

Abstract—In this paper, the design, implementation and

experimental results of an effective data communication
protocol implemented on a distributed PIC microcontroller
architecture based Automated Guided Vehicle (AGV) named
ROVER II (Roaming Vehicle for Entity Relocation) is
presented. The main objective of the research was to design
and implement a seven-bit speed control signal for ROVER
II’s speed and position control allowing for one percent duty
cycle increment.

Index Terms—Mobile robot, speed/position control,
data packets, encapsulation/ decapsulation, Pulse Width
Modulation (PWM).

I. INTRODUCTION
Recently, many studies have focused on the development

of AGV’s [1] and [2] and the area of mobile robotic has
become a very active topic of research. This is fueled by
recent advances in microprocessor and sensor technologies
and the potential applications offered to the manufacturing
and service industries by mobile robotic systems [3]. A
typical application within manufacturing environment is an
AGV which is a driverless vehicle that performs material
handling transportation within a facility [4]. Despite the
various problems associated with the installation and
maintenance of AGV systems [2], they find wide
applications in warehousing, assembly and transfer of tool
drums and in factories in general [5], in nuclear plants [6],
in household use [7] and indoor security application [8], to
mention a few.

Borenstein and Koren [7] designed an indoor nursing
robotic system whose control system, based on the principle
of a cross-coupling controller, measures the difference in
the speed of the two motors used for locomotion. Based on
this difference in speeds, the control system increases the
speed of the slower motor and then decreases the speed of
the faster motor at the same time. Thus, the corrected value
of speed depends upon the errors in the speeds of both
motors.

For the past few years, the School of Engineering and
Physics (SEP) at the University of the South Pacific (USP)
have been conducting research on the use of mobile robots

Manuscript submitted for review on November 29, 2010.
Shiu Kumar is now with the Department of Electrical & Electronics

Engineering of Fiji National University, Suva, Fiji Islands. (phone: +679
9439438; e-mail: shiu.kumar@fnu.ac.fj).

Ravinesh Singh is with the School of Engineering, University of The South
Pacific, Suva, Fiji Islands. (e-mail: singh_rv@usp.ac.fj).

used in manufacturing facilities [2]. The present paper
presents the outcome of the study on providing improved
solution to the design and implementation of robust motion
controller for the guide-path following mobile vehicles,
customized for material handling transportation within a
manufacturing facility, namely ROVER I & II designed in-
house [1] .The proposed advanced speed control
architecture highlighted in this paper will improve ROVER
II’s drive system, which proposes to use seven bits of data
for speed control allowing for duty cycle to be incremented
at one percent duty cycle compared to three bit speed
control data with only seven possible distinct duty cycles
[1].

This paper is organized as follows. The second section of
the paper gives an overview of related works that has been
carried out. Section III introduces ROVER II and its
existing Star distributed architecture, hardware framework,
and speed control architecture. In sections IV-VI, the newly
proposed advanced speed control architecture is provided.
Section VII discusses about the different tests that has been
carried out. A general conclusion ends the paper and
presents some perspectives.

II. RELATED WORKS
The first application to robotics appears in the 90’s with

the works of R. Brooks inspired from ant’s colonies [9] and
[10]. He proposed several architectures based on reactive
behaviors and machine learning. Recently, many studies
have focused on the development of an effective speed
control for robotics drive system [2].

To mention a few, firstly the Sliding mode control of an
induction motor [11]. In this project Field-oriented control
(FOC) was combined to robust sliding mode for motor
speed control and a smooth continuous function was added
in order to overcome chattering caused by Sliding Mode
Controller (SMC). The SMC mode does not require an
accurate model of the motor, which might necessitate only
information on parameters value.

The Fuzzy Logic Control for Speed Control of Induction
Motor using Space Vector Pulse Width Modulation [12]. It
presents the design and implementation of a voltage source
inverter type space vector pulse width modulation
(SVPWM) for controlling the speed of induction motor.
This scheme led to adjust the speed of the motor by
controlling the frequency and amplitude of the stator
voltage, while the ratio of stator voltage to frequency was
kept constant.

Advanced Speed Control of an Automated
Guided Vehicle

Shiu Kumar, Member, IAENG, and Ravinesh Singh

The Mobile robotic platform controller with an effective
data communication protocol [2] has also been
implemented. The control system was designed for the
drive wheels of robot, namely ROVER III designed in-
house, for independently controlling closed-loop motion of
each robotic wheel without the inclusion of a line tracer
sensor unit on the robot. For this reason, only components
essential to the design and implementation of the control
system were used on the robotic platform. The robotic
motion control model designed in this project takes into
account the turning motion, by keeping the control system
of one wheel completely independent of the other wheel.
The errors in the speeds of each wheel are corrected to the
value of the input speed command of each wheel. Errors
from the difference in the two wheel speeds are not
compared, neither are they cross-coupled as done in the
project of Borenstein and Koren [7].

Distributed PIC Microcontroller Architecture for AGV
Application [1] has also been designed. This project deals
with multi-objective task that is getting path data
information, obstacle and station detection, line and node
tracing, battery voltage monitoring, and speed and position
control with feedback controlled by five PIC16F877
microcontrollers arranged in a Star distributed architecture.
Due to the limited number of pins available on the motor
co-controller PIC16F877 boot loader board, only three-bit
speed control signal was used to control the speed and
position of ROVER II. Since ROVER II deals with
travelling along complex guide path using line tracing
sensors, a more advanced speed controller was required and
hence speed control architecture similar to ROVER III’s
drive system [2] has been adopted.

III. DESIGN OF THE MOBILE ROBOT
This section details the design of the distributed

Peripheral Interface Controller (PIC) microcontroller-based
AGV at the University of the South Pacific, which is
referred to as ROVER II. ROVER II has been designed in-
house with application of five PIC16F877 microcontrollers
arranged in a Star distributed architecture. Four of these
microcontrollers are dedicated as co-controllers for motor
speed/position control, sensor control, power supply control
and keypad/liquid crystal display (LCD) control while the
fifth PIC microcontroller, which is the master controller,
overlooks and coordinates the functionality of the four co-
controllers.

A. Operation of the AGV
The AGV (ROVER II) which has been developed is

capable of following any predefined route of a complex
guide path for material handling and transportation within
a manufacturing system. The user firstly has to provide user
authentication by the verification of password followed by
specifying and uploading a particular path data using the
keypad and LCD module, which is then transferred and
stored on the master controller. Table I shows the respective
two bit logic path data coordinates that needs to be
appropriately entered by the user depending on the path
actions while Figure 2 shows the complex guide path. The
master controller uses this path data to control the co-PIC
motor controller to follow the predefined route by
appropriately varying the speeds of the two 12V, DM08GN
direct current (DC) motors.

The left and right line tracing sensors controlled by the
sensor co-controllers are used to keep the AGV on track
and additional front and side infra red (IR) ranging sensors
are used to detect obstacles and stations respectively. As the
stations are detected the AGV stops for 5seconds to
load/offload materials using the conveyor unit. Whereas, if
the obstacles are detected, the AGV stops until the obstacles
are removed from the front of the sensors. In both these
cases, whenever the AGV restarts after stopping, it
remembers the operation which it was performing before
being interrupted to stop and hence continues performing
the same task which it was doing before stopping. As a
result, ROVER II has memory capability to remember the
task that it was performing before stopping and recalls this
when it resumes operation. The co-PIC sensor controller
reads in all this sensor input as hardware interrupt inputs
and hence generates interrupt signals as either of these
sensors is activated.

A power management co-PIC power supply controller is
also incorporated which automatically swaps the AGV’s
supply battery with a backup battery, once the voltage of the
supply battery falls below a specified threshold. Figure 3
shows the mobile robotic platform.

Fig. 1. ROVER II’s distributed Star microcontroller architecture

Fig. 2. Complex guide path

TABLE I
BINARY REPRESENTATION OF ROVER II’S PATH ACTIONS.

Action Path Data [Binary]

Stop
Turn Right
Turn Left
Go Forward

00
01
10
11

B. Speed Control architecture of ROVER II
 The PWM signal supplied by PIC16F877 to the

Universal PWM H-bridge motor driver circuits has been
used to drive the DM08GN, 12V drive wheel motors of the
robot. Due to limited number of input pins available, three-
bit input control signals generated by Master controller
were used to generate eight distinct duty cycles as shown in
Table II.

These duty cycle combinations were easily generated
using equation 1, with a special condition applied to
generate zero percent duty cycle when three-bit inputs are
[000]. The Master controller provides two separate PWM
control signals for the left and right DC motors.

% Duty Cycle = [(3-Bit Input) * 6.25] + 50 (1)

IV. CONTROL SYSTEM DESIGN
The control system was designed for the drive wheels of

the robot. The main objective of the research was to design
and implement a seven-bit speed control for the robotic
wheel with the line tracing sensor unit on the robot,
allowing for duty cycles to be incremented at one percent.

Complete single control system allows sending of two
different input speeds to each of the drive wheels. Errors
from the difference in the two wheel speeds are compared
and corrected to the value of the reference wheel speed.

A. Hardware control system
The proposed three wire bus, n-bit serial latched

communication system used in the mobile robotic platform
controller is shown in Figure 4, while a block diagram
showing the data flow between Master controller and
motor co-controller of the robotic platform is presented in
Figure 5.

The system had to be designed such that the robotic
platform would be able to follow any predefined route of a
complex guide path as shown in Figure 2, for material
handling and transportation within a manufacturing
system. The system has a controller for the purpose of
issuing the speed and direction commands.

The system input speed supplied by the Master controller
is acted upon by the motor co-controller, which then
generates appropriate PWM signals with duty cycle equal to
the input speed. After each revolution of the reference drive
wheel, the difference in wheel speeds is calculated with
respect to the feedback received and the duty cycle of the
non-reference motor is either incremented or decremented
depending on whether the non-reference motor is slower or
faster respectively.

B. Electronics Design
The mobile robot has two DM08GN, 12V Tunglee

permanent magnet DC motors with a shaft encoder disk
each, two photo-transistor/emitter diode pair sensor boards,
ten Sharp infra red sensors, five Lynx motion sensors,
power supply control boards, sensor control boards, keypad
and LCD board, two H-bride motor controller boards and
five PIC16F877 bootlaoder boards designed in-house. The
electronic design of ROVER II which is fully described
elsewhere [1] and hence is not covered here.

PWM scheme with fixed frequency and varying duty
cycle was used to control the DC motors since it makes
implementation easier compared with the use of adjusting
inductance of motor windings, changing the stator voltage,
and adjusting the supply frequency [13]. The two H-bridge
motor driver boards designed in house has an extra circuit
consisting of AND and NOT gates as shown in Fig. 6. Due
to only one PIC motor co-controller board used to drive
both the drive wheels and the fact that PIC16F877
bootloader board has only two PWM pins (C1 and C2), this

Fig. 3. ROVER II: the mobile robotic platform

Fig. 5. The mobile robotic platform speed controller of the robotic platform
hardware.

Fig. 4. The propose three-wire bus, n-bit serial latched communication
system used in the mobile robotic platform controller

TABLE II
THREE BIT CONTROL SIGNALS AND ITS CORRESPONDING DUTY CYCLE

Decimal Equivalent 3-Bit Input Duty Cycle (%)

0
1
2
3
4
5
6
7

000
001
010
011
100
101
110
111

 0.00
56.25
62.50
68.75
75.00
81.25
87.50
83.75

circuit was designed to allow driving the motors in both
clockwise and anti-clockwise directions using only one
PWM signal.

V. DATA COMMUNICATION DESIGN
The earlier version of the mobile robotic platform

controller which has similar architecture as the current one
as shown in Fig. 4 consists of a Master controller and one
motor co-controller for controlling both wheels and the
peripheral hardware, except that it was designated to issue
two separate three-bit speed command for each motor. The
three-bit command architecture falls short and needs to be
replaced since only seven (23-1) speeds were possible with
this architecture and hence was not adequate for each
motor. For such medium to high-speed applications, the
concept of encapsulation/decapsulation in which the speed
is serially transmitted as a packet in binary equivalence
solves the problem.

In this section, the features utilized for developing the
three-wire bus, n-bit serial latched data communication
system for controlling the robotic wheel are discussed.
These features consist of packets, encapsulation and
decapsulation.

A. Packets
Today’s internet technology is an offshoot of the

ARPAnet developed by Advanced Research Projects
Agency (ARPA) of the US Department of Defense [14].
One of the primary goals of ARPA for the networking was
to allow multiple users to send and receive information
simultaneously over the same communication path such as
telephone lines. Since the success of ARPA in introducing
packets for data communication, the concept of packet has
become commonly used in data abstraction, mainly in
computing science and communication engineering (see for
example, [14] and [15]). Associated with packets, are
techniques of encapsulation, decapsulation, encryption, and
decryption. While encryption and decryption are mainly
reserved for security issues in data communication,
encapsulation and decapsulation are merely the ways of
encoding and decoding data that are transmitted.

The packet used in the research reported in this article
has a length of 14-bits, although limiting the size to a fixed
number is not necessary because it is under the control of
the systems designer to specify other length of bits, and in
general, n-bits could be used. The 14-bits are divided into
two sections, the first 7-bits from bit 0 to bit 6 are used to
capture the left motor speed while the second set of seven
bits from bit 7 to bit 13 are used to capture the right motor
speed. The maximum possible speed that can be
encapsulated into a packet is 127 (27-1). Robotic
applications require very low speeds, hence the architecture

presented in the present paper meets the requirements of a
wide cross-section of engineering applications ranging from
low, medium and high speeds.

The Robotic and Automation Group (RAG) at The
University of the South Pacific is utilizing the three-wire
bus, n-bit serial latched data communication system for
controlling a milling motor that has maximum speed of
1800 r/min and three stepper motors in a milling machine
being developed in-house [16]. In practice, only maximum
of 9–10 lines would be required to transfer milling speeds
in parallel mode. Figure 7 shows the packet layout used for
the research reported in this article.

B. Encapsulation
The process of encapsulation (encoding) takes place at

the Master controller and involves converting the speed
data into a packet for the purpose of transmission. The
method used in realizing encapsulation is that of conversion
of the decimal number to its binary equivalence that are
bundled into the packet as shown in Figure 8.

C. Decapsulation
Decapsulation (decoding) commences at the motor co-

controller once the packets are received as shown in Figure
9.

PWM

DIR

Fig. 6. AND and NOT gate circuit on the H-bridge motor driver circuit.

Fig. 7. Packet Layout

Fig. 8. Mater controller’s encapsulation sub-routine

Fig. 9. Motor co-controller’s decapsulation sub-routine

AL1

BL1

D. Method of Transmission from Master Controller
Bootloader Board

Since the data being transmitted are the entire packet,
they need to be first converted into a binary format, one bit
at a time and sent from the Master controller to the motor
co-controller.

There is a sequence to follow for PIC bootloader to
transmit data accurately. Firstly, PIC bootloader has to be
in the latch enable or data receive mode. Secondly, the
clock has to be high to make PIC bootloader ready to read a
bit of data being sent and finally, when the data are
completely sent, the clock is made low and the latch is
disabled. From experimentation, some amount of delay
would be needed after the clock has been made low. Figure
10, which is self-explanatory, shows the timing
requirements and specification for the data communication
sequence.

E. Method of reception on Motor Co-controller
Bootlaoder Board

The motor co-controller only receives data if it is in the
latch enable or data receive mode. Secondly, the clock has
to be high. Once the data is available at the input, the clock
has to be low in order for the motor co-controller to read
the input. The latch is disabled and decapsulation
commences once the motor co-controller successfully
receives the serial data that the master PIC bootloader sent.

F. Merits of the current data communication protocol
An earlier version of the communication used six lines,

three per each motor speed for motor co-controller from the
Master controller. The current three-wire bus therefore
presents a significant saving in communication. It frees
three lines from the Master controller, which could later be
used for other applications and also the present three-wire
bus communication protocol significantly expands the
range of speeds attainable. For example, the three-line
protocol is limited to maximum of seven possible speeds
whereas the three-wire bus communication protocol caters
for up to 127 possible speeds.

VI. SOFTWARE DESIGN
The software was designed in such a way so as to enable

a standard pattern of operation. The software coding for
this project was done in PIC C compiler, a standard
compiler for PIC microcontroller. Even when all the
separate hardware is connected together, the unity among
the components and the wholeness of the system is only
achieved through software implementation. The Master
controller uses two types of interrupts: Timer 0 interrupt

and Port B interrupt while the motor co-controller only uses
Port B interrupt.

The Master controller starts of by going through an
initialization process. Here all the pins on Port E together
with all the output pins on Port D are first set to zero. Since
Port E pins E0 to E3 are used to send the speed control
signals to the motor co-controller inputs, resetting these
ports make sure that the speed communication latch is
disabled. Resetting Port D pin D6 disables the interrupt
signal to the keypad and LCD co-controller and pins D0
and D1 sends logic zero signals to the direction control of
the Universal PWM H-bridge motor driver circuits. Next
the Empty_Array() subroutine is called which sets the
content of the path data to zero. After this, the master
controller calls the Communication_Link() subroutine
function which enables interrupt RB (INT_RB) and
disables all other interrupts and at this time master
controller sits idle waiting for the user to enter the required
authentication and path data. Once the user has entered the
path data, master controller checks if any station or obstacle
is detected and then sends the appropriate speed control
signals to motor co-controller.

The motor co-controller commences by setting pins C1
and C2 as PWM pins and then disabling the two motors by
sending logic high to the two Universal PWM H-bridge
motor driver boards. It then enables the Port B interrupts
and waits for the command from master. Upon receiving
the speed command, it then enables or disables the H-
bridge motor driver boards and generates the appropriate
PWM signals. It then determines whether the state of pins
B4 and B7 has changed by comparing the present and past
states of the two pins. Whenever there is a change, the
respective two counters are incremented signifying the
motor encoder disk has rotated. The motor co-controller
then checks whether the two motor input speeds from
master are same or not. If the input speeds are same, then
depending on the speed feedback from the two encoders,
the duty cycle of the non-reference motor is either
incremented or decremented depending on whether the
non-reference motor is slower or faster with respect to the
reference motor.

The resolution of the vehicle is given by equation 2,
where NS, rwheel are the number of encoder slots and the
radius of the vehicle wheel respectively. For ROVER II,
NS = 32 and rwheel = 100 mm therefore the resolution is
given as:

Rres =
SN
wheelr π2

 =
32
(0.1) 2

= 0.0196 m (2)

The number of pulses required for any distance can be
calculated using equation 3, where Rres, x are the resolution
of the encoder and the distance that the vehicle travels
respectively. Hence, the number of pulses required for
ROVER II to travel 1m is:

Npulses =
resR
x

 =
0196.0

1
 = 51 pulses (3)

Fig. 10. Timing requirements and specifications for data communication.

VII. EXPERIMENTAL RESULTS
The speed/duty cycle versus time was carried out. A

program was incorporated within the initial and the
proposed speed control to print the duty cycle of the drive
wheels at certain intervals. An interval of 20ms with duty
cycle increasing by one percent at every interval was chosen
since it gave a smooth start to the mobile robot without any
jerks and also the desired speed was obtained in less than
two seconds. This data was collected and the respective
graphs were plotted as shown in Figure 11.

With the proposed architecture, the mobile robot now
starts by increasing its duty cycle slowly at one percent
increment every 20ms and once it reaches its desired speed,
it then moves with the desired constant speed as shown in
Figure 11. This new architecture allows mobile robot to
move as in real life. For the 3-line architecture with only
seven possible speeds for moving the mobile robot and the
change in duty cycle from one speed to the other actually
took place by jerking the mobile robot to the desired speed.
This is shown in Figure 11 for the initial architecture where
the mobile robot starts from rest to go forward at 88 percent
duty cycle.

A delay of 20ms was used for this application. For other
applications, depending on the robotic platform the time to
reach its desired speed can easily be specified by the
designer by appropriately changing the delay between each
increment.

The slope for the proposed architecture of Figure 11 is
the acceleration rate of the mobile robot and is calculated to
be 0.05. Since speed is directly proportional to duty cycle,
we can conclude that the mobile robot will increase speed
with a slope of 0.05.

VIII. CONCLUSION
This paper presents the design, implementation and

experimental results of an effective data communication
protocol implemented on a distributed PIC microcontroller
architecture based AGV named ROVER II. In a robot, the
three-line data communication protocol restricts the control
on the speed of the wheel, see for example [1], where only
eight distinct duty cycles were possible and any change in
speed will occur in jerks. The work done shows that the
proposed three-wire bus, n-bit serial latched data
communication protocol for controlling the motion of the
robotic wheel with the line tracer sensor unit on the robot,

is by far more effective than the three-line data
communication protocol used in an earlier architecture as
discussed in section V(F). The proposed architecture also
allows for ramping of speeds as in real life situations as
discussed in section VII.

REFERENCES
[1] R. Singh, “A Distributed PIC Microcontroller Architecture for AGV

Application,” MSc thesis, University of the South Pacific, Suva, Fiji,
2006.

[2] G. C. Onwubolu, I. Jannif, M. Tazil, and A. Singh, “Mobile robotic
platform controller with an effective data communication protocol,”
Journal of Engineering Manufacturer-Proceedings Part B, Vol 220,
pp. 1175-1188, 2006.

[3] J. Mallon, O. Ghita, and P. F. Whelan, “An Integrated Design Towards
the Implementation of an Autonomous Mobile Robot,” in Proc. of the
Eight International Conference on Optimization of Electrical and
Electronic Equipment, Brasov, Romania, 2002.

[4] B. Sarker, and E. Hoff, “An overview of path design and dispatching
methods for automated guided vehicles,” Integrated Manufacturing
Systems, 9(5):296-307, 1998.

[5] R. C. Dorf, “Robotics and automated manufacturing,” 1983a (Prentice-
Hall, Reston).

[6] C. Weisbin, G. Saussure, and D. Kammer, “Selfcontrolled, a real-time
expert system for autonomous mobile robot,” Computers in Mech. Eng.,
1986, 12–19.

[7] J. Borenstein and Y. Koren, “Motion control analysis of a mobile
robot,” Trans. ASME, J. Dynamics, Msmnt Control, 1986, 109(2), 73–
79.

[8] D. Carnegie, D. L. Loughnane, and S. A. Hurd, “The design of a mobile
autonomous robot for indoor security applications,” in Proc. Instn.
Mech. Engrs, Part B: J. Engineering Manufacture, 2004, 218(B5),
533–543.

[9] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, p. 14-23, 1986.

[10] R. A. Brooks, “New Approaches to Robotics,” Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA
02139.

[11] K. Jamoussi, M. Ouali, and H. Charradi, “A Sliding Mode Speed
Control of an Induction Motor,” American Journal of Applied
Sciences, 4(12): pg 987-994, 2007.

[12] S. Tunyasrirut, T. Suksri, and S. Srilad, “Fuzzy Logic Control for a
Speed Control of Induction Motor using Space Vector Pulse Width
Modulation,” World Academy of Science, Engineering and
Technology 25, 2007.

[13] M. A. El-Sharkawi, “Fundamentals of electric drives (Brooks/Cole,
Belmont, CA),” 2000.

[14] H. M. Dietel, “Cþþhow to program,” Prentice Hall, New Jersey, 2001.
[15] J. C. Campbell, “Programmer’s Guide to Serial Communications,” 2nd

edition, 1994, pp. 98–100, (SAMS, Indianapolis, IA).
[16] I. N. Jannif, “Development of a CNC Milling Machine,” Unpublished

Postgraduate Project Report, University of the South Pacific, Fiji, 2005.

BIBLIOGRAPHY

Tunglee Motor Time vs Duty Cycle

0

20

40

60

80

100

0 2000 4000 6000

Time (ms)

D
ut

y
Cy

cl
e

(%
)

Initial Architecture

Proposed
Architecture

Fig. 11. The mobile robot’s speed versus time with the initial and proposed

architecture

Ravinesh Singh is with the School of
Engineering and Physics, University of The South
Pacific, Suva, Fiji. His area of research and
teaching interest includes microprocessors and
robotics.

Shiu Kumar received his Bachelor’s Degree in
Electrical & Electronics Engineering from
University of The South Pacific, Fiji, 2008.
Currently he is with Department of Electrical &
Electronics Engineering, Fiji National University
and pursuing his Postgraduate Diploma in
Electronics Engineering. His area of interests
includes automation, robotics and image
processing.

