
 

 
Abstract—Quantum dot semiconductor lasers are studied by 

using an equivalent circuit model. There are many circuit 
models in literature and we simulated the static and dynamic 
responses of these circuit models by utilizing HSPICE circuit 
simulator. In this work, the rate equations are applied to the 
laser behaviors and it is found that for a self-assembled 
InGaAs-GaAs quantum dot Laser, the laser coverage factor 
increment can increases the laser threshold current, the 
external quantum efficiency, the output power and the 
modulation bandwidth. It is shown that, for lowered 
inhomogeneous broadening factor there is more optical gain in 
these lasers.  
 

Index Terms—Quantum dot lasers, equivalent circuit 
modeling, rate equations, modulation response 
 

I. INTRODUCTION 

EMICONDUCTOR quantum dot (QD) lasers are presented 
to show a much higher performance compared to usual 

quantum-well (QW) lasers, in many aspects including 
threshold current, thermal stability, modulation bandwidth, 
and spectral band-width, that is similar to an impulse 
function due to discrete mode density [1]. QD lasers have 
better carrier confinement with respect to the QW lasers due 
to three-dimensional confinement which make them as ideal 
candidates for especial applications such as quantum 
information. After the appearance of self-assembled (SA) 
InAs/GaAs QD lasers with a lasing wavelength higher than 
1.3µm, detailed study was carried out on their predicted 
function that will happen in photonic networks. These 
nanoscale devices are used to solve the well-known problem 
of "power-speed-tradeoff" too. During the last decade, other 
applications of SAQDs in ultra-fast semiconductor optical 
amplifiers, QD-based Mach-Zehnder interferometer and 
vertical cavity QD switches are reported.   
The most useful and well-known method to study the 
dynamics of the carrier and photon in lasers is to solve rate 
equations for carriers and photons. Recently, some circuit 
models are introduced for QD, QW, and bulk lasers 
modeling [2]–[7]. 
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In this paper, we have studied the effect of coverage and 
inhomogeneous factors on L-I curve and the modulation 
response of SA InAs/GaAs QD lasers, based on the 
developed models. The results obtained in this study are 
matched with the numerical results reported by other 
researchers [8]-[10].  
The article is organized as follows: 
Section II explains the physics and theory of SA InAs/GaAs 
QD lasers. Section III describes the rate equations for QD 
lasers and introduces an equivalent circuit models for rate 
equations, and the simulation results are provided in section 
IV. Finally, the conclusions are presented in section V.  
 

II. THEORY OF SA QD SEMICONDUCTOR LASERS 

Using the SA processes for fabricating a QD laser, it is 
possible to have wide variety of different semiconductor 
lasers. Depend on the discrete energy levels of a QD laser, 
one important aspect of SAQD lasers is the carrier 
relaxation (phonon bottleneck problem). Besides of this 
problem, other physical specifications of SAQDs such as 
inhomogenous broadening of the optical gain of single dots 
have important effects. Considering these points, we can use 
a schematic diagram for energy band of a SAQD laser as 
shown in Fig. 1 [8].  

 
Fig. 1.  The active region energy band diagram of a SAQD laser 

 
The injected carriers penetrate across the separate 

confinement hetero-structure (SCH) layers, relax at the 
quantum well, and then relax inside the dots. Some carriers 
are recombined outside (in the quantum well area) and 
inside the dots in two radiative or non-radiative ways. 
Above lasing threshold, the ground state carriers emit the 
photons at lasing mode. It is due to the stimulated emission 
process. Inside the quantum dot, charge neutrality exists and 
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we assumed that just one electron and one hole are formed. 
There are some relaxation times which can be expressed as: 

s: The diffusion time constant in the SCH region, 
sr: The carrier recombination in the SCH region, 
qe: The carrier emission from the QW to the SCH 

region,  

e: The carrier emission from the QD to the QW,  

qr: The carrier recombination in the QW, 
d: The carrier relaxation into the QD, and finally 
r: The recombination in the QD. 

sN , qN and N are the carrier numbers in the separate 

confinement hetero-structure (SCH) layer, in the QW and 
QD layers respectively.  

The linear optical gain of the active area of QD laser is 
determined based on density matrix theory, by: 
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Where rn is the refractive index, DDVNξ   is the 

coverage factor defined as the product of QDs, DN , by dot 

volume DV , P is the carrier occupation probability, Γ0 is 

inhomogeneous broadening. It is considered that the shape 
of quantum dot to be like a cylinder with the radius of R and 

the height of H, so we will have HRπVD
2 . If

vcI ,   

shows the overlap integral between the envelope functions 
of an electron and a hole, the transition matrix element will 
be determined as follows: 
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The parameter 2M is resulted from the first-order k–p 
interaction between the conduction band and valence bands 
and it is defined as: 
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Where gE is band gap, 
em refers to the effective mass of 

electron and Δ is spin-orbit interaction energy of the 
quantum dot material [1] . Based on Pauli Exclusion 
Principle, carrier occupation probability in the QD ground 
state is defined as follows: 
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In this relation, Wa HdlNV  is the volume of the active 

area where d is the strip width, L is the length of cavity and 

WN is the dot layers at the active area.  

 

III. MODELING THE SA QD LASERS 

A. Rate Equations 

Carrier behavior in SAQD semiconductor lasers are 

expressed by a set of coupled differential equations name 
rate equations. Assume S be the photon number and I the 
injected current, theses equations are [8], [9]: 
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Where mε is the nonlinear gain coefficient and )1(
mg is 

defined in (1). The photon lifetime in the cavity, p, is 
achieved by the following relation [9]: 
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Where, R1 and R2 are the reflectivity of cavity mirror, L is 
the cavity length, and  is the internal loss of the cavity. As 
the carrier relaxation is excluded by the filling mode due to 
Pauli Exclusion Principle, the relaxation rate is expressed 
as: 
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Where,  1
0
τ is the relaxation rate when the ground state is 

not occupied, i.e. P=0. If P approaches 1, the relaxation rate 
is decreased, the result which means a higher level 
occupation.  
Solving the rate equations for the carriers and photons is the 
most useful method to discuss dynamic and static features of 
lasers.  

 

B. Equivalent Circuit Model 

To analyze the SAQD behavior, an equivalent circuit model 
was selected and simulated by powerful simulator HSPICE. 
The carrier population in SCH, WL, and QD is defined 
using the following relations: 
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Here, 0sN , 0qN and 0N are the equilibrium carrier densities 

at SCH, WL, and QD, respectively, while sn , qn and Dn  
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match the ideal diode factors that are considered to be equal 

to 2 for GaAs-AlGaAs tool [11] , [12] . qV and DV are 

overall voltages for the wetting layer (WL) and QD, 
respectively. To improve the convergence properties of the 
model at the simulation time, we change the output power of 

laser to the new variable of mV with the following relations 

[4]: 

 2δVP mout                                             (9)              

Whereδ is an arbitrary constant, which is selected as about 
10-60 in our simulations. After substituting (8-a)-(8-c) into 
the (5-a)-(5-c) term by term, and some simplification the 
following relations can be found: 
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With the following definitions: 
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With the following definitions: 
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With the following definitions: 
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Where  is the coupling efficiency of the spontaneous 
emission. 

From (5-d) and (24): 
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The following relation will satisfy: 
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Where outE is converted to mV through the output power 

of outP by the following relation: 
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Based on the above equations, it is possible to construct an 
equivalent circuit as shown in Fig. 2 [2].  
Here, p and n are the electrical terminals of equivalent SA 

QD laser and outP  is the electrical equivalent voltage in the 

output terminal. Diodes D1 and D2, and the current sources 
of IC1 and IC2 model charge storage and carrier trapping for 
SCH carriers. Diodes of Dw1 and Dw2, current sources of 
ICW1 and ICW2 present the charge storage and carrier 
emission in WL, while Gr1 are expressed for carrier 
recombination effects. Current source of 4IT1 express the 
carrier trapping by WL. Diodes of DD1 and DD2, and current 
sources of ICD1 and ICD2 express the charge storage and 
carrier emission in QD, while Gs2 express the recombination 
effects and Gm for the effect of stimulated emission. Rph and 
Gph model the time-based change in photon density under 
spontaneous and stimulated emission effects that are 

determined by Gk1 and Gk2, respectively. outE produces the 

optical output power of the laser in the form of a voltage.  
Geometric parameters are specified in Table 1.  
 

IV. SIMULATION RESULTS 

At first, we study of coverage factor effect on the L-I 
characteristic of QD laser. Fig. 3 shows L-I characteristic of 
QD lasers for different values of =0.07, 0.1, 0.2, 0.4, when 
τqr=0.5ns, τr=2.8ns and τ0=10ps. 
As shown in the figure, the threshold current increases as 
the QD coverage factor increases more than 0.1, due to the 
increase in QD volume density, and as the result of need for 
more carriers in order to provide population inversion. On 
the other hand, the increase of coverage leads to a smaller P 
(occupation probability in the QD ground state), and this, in 
turn, leads to shorter relaxation time. 
Consequently, there is an increase in quantum efficiency 
and output power. Numerical results reported in Fig. 4 
shows the L-I characteristic for Γ0, as the variable parameter 
Γ0=5, 10, 20, 30, 40meV, when τqr=0.5ns, τr=2.8ns and 
τ0=10ps. It is clear that the decrease in the line width Γ0 will 
have the same effect as coverage on the L-I curve of QD 
lasers.  As it can be seen, the decrease of Γ0 leads to the 
increase of the optical gain [see (1)], the result is a smaller P 
in the leasing, shorter relaxation lifetime and hence, the 
increase of quantum efficiency and laser output power. 

 

 

 

 
 

Fig. 2.  An equivalent circuit mode for SA QD lasers 

 

 
Fig. 3.  Output power versus injected current with τqr=0.5ns, τr=2.8ns and 

τ0=10ps and variable parameter of =0.07, 0.1, 0.2, 0.4 
 



 

 

 
Fig. 4. Output power versus injected current with τqr=0.5ns, τr=2.8ns and 

τ0=10ps and variable parameter of Γ0=5, 10, 20, 30 and 40meV 

 
 

Now, we will study the coverage effect over 3dB 
bandwidth. Fig. 5 shows the dependence of 3dB bandwidth, 
as a function of coverage factor with Γ0=20meV and 
τqr=2.8ns, τr=2.8ns and τ0=10ps. 
As shown in Fig. 5, the increase in coverage factor due to 
the increase in the volumetric density of QDs (ND) leads to 
the decrease in P, i.e. the occupation probability in the QD 
ground state. As the occupation probability in the QD 
ground state decreases, the relaxation rate increases for the 
carrier inside the QD, and this leads to the increase in 3dB 

bandwidth. As it can be observed from   1
3 2  ddB πτf , 

the 3dB bandwidth is constrained by the time constant τd.  
Finally, Fig. 6 deals with the analysis of the simultaneous 
effect of the relaxation time constant and coverage factor 
over 3dB frequency. 
 

 
Fig. 5. Modulation response of QD laser for different coverage ξ =0.1, 0.2, 

0.4 with Γ0=20meV and τ0=10psec, τqr=2.8nsec and τr=2.8nsec 

 
 

 
 

 
 

 
Fig . 6 . Modulation response of QD laser with τqr=2.8ns, τr=2.8 ns and (a) 
τ0=3ps,   ξ =0.1, (b) τ0=7ps ,  ξ =0.4, (c) τ0=1ps ,  ξ =0.4 , Γ0 = 5meV. 

 
As it can be observed in Fig. 6(a) and 6(b), we need τ0=3ps 
ξ=0.1 and τ0=7ps, ξ =0.4  for the signal modulation of 
10GHz. Fig. 6(c) shows that for a 35GHz, we need τ0=1ps, 
ξ=0.4 , Γ0 = 5meV, the requirements for relaxation lifetime 
are much more severe in high-speed modulation relative to 
the static conditions [8]. 
The above results reveal that if the relaxation lifetime 
decreases to 1ps (and at the same time coverage factor 
increases to 0.4 and line width Γ0 decreases to less than 

(a) 

(b) 

(c) 

TABLE I 
TYPICAL PARAMETERS USED IN SIMULATION [2] 

Sym
bol 

Quantity Value 

 Coverage factor of QDs 20% 
0 Carrier Relaxation Lifetime 10psec
0 Inhomogeneous Broadening  20meV 
s Carrier Capture in SCH Region 1psec 
c Output Power Coupling Coefficient 

 

0.449 
sc Spontaneous Emission Lifetime in SCH 

 
 

2.8nsec 
Va Active Region Volume 6.3x10-16m3 
e Carrier Emission Time From QD to QW 0.2nsec 
qr Carrier Recombination Lifetime in QW 

 

1nsec 
r Recombination Lifetime in QD 2.8nsec 
p Photon Lifetime in the Cavity 8.8psec 
m Phenomenological Gain-Saturation Term 1.045 x10-22m3 
ND QD Volume Density 9 x10-22m-3 

ns, nq 
nD 

 
 

SCH, QW and QD Diode Ideality Factors 
 
 

2 

R Radius of a QD (Cylindrical Shape) 8nm 

H Height of a QD (Cylindrical Shape) 8nm 

R1 Right Facet Reflectivity 30% 

R2 Left Facet Reflectivity 90% 

L Cavity Length 900m 

 Optical Confinement Factor 6% 

i Intrinsic Absorption Coefficient 6cm-1 

nr Refractive Index 3.5 

 Spontaneous Emission Coupling 
Efficiency 

 
 

10-4 

 Spin-Orbit Interaction Energy of QD 
Material 

 
 

0.35eV 

Eg Band-gap 0.8eV 

 



 

10meV), then QD lasers, as high-speed modulation lasers, 
act with a chirp that is approximately equal to zero. Note 
that the GHz modulation of strained QW lasers is done by 
external QW modulators using quantum-confined stark 
effect. This is because, in strained QW lasers, wavelength 
chirp is an inevitable problem for high-speed modulation 
[8]. 
 

V. CONCLUSIONS 

We used a reported circuit model for QD lasers based on 
standard rate equations to study the effects of some 
important parameters on the performance of these lasers. 
This circuit model is usefully able to explain the QD 
coverage factor behavior on threshold current, quantum 
efficiency, output power, and frequency response and 3dB 
bandwidth for QD lasers. Based on the simulation results, 
we realized that as the threshold current increases (as a 
result of increase in QD coverage factor) quantum 
efficiency and output power also increases. Besides, as the 
quantum-dot coverage factor increases, the occupation 
probability in the QD ground state decreases. This, in turn, 
decreases the relaxation lifetime for the carrier inside the 
QD, and as a result, the 3dB bandwidth increases. To 
achieve a high-speed modulation, higher than 10GHz, not 
only the relaxation lifetime should be decreased to about 
1ps, but also the QD coverage factor should also be 
increased and the line width should be decreased.  
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