2, for material 
handling and transportation within a manufacturing 
system. The system has a controller for the purpose of 
issuing the speed and direction commands. 

The system input speed supplied by the Master controller 
is acted upon by the motor co-controller, which then 
generates appropriate PWM signals with duty cycle equal to 
the input speed. After each revolution of the reference drive 
wheel, the difference in wheel speeds is calculated with 
respect to the feedback received and the duty cycle of the 
non-reference motor is either incremented or decremented 
depending on whether the non-reference motor is slower or 
faster respectively. 

 
B. Electronics Design 
The mobile robot has two DM08GN, 12V Tunglee 

permanent magnet DC motors with a shaft encoder disk 
each, two photo-transistor/emitter diode pair sensor boards, 
ten Sharp infra red sensors, five Lynx motion sensors, 
power supply control boards, sensor control boards, keypad 
and LCD board, two H-bride motor controller boards and 
five PIC16F877 bootlaoder boards designed in-house. The 
electronic design of ROVER II which is fully described 
elsewhere [1] and hence is not covered here. 

PWM scheme with fixed frequency and varying duty 
cycle was used to control the DC motors since it makes 
implementation easier compared with the use of adjusting 
inductance of motor windings, changing the stator voltage, 
and adjusting the supply frequency [13]. The two H-bridge 
motor driver boards designed in house has an extra circuit 
consisting of AND and NOT gates as shown in Fig. 6. Due 
to only one PIC motor co-controller board used to drive 
both the drive wheels and the fact that PIC16F877 
bootloader board has only two PWM pins (C1 and C2), this 

 

 
Fig. 3.  ROVER II: the mobile robotic platform 

 
Fig. 5.  The mobile robotic platform speed controller of the robotic platform 
hardware. 

 
 

Fig. 4.  The propose three-wire bus, n-bit serial latched communication 
system used in the mobile robotic platform controller 

TABLE II 
THREE BIT CONTROL SIGNALS AND ITS CORRESPONDING DUTY CYCLE 

Decimal Equivalent 3-Bit Input Duty Cycle (%) 

0 
1 
2 
3 
4 
5 
6 
7 

000 
001 
010 
011 
100 
101 
110 
111 

 0.00 
56.25 
62.50 
68.75 
75.00 
81.25 
87.50 
83.75 

 
 



 

circuit was designed to allow driving the motors in both 
clockwise and anti-clockwise directions using only one 
PWM signal.  

V. DATA COMMUNICATION DESIGN 
The earlier version of the mobile robotic platform 

controller which has similar architecture as the current one 
as shown in Fig. 4 consists of a Master controller and one 
motor co-controller for controlling both wheels and the 
peripheral hardware, except that it was designated to issue 
two separate three-bit speed command for each motor. The 
three-bit command architecture falls short and needs to be 
replaced since only seven (23-1) speeds were possible with 
this architecture and hence was not adequate for each 
motor. For such medium to high-speed applications, the 
concept of encapsulation/decapsulation in which the speed 
is serially transmitted as a packet in binary equivalence 
solves the problem.  

In this section, the features utilized for developing the 
three-wire bus, n-bit serial latched data communication 
system for controlling the robotic wheel are discussed. 
These features consist of packets, encapsulation and 
decapsulation.   

 
A. Packets 
Today’s internet technology is an offshoot of the 

ARPAnet developed by Advanced Research Projects 
Agency (ARPA) of the US Department of Defense [14]. 
One of the primary goals of ARPA for the networking was 
to allow multiple users to send and receive information 
simultaneously over the same communication path such as 
telephone lines. Since the success of ARPA in introducing 
packets for data communication, the concept of packet has 
become commonly used in data abstraction, mainly in 
computing science and communication engineering (see for 
example, [14] and [15]). Associated with packets, are 
techniques of encapsulation, decapsulation, encryption, and 
decryption. While encryption and decryption are mainly 
reserved for security issues in data communication, 
encapsulation and decapsulation are merely the ways of 
encoding and decoding data that are transmitted. 

The packet used in the research reported in this article 
has a length of 14-bits, although limiting the size to a fixed 
number is not necessary because it is under the control of 
the systems designer to specify other length of bits, and in 
general, n-bits could be used. The 14-bits are divided into 
two sections, the first 7-bits from bit 0 to bit 6 are used to 
capture the left motor speed while the second set of seven 
bits from bit 7 to bit 13 are used to capture the right motor 
speed. The maximum possible speed that can be 
encapsulated into a packet is 127 (27-1). Robotic 
applications require very low speeds, hence the architecture 

presented in the present paper meets the requirements of a 
wide cross-section of engineering applications ranging from 
low, medium and high speeds. 

The Robotic and Automation Group (RAG) at The 
University of the South Pacific is utilizing the three-wire 
bus, n-bit serial latched data communication system for 
controlling a milling motor that has maximum speed of 
1800 r/min and three stepper motors in a milling machine 
being developed in-house [16]. In practice, only maximum 
of 9–10 lines would be required to transfer milling speeds 
in parallel mode. Figure 7 shows the packet layout used for 
the research reported in this article. 

B. Encapsulation 
The process of encapsulation (encoding) takes place at 

the Master controller and involves converting the speed 
data into a packet for the purpose of transmission. The 
method used in realizing encapsulation is that of conversion 
of the decimal number to its binary equivalence that are 
bundled into the packet as shown in Figure 8. 

C. Decapsulation   
Decapsulation (decoding) commences at the motor co-

controller once the packets are received as shown in Figure 
9. 

PWM
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Fig. 6.  AND and NOT gate circuit on the H-bridge motor driver circuit. 

 

 
Fig. 7.  Packet Layout 

 
Fig. 8.  Mater controller’s encapsulation sub-routine 

 
Fig. 9.  Motor co-controller’s decapsulation sub-routine 
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D. Method of Transmission from Master Controller 
Bootloader Board 

Since the data being transmitted are the entire packet, 
they need to be first converted into a binary format, one bit 
at a time and sent from the Master controller to the motor 
co-controller. 

There is a sequence to follow for PIC bootloader to 
transmit data accurately. Firstly, PIC bootloader has to be 
in the latch enable or data receive mode. Secondly, the 
clock has to be high to make PIC bootloader ready to read a 
bit of data being sent and finally, when the data are 
completely sent, the clock is made low and the latch is 
disabled. From experimentation, some amount of delay 
would be needed after the clock has been made low. Figure 
10, which is self-explanatory, shows the timing 
requirements and specification for the data communication 
sequence. 

E. Method of reception on Motor Co-controller 
Bootlaoder Board  

The motor co-controller only receives data if it is in the 
latch enable or data receive mode. Secondly, the clock has 
to be high. Once the data is available at the input, the clock 
has to be low in order for the motor co-controller to read 
the input. The latch is disabled and decapsulation 
commences once the motor co-controller successfully 
receives the serial data that the master PIC bootloader sent. 
 

F. Merits of the current data communication protocol 
An earlier version of the communication used six lines, 

three per each motor speed for motor co-controller from the 
Master controller. The current three-wire bus therefore 
presents a significant saving in communication. It frees 
three lines from the Master controller, which could later be 
used for other applications and also the present three-wire 
bus communication protocol significantly expands the 
range of speeds attainable. For example, the three-line 
protocol is limited to maximum of seven possible speeds 
whereas the three-wire bus communication protocol caters 
for up to 127 possible speeds. 

VI. SOFTWARE DESIGN 
The software was designed in such a way so as to enable 

a standard pattern of operation. The software coding for 
this project was done in PIC C compiler, a standard 
compiler for PIC microcontroller. Even when all the 
separate hardware is connected together, the unity among 
the components and the wholeness of the system is only 
achieved through software implementation. The Master 
controller uses two types of interrupts: Timer 0 interrupt 

and Port B interrupt while the motor co-controller only uses 
Port B interrupt. 

The Master controller starts of by going through an 
initialization process. Here all the pins on Port E together 
with all the output pins on Port D are first set to zero. Since 
Port E pins E0 to E3 are used to send the speed control 
signals to the motor co-controller inputs, resetting these 
ports make sure that the speed communication latch is 
disabled. Resetting Port D pin D6 disables the interrupt 
signal to the keypad and LCD co-controller and pins D0 
and D1 sends logic zero signals to the direction control of 
the Universal PWM H-bridge motor driver circuits. Next 
the Empty_Array() subroutine is called which sets the 
content of the path data to zero. After this, the master 
controller calls the Communication_Link() subroutine 
function which enables interrupt RB (INT_RB) and 
disables all other interrupts and at this time master 
controller sits idle waiting for the user to enter the required 
authentication and path data. Once the user has entered the 
path data, master controller checks if any station or obstacle 
is detected and then sends the appropriate speed control 
signals to motor co-controller. 

The motor co-controller commences by setting pins C1 
and C2 as PWM pins and then disabling the two motors by 
sending logic high to the two Universal PWM H-bridge 
motor driver boards. It then enables the Port B interrupts 
and waits for the command from master. Upon receiving 
the speed command, it then enables or disables the H-
bridge motor driver boards and generates the appropriate 
PWM signals. It then determines whether the state of pins 
B4 and B7 has changed by comparing the present and past 
states of the two pins. Whenever there is a change, the 
respective two counters are incremented signifying the 
motor encoder disk has rotated. The motor co-controller 
then checks whether the two motor input speeds from 
master are same or not. If the input speeds are same, then 
depending on the speed feedback from the two encoders, 
the duty cycle of the non-reference motor is either 
incremented or decremented depending on whether the 
non-reference motor is slower or faster with respect to the 
reference motor. 

The resolution of the vehicle is given by equation 2, 
where NS, rwheel are the number of encoder slots and the 
radius of the vehicle wheel respectively. For ROVER II,    
NS = 32 and rwheel = 100 mm therefore the resolution is 
given as:   

Rres = 
SN
wheelr  π2

 = 
32
(0.1) 2

= 0.0196 m                (2) 

The number of pulses required for any distance can be 
calculated using equation 3, where Rres, x are the resolution 
of the encoder and the distance that the vehicle travels 
respectively. Hence, the number of pulses required for 
ROVER II to travel 1m is: 

Npulses = 
resR
x

 = 
0196.0

1
 = 51 pulses           (3) 

 
Fig. 10.  Timing requirements and specifications for data communication. 



 

VII. EXPERIMENTAL RESULTS 
The speed/duty cycle versus time was carried out. A 

program was incorporated within the initial and the 
proposed speed control to print the duty cycle of the drive 
wheels at certain intervals. An interval of 20ms with duty 
cycle increasing by one percent at every interval was chosen 
since it gave a smooth start to the mobile robot without any 
jerks and also the desired speed was obtained in less than 
two seconds. This data was collected and the respective 
graphs were plotted as shown in Figure 11. 

With the proposed architecture, the mobile robot now 
starts by increasing its duty cycle slowly at one percent 
increment every 20ms and once it reaches its desired speed, 
it then moves with the desired constant speed as shown in 
Figure 11. This new architecture allows mobile robot to 
move as in real life. For the 3-line architecture with only 
seven possible speeds for moving the mobile robot and the 
change in duty cycle from one speed to the other actually 
took place by jerking the mobile robot to the desired speed. 
This is shown in Figure 11 for the initial architecture where 
the mobile robot starts from rest to go forward at 88 percent 
duty cycle. 

A delay of 20ms was used for this application. For other 
applications, depending on the robotic platform the time to 
reach its desired speed can easily be specified by the 
designer by appropriately changing the delay between each 
increment. 

The slope for the proposed architecture of Figure 11 is 
the acceleration rate of the mobile robot and is calculated to 
be 0.05. Since speed is directly proportional to duty cycle, 
we can conclude that the mobile robot will increase speed 
with a slope of 0.05. 

VIII. CONCLUSION 
This paper presents the design, implementation and 

experimental results of an effective data communication 
protocol implemented on a distributed PIC microcontroller 
architecture based AGV named ROVER II. In a robot, the 
three-line data communication protocol restricts the control 
on the speed of the wheel, see for example [1], where only 
eight distinct duty cycles were possible and any change in 
speed will occur in jerks. The work done shows that the 
proposed three-wire bus, n-bit serial latched data 
communication protocol for controlling the motion of the 
robotic wheel with the line tracer sensor unit on the robot, 

is by far more effective than the three-line data 
communication protocol used in an earlier architecture as 
discussed in section V(F). The proposed architecture also 
allows for ramping of speeds as in real life situations as 
discussed in section VII. 
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Fig. 11.  The mobile robot’s speed versus time with the initial and proposed 

architecture 
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