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Abstract—As learning methods of a multilayer perceptron
(MLP), we have the BP algorithm, Newton’s method, quasi-
Newton method, and so on. However, since the MLP search
space is full of crevasse-like forms having a huge condition
number, it is unlikely for such usual existing methods to
perform efficient search in the space. This paper proposes a
new search method which utilizes eigen vector descent and
line search, aiming to stably find excellent solutions in such an
extraordinary search space. The proposed method is evaluated
with promising results through our experiments for MLPs
having a sigmoidal or exponential activation function.

Index Terms—multilayer perceptron, polynomial network,
singular region, search method, line search

I. INTRODUCTION

The search space of a multilayer perceptron (MLP) is
reported to be full of crevasse-like forms such as crevasse-
local-minima or a crevasse-gutter having a huge condition
number (106 ∼ 1017) [4]. In such an extraordinary space,
it will be hard for usual existing search methods to find
excellent solutions.

In MLP learning, the BP algorithm is well known as a first-
order method, but its learning is usually very slow and will
get stuck in crevasse-like forms. Second-order methods, such
as Newton’s method and quasi-Newton method, can converge
much faster into a local minimum or gutter; however, it will
not be easy even for them to find a descending route once
they get stuck in a gutter [4].

Recently a new search method [3] has been invented,
which directly positions hidden units within input space by
numerically analyzing the curvature of the output surface.

This paper proposes another new search method which
utilizes eigen vector descent and line search, aiming to stably
find excellent solutions in such an extraordinary search space
full of crevasse-like forms. Our experiments using sigmoidal
MLP and polynomial-type MLP showed that the proposed
method worked well for artificial and real data.

II. BACKGROUND

Consider a multilayer perceptron (MLP) having J hidden
units and one output unit. The MLP output f for the µ-th
data point is calculated as below.

f(xµ; w) = w0 +
J∑

j=1

wjz
µ
j , zµ

j ≡ g(w
T
j xµ) (1)

Here w = {w0, wj ,wj , j = 1, · · · , J} denotes a weight
vector. Given data {(xµ, yµ), µ = 1, · · · , N}, we want to
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find the weight vector that minimizes sum-of-squares error
E shown below.

E =
1
2

N∑
µ=1

(fµ − yµ)2, fµ ≡ f(xµ;w) (2)

A. Existing Search Methods

(1) BP algorithm and Coordinate Descent
The batch BP algorithm is a steepest descent method, and

updates weights using the following equations. Here ηt is a
learning rate at time t, and g(w) denotes a gradient at w.

wt+1 =wt − ηtgt, gt≡g(wt), g(w)≡ ∂E
∂w

(3)

The so-called BP algorithm is a stochastic descent method
which updates weights each time a data point is given. Both
BP algorithms are usually very slow and likely to get stuck
at points which are not so good.

Coordinate descent method only changes a single weight
with the remaining weights fixed. Since the coordinates
of weights are orthogonal, the method selects the descent
direction among the orthogonal candidates. There are several
ways of selecting a suitable coordinate [2].

(2) Newton’s method
The idea behind Newton’s method is that the target func-

tion is approximated locally by a quadratic function, and
the method usually converges much faster than first-order
methods stated above. The method updates weights using
the following equations.

wt+1 =wt−H−1
t gt,Ht≡H(wt),H(w)≡ ∂2E

∂wT∂w
(4)

Here H(w) denotes the Hessian matrix at w. At a strict local
minimum w∗ the Hessian matrix H(w∗) is positive definite;
however, in a crevasse-like gutter having a huge condition
number the positive definiteness and the search direction
are in a precarious condition. Moreover, the additional cost
of computing the Hessian matrix is required, and Newton’s
method may head for a local maximum.

(3) quasi-Newton methods and BPQ
Quasi-Newton methods employ an approximation to the

inverse Hessian in place of the true required in Newton’s
method. The approximation can be built up by using a series
of gradients obtained through a learning process. Let Gt

be an approximation to the inverse Hessian, then the search
direction dt is given as below.

dt = −Gtgt (5)

Once the search direction is determined, a step length how
far the search point should be moved is determined by line



search. There are a number of techniques for performing line
search [2]. BPQ algorithm [5] employs the BFGS update
for calculating the inverse Hessian and the second-order
approximation for calculating a step length.

B. Properties of MLP Search Space

(1) local minimum, wok-bottom, gutter, and crevasse
Here we review a critical point where the gradient ∂E/∂w

of a target function E(w) gets zero. In the context of mini-
mization, a critical point is classified into a local minimum
and a saddle. A critical point w0 is classified as a local
minimum when any point w in its neighborhood satisfies
E(w0) ≤ E(w), otherwise is classified as a saddle.

Now we classify a local minimum into a wok-bottom and a
gutter [4]. A wok-bottom w0 is a strict local minimum where
any point w in its neighborhood satisfies E(w0) < E(w),
and a gutter is a set of points connected to each other in the
form of a continuous subspace where any two points w1 and
w2 in a gutter satisfy E(w1) = E(w2) or E(w1) ≈ E(w2).

When a point has a huge condition number (say, more than
105), we say the point is in a crevasse. A wok-bottom and a
gutter in a crevasse are called a crevasse-wok-bottom and a
crevasse-gutter respectively.

(2) singular region
One of the major characteristics of MLP search space is

the existence of singular regions [1], [4], [8]. Here MLP(J)
denotes an MLP having J hidden units. A singular region is
defined as a search subspace where the gradient is equal to
zero (∂E/∂w = 0) and the Hessian matrix is not positive
definite with at least one eigen value equal to zero. Thus, a
singular region is a flat subspace, and points in and around
a singular region have a huge condition number.

How is a singular region created? It is known that among
MLPs the following causes three types of reducibility [7].

a) wj = 0
b) wj = (wj0, 0, · · · , 0)T

c) wj1 = wj2

Based on the above reducibility, a singular region in the
search space of MLP(J) is generated by applying the fol-
lowing reducible mapping to a local minimum ŵJ−1 =
{û0, ûj , ûj , j = 2, ..., J} of MLP(J − 1) [1], [4].

θ̂J−1
α−→ Θ̂

α

J , θ̂J−1
β−→ Θ̂

β

J , θ̂J−1
γ−→ Θ̂

γ

J

Θ̂
α

J ≡ {θJ | w0 = û0, w1 = 0,
wj = ûj ,wj = ûj , j=2, · · · , J} (6)

Θ̂
β

J ≡ {θJ | w0 + w1g(w10) = û0,

w1 =[w10, 0, · · · , 0]T ,
wj = ûj ,wj = ûj , j=2, · · · , J} (7)

Θ̂
γ

J ≡ {θJ | w0 = û0, w1 + w2 = û2,

w1 =w2 = û2,

wj = ûj ,wj = ûj , j=3, · · · , J} (8)

(3) another cause of a huge condition number
As stated above, points in and around a singular region

have a huge condition number, which causes stagnation of
learning. Moreover, there exists another aspect why MLP
search space has points having a huge condition number.

Consider the following simple MLP.

f = w0 + xw11 (9)

Let the range of x be (0, 1), and the current values of
weights be as w0 = 1 and w11 = 1. When the value of
w0 is incremented by one, the MLP output changes widely
as shown in Fig. 1 (a). Meanwhile, when the value of w11

is similarly incremented by one, the MLP output hardly
changes as shown in Fig. 1 (b). As shown in this simple
example, the influence over the MLP output differs widely
among weights, which may generate points having a huge
condition number.
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(a) w0 is changed from 0 to 1
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(b) w11 is changed from 0 to 1

Fig. 1. How the change of a weight influences the output of MLP.

III. EIGEN VECTOR DESCENT

In a crevasse-gutter usual existing methods will not pro-
ceed along the bottom of a gutter, but will try to go down
heading for the opposite steep wall, and finally will get stuck
around the bottom of the gutter.

As a robust search method which can proceed along the
bottom of a crevasse-gutter, we propose a new method which
utilizes a set of eigen vectors to find a desirable search
direction even in a crevasse-gutter.

Let H , λm, and vm be the Hessian matrix, its eigen value,
and the corresponding eigen vector, respectively.

Hvm = λmvm (10)

Note that eigen vectors are orthogonal to each other if their
eigen values are different. Then, we can expect that one of
eigen vectors is almost parallel to the bottom of a crevasse-
gutter as shown in Fig. 2.

 

 

a search space
the minimum point
the current point
eigen vectors

Fig. 2. Eigen vectors in a search space having a huge condition number



Now that the candidates of the search direction are deter-
mined, we consider line search which determines an adequate
step length how far the search point should be moved. There
are many techniques for line search [2], and the second-order
Taylor expansion is sometimes used as line search by curve
fitting. Here we consider the third-order approximation as
well to deal with a negative curvature.

Let vm,t be the m-th eigen vector of the Hessian matrix at
time t; then, the target function E at wt along the direction
vm,t is expressed as ψt(η) = E(wt + η vm,t). The third-
order Taylor expansion is shown as follows.

ψt(η) ≈ ψt(0) + ψ′
t(0)η +

1
2
ψ′′

t (0)η2 +
1
6
ψ′′′

t (0)η3 (11)

The solution ηt which minimizes the above ψt(η) can be
easily obtained by solving the quadratic equation. If we have
two solutions positive and negative, we select the positive
one. When both solutions are positive, we select the smaller
one. Moreover, if we don’t have a positive solution, we
employ the second-order Taylor expansion.

Now, we describe the proposed search method, which
is called EVD (eigen vector descent). EVD repeats the
following basic search cycle until convergence. The basic
cycle at time t is shown below.

Basic cycle of EVD :
(step 1) Calculate the Hessian matrix and get all the eigen
vectors {vm,t, m = 1, · · · ,M}.
(step 2) Calculate repeatedly the adequate step length ηm,t

for each eigen vector vm,t by using the second- or third-
order Taylor expansion.
(step 3) Update weights using the suitable search direction
d∗

t and its step length η∗t .

wt+1 ←− wt + η∗t d∗
t (12)

Here the pair of d∗
t and η∗t is determined based on all the

eigen vectors and their step lengths obtained above.

We consider three ways of performing step 3. As the first
one, all the eigen vectors are considered as candidates and
the pair of eigen vector and its step length which minimizes
E is selected as d∗

t and η∗t . This is called EVD1.
As the second one, a linear combination of all the eigen

vectors is considered as a single candidate. More specifically,∑
m ηm,tvm,t gives the search direction and step length. This

is called EVD2.
As the third one, all the eigen vectors and the linear

combination stated above are considered as candidates, and
the best one is selected as d∗

t and η∗t . This is called EVD3.

IV. EXPERIMENTAL EVALUATION

The proposed methods are evaluated for MLPs having a
sigmoidal or exponential activation function using two artifi-
cial data sets and one real data set. The forward calculation
of a sigmoidal MLP goes as below.

f = w0 +
J∑

j=1

wjzj , zj = σ(wT
j x) (13)

The forward calculation of a polynomial-type MLP goes as
shown below. This type of MLP can represent multivariate

polynomials [6]. Note that there is no bias unit in the input
layer of this model.

zj =
K∏

k=1

(xk)wjk = exp

(
K∑

k=1

wjk lnxk

)
, (14)

f = w0 +
J∑

j=1

wjzj (15)

The proposed methods have six types: EVD1, EVD2, and
EVD3 are combined with two kinds of line search using the
second- or third-order Taylor expansion. EVD1 (2nd), for
example, indicates EVD1 combined with line search using
the second-order Taylor expansion. As the existing methods,
BP, CD (coordinate descent), and BPQ are combined with
two kinds of line search. Thus, BP (2nd), for example,
follows the same notation as above.

The basic cycle is repeated until one of the following is
satisfied: the step length gets smaller than 10−30, the absolute
value of any gradient element gets smaller than 10−30, or
the number of sweeps exceeds 20, 000. For each data set,
learning was performed 100 times changing initial weights.
During a learning process we monitor eigen values and the
condition number.
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Fig. 3. Learning Process of Sigmoidal MLP for Artificial Data 1



A. Sigmoidal MLP for Artificial Data 1

Artificial data 1 was generated for a sigmoidal MLP. The
value of xk was randomly selected from the range (0, 1), and
teacher signal y was calculated using the following weights;
500 data points were generated (N = 500).

w0 = 5, w1 = 10, w1 =


1
22
23
24

 (16)

Weights are randomly initialized from the range (−1,+1),
and the final weights are classified as correct if any difference
between the corresponding weights of the original and the
final is less than 10−3.

Figure 3 shows how training error E decreased through
learning of BP (2nd), BPQ (2nd), and EVD3 (2nd). We
can clearly see BP was trapped in the first gutter, and BPQ
somehow escaped it but got stuck in the second gutter, while
EVD3 (2nd) escaped even the second, reaching the true
minimum.

All six types of proposed methods reached the correct
weights for all 100 runs. Any existing method, however,
didn’t reach the correct weights at all.
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Fig. 4. How Eigen Values and the Condition Number Changed through
EVD3 (2nd) Learning of Sigmoidal MLP for Artificial Data 1

Figure 4 shows how eigen values and the condition number
changed during learning of EVD3 (2nd). The largest eigen
value kept being almost constant through learning, while
the smallest one decreased rapidly in an early stage, which
reflected the growth of the condition number. That is, the
condition number increased from 104 to 1016 in an early
stage of learning, and then kept vibrating around 1016. Note

also that there is a remarkable tendency that a rapid increase
of the condition number occurs simultaneously with a rapid
decrease of training error E. Since the condition number of
the final point is around 1016, the final point is a crevasse-
wok-bottom.

B. Polynomial-type MLP for Artificial Data 2

Here we consider the following polynomial.

y = 5 + 10x22
1 x

23
2 x

24
3 (17)

Artificial data 2 was generated for a polynomial-type MLP.
The value of xk was randomly selected from the range (0, 1),
and teacher signal y was calculated using the above equation;
200 data points were generated (N = 200). The weight
initialization and the correctness judgement were performed
in the same way as artificial data 1.

Figure 5 shows how error E decreased through learning.
Much the same tendency as in artificial data 1 was observed;
that is, BP was trapped in the first gutter, BPQ was trapped
in the second gutter, while EVD3 escaped these gutters,
reaching the correct weights in most runs.
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Fig. 5. Learning Process of Polynomial-type MLP for Artificial Data 2

Table I shows the number of success runs for each method.
Here success means reaching the correct weights. Since this
is a hard problem, any existing method could not reach the



correct weights at all for all 100 runs. Among EVD1, EVD2,
and EVD3, EVD3 performed best as a whole. As for line
search, the third-order Taylor expansion worked better than
the second-order for this data.

TABLE I
THE NUMBER OF SUCCESSES OF POLYNOMIAL-TYPE MLP LEARNING

FOR ARTIFICIAL DATA 2 (OUT OF 100 RUNS)

Method EVD1 EVD2 EVD3 BPQ
Taylor Exp. 2nd 3rd 2nd 3rd 2nd 3rd 2nd 3rd

Success Count 37 49 0 80 57 69 0 0

CD BP
2nd 3rd 2nd 3rd

0 0 0 0

Figure 6 shows how eigen values and the condition number
changed during learning of EVD3 (3rd). The largest eigen
value kept being almost constant after an early stage, while
the smallest one went rapidly down, up and down in an early
stage, and then kept being almost constant. After an early
stage, the condition number kept being huge around 1016.
Around the 200th sweep a rapid increase of the condition
number occurred simultaneously with a rapid decrease of
training error E. The final point is a crevasse-wok-bottom.
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Fig. 6. How Eigen Values and the Condition Number changed through
EVD3 (3rd) Learning of Sigmoidal MLP for Artificial Data 2

C. Sigmoidal MLP for Real Data

As real data, ball bearings data (Journal of Statistics
Education) (N = 200) was used. The objective is to estimate
fatigue(L50) using load(P), the number of balls (Z), and
diameter (D). The weight initialization was performed in the

same way as artificial data 1. In this experiment a weak
weight decay regularizer (coefficient 10−5) was employed.

Figure 7 shows how training error E decreased through
learning of BP (2nd), BPQ (2nd), and EVD3 (3rd). BP was
trapped in a relatively large error gutter and could not move
any further, and BPQ performed relatively well with a few
good-quality solutions, while EVD3 (3rd) worked better than
BPQ as a whole, finding many better solutions than BPQ
could reach.
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Fig. 7. Learning Process of Sigmoidal MLP for Real Data

Figure 8 shows how eigen values and the condition number
changed during learning of EVD3 (3rd). In this experiment,
the largest and the smallest eigen values kept being almost
constant after a very early stage. The condition number
stayed high between 1015 and 1020 throughout the learning
except the beginning.

V. CONCLUSION

This paper proposed a family of new search methods called
EVD, which utilizes eigen vector descent and line search,
aiming to stably find excellent solutions in a search space
full of crevasse-like forms. Our experiments using sigmoidal
MLPs and polynomial-type MLPs showed that the proposed
methods worked well, moving through a crevasse-like form
for two artificial data sets and one real data set. In the future
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Fig. 8. How Eigen Values and the Condition Number changed through
EVD3 (3rd) Learning of Sigmoidal MLP for Real Data

we plan to reduce the load for computing eigen vectors, and
try to apply our methods to wider variety of data sets to
enlarge the applicability.
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