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Abstract—Crew rostering is one of the most important
scheduling problems that airlines have to face regularly. The
goal is to assign a set of tasks to a group of workers as fairly
as possible while following various business rules. Difficulties of
the optimization mainly arise from its large scale. In this paper,
a modified subproblem based algorithm for the LP relaxations
of crew rostering problem is proposed, whose benefit comes
from two main ideas. Firstly, it needn’t consider all non-basic
variables in any iteration. Secondly, it is beneficial to consider
primal and dual problems at the same time. The computational
experiments on the real-world problems showed that time
savings about 50% over previous universal subproblem based
algorithm can be obtained.

Index Terms—crew rostering optimization, set partition prob-
lem, subproblem algorithm, probe operation

I. INTRODUCTION

CREW rostering is an evergreen research topic for large
airlines, which is to assign a set of tasks to a group of

workers as fairly as possible while following various business
rules. The readers are referred to [1] for an outline about the
airline operations from the operation research point of view,
and to [2], [3] for details on the crew rostering problem
(CRP). The CRP is typically formulated as an extension of
the set partitioning problem (SPP), and the branch-and-bound
based heuristic is usually used to give integer solution. It
makes the LP relaxation one of the most import building
blocks in the branch-and-bound, and led to the subject of
this study.

Difficulties of CRP mainly arise from its huge scale, even
though for its LP relaxations. The magnitude of variables can
be up to several hundred million in one model for a large air-
line’s monthly problem. To overcome the difficulty, two main
methods have been proposed. The first is the column gen-
eration method, such as [4]. It requires some properties that
can’t be possessed by the real-world problems. For example,
it assumes that the cost of a roster must be decomposed into
tasks or combinations of tasks in sequence. As the business
rules are complex and mutable, it isn’t satisfying usually, so
the subproblem can’t be modeled accurately as a shortest
path problem with resource constraints. The second divides
scheduling time zone into multiple short stages, whose size
is controlled by the so-called generation-and-optimization
strategy, and circularly improves the subproblems in each
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stage until reaching a satisfying solution for the global
problem. The comparisons of these two methods can be
found in [3]. For a large airline, the latter is more practical.
Nevertheless, even for the subproblem, the magnitude of
variables can still be up to 106 or 107. Although the modern
LP software has received prominent improvement in the past
decade, it still has to consume a few hours to solve an
instance with several millions of variables.

Maybe the most successful story for the large scale SPP
was the subproblem based approaches [5], [6], which saved
the time and space requirements prominently. This term
subproblem has different meaning from that of the column
generation. It has the same structure as the original, but only
consists of considerably less variables, and its solution is
also feasible for the original. In some sense, the subproblem
approach can be view as an extension of the partial price.
In each steps, it solves the current subproblem with simplex.
And then all non-basic variables are divided into two subsets
based on some local information. The “good” columns are
regarded as the candidates bringing the furthest convergence
from a global view, as opposed to the “bad” columns which
needn’t be considered in the next. It follows that the “good”
columns are added to the next subproblem. Repeat the pro-
cess until attaining the optimal of the original problem. The
foremost distinguish among different subproblem algorithms
is how to identify the “good” columns from all non-basic
variables at each iteration, such as the SPRINT [5] based
on the classical Dantzig rule, whereas the PAPA [7] and the
P-D subproblem algorithm [6] based on the piercing point
concept.

In this study, a modified column selection criterion for the
LP relaxations of CRP was proposed, based on the special
structure of CRP. By the modified algorithm tuned to the
CRP, it can save about half of the solving time with compare
to the previous subproblem algorithms.

This paper is organized as follows. Section 2 formulates
the CRP and defines a number of symbols used throughout
this paper. Section 3 describes the main column selection
criterion for CRP and gives the formulation of the algorithm ,
which is followed by the experiments and analysis in Section
4. Some conclusions are drawn in section 5.

II. CREW ROSTERING PROBLEM

Let C be the set of crew members, and T be the set of
tasks to be assigned. A legal roster is a set of tasks for some
crew member, following legislations and various business
rules, and is referred to as LoW (Line of Work), denoted as
aj . Each LoW must belong to a crew member f(aj) ∈ C.



Algorithm 1: The modified algorithm for Crew Rostering Problem
1 A′ ← {aj |t(aj) 6 1, f(aj) ∈ C } ∪ {aj |f(aj) /∈ C } , π ← 0
2 repeat
3 Solve the subproblem min z = cx s.t. A′x = b, let ρ denote its optimal dual vector, and S ⊆ C consists of crews that have

changed in the last basis.

4 τ ← max

{
0,

−d
ρ
j

dπj −d
ρ
j

∣∣∣∣ dρj < 0, dπj > 0, f(j) /∈ S
}

5 π ← τ · π + (1− τ) · ρ
6 Remove all non-basic columns from A′

7 if z > πb then
8 L← ∅
9 foreach aj /∈ A′ ∧ dπj > 0 do

10 if dπj = 0 then
11 A′ ← A′ ∪ {aj}
12 else if f(aj) /∈ S and (dπj 6 ε+ ∧ dρj > 0) ∨ (dπj 6 ε− ∧ dρj < 0) then
13 L← L ∪ {aj}
14 end if
15 end foreach
16 Add the most δNs columns to A′ which possess small reduce cost with π in L
17 Add the most (1− δ)Ns columns to A′ which possess small reduce cost with π and then ρ in L
18 end if
19 until τ = 0;
20 SPRINT()

Especially, the empty LoW (not include any task) is legal for
any crew member. For any LoW aj , it consists of a number
of tasks, and its cardinality is denoted as t(aj). Each LoW
aj has an associate cost cj evaluating its fairness.

Crew rostering problem is typically formulated as an
extension of the set partitioning problem, in which we want
to find a minimum cost subset of the LoWs following three
categories of constraints. The first is that each crew member
has to choose one and only one LoW from all LoWs belong-
ing to her/him, which is referred to as assignment constraint.
Second, the crew members assigned to any task should
not exceed its capacity. Third, some tasks must have crew
members more/less than some amount, whose qualification
should be as desire. Every LoW can form a column according
to these constraints, and properly introduces some supplier
and slack variables additionally, with which the constraint
matrix A can be constructed. As almost every column in
A indicates a LoW aj , it is also denoted as aj for simple
representation. Decision variable xj is equal to 1 if LoW aj
is included in the solution, and 0 otherwise.

In summary, the relaxation of crew rostering problem can
be formulated as a LP, see (1). The readers are referred
to [3] for details on the real-world business rules and the
corresponding relations with the model.

min cx
(P) s.t. Ax 6 b

x > 0
(1)

Without loss of generality, it can be assumed c > 0 and b >
0. A subset of all LoWs and some other variables constitute
a subproblem of (P), whose solution is feasible to (P) and
denoted as (SP).

III. THE MODIFIED ALGORITHM FOR CRP
In this section, a modified subproblem algorithm for CRP

based on a slacken piercing point concept was proposed,
with an efficient subproblem construction strategy adapted to
this special problem. The formal description of the modified
algorithm was given by Algorithm 1.

A. Initial solution

In the real world environment, the rostering problem hasn’t
any initial feasible solution usually. The first subproblem
consists of not only all single task LoWs and empty LoWs for
all crew, but also all supplier and slack variables. Evidently,
it can produce a feasible solution for the original problem,
because it is legal to assign empty LoW to all crew members
at least. In addition, the vector 0 is a dual feasible solution
as the cost of any column is non-negative.

B. Slacken piercing point

As mentioned before, the main difference between sub-
problem algorithms is how to construct the next subproblem
at each iteration. Like price scheme for the simplex, different
subproblem construction strategies have dramatically impact
on the overall performance for the subproblem based method,
as indicated by [5], [6]. As a result, the subproblem construc-
tion method is certainly the kernel subject for a subproblem
based algorithm.

Let π denote the incumbent dual vector, and ρ the optimal
dual solution of the current subproblem. The piercing point
π′ can be written as π′ = θπ + (1− θ)ρ, where θ makes π′

remain dual feasible and improve the dual object π′b as large
as possible. A probe is the operation of finding the piercing
points and the columns that decide θ. Those columns could
be regarded as the best candidates for the next subproblem.
These concepts were defined by [7] with dual version.

It is well known that it is possible to design more efficient
price algorithms for a special class of problems which ex-
hibit some identifiable structures. For the rostering problem,
every crew member must have one and only one LoW in
any feasible solution, as a consequence of the assignment
constraints. Thus, every crew member has several LoWs in
any basic feasible solution for its LP relaxation. As for some
crew member k ∈ S ⊆ C, if her/his LoWs in current basis
have changed since the last iteration, we attempt to keep
these LoWs in the next basis. The idea behind is that it has



got locally “best” representations for crew k, so it is unlikely
that k is still a good improving candidate in the next iteration,
i.e. the best candidate columns are unlikely to come from this
crew member. So, this crew member won’t be considered in
the probe operation any more. To distinguish with θ, τ is
defined as bellow

τ = max

{
0,
−dρj

dπj − d
ρ
j

∣∣∣∣∣ dρj < 0, dπj > 0, f(j) /∈ S

}
(2)

where d
ρ
j and dπj denote reduce costs of column aj with

ρ and π respectively. The updated dual vector π′ = τπ +
(1 − τ)ρ is referred to as the slacken piercing point of π
and ρ. In each iteration, the columns are regarded as the
best candidates which have zero reduced cost with slacken
piercing point. These columns limit the further improvement
of current dual object, so they are referred to as restrict
variables for simplify representation.

C. Column selection

By the definition of slacked piercing point, it is evident
that all restrict variables should be added to the subproblem.
Nevertheless, there are only a few of restrict variables in each
iteration usually. It nearly can’t work if only these restrict
variables are added to subproblem for a large problem. Thus,
we have to choose some other potentially beneficial columns.

In fact, as indicated by [5], [6], the size of subproblem
has an important impact on subproblem based methods, as
the more columns are introduced to the next subproblem,
the more solving time will be needed inevitably. More
importantly, a too greedy strategy based on local information
will lead to unnecessary simplex iterations from a global
view. In contrast, too few columns will result in too many
redundant pricing. So, the subproblem size should be traded
off for this modified algorithm carefully.

Although the goal of the slacken piercing point based
criteria is to satisfy the complementary slackness in a set
which is made of columns with approximately equal reduce
costs with π′, the columns with smaller reduced cost with
ρ′ are better. So, reduced cost with π′ and ρ′ is used to
evaluate other columns simultaneously, rather than the P-D
subproblem algorithm did.

In keeping with probe operation, other columns of the crew
members that belong to S won’t be added to subproblem
unless they are restrict variables. As for a member not
belonging to S, the candidate set L consists of columns
whose reduced cost with ρ is less than zero and reduced
cost with π is less than or equal to ε−, and the columns
whose reduced cost with ρ is positive and reduced cost with
π is less than or equal to ε+, where ε+ < ε−. That is,

L =
{
aj

∣∣∣dρj > 0, dπ
′

j 6 ε+ and f(j) /∈ S
}
∪{

aj

∣∣∣dρj < 0, dπ
′

j 6 ε− and f(j) /∈ S
}

(3)

Several parameters are used to control the subproblem size
in the modified algorithm. To construct the next subproblem,
it is firstly selected no more than δNs(0 6 δ 6 1) columns
with smallest reduced cost with π′ from L, regardless of
d
ρ
j . And then it is added at most (1 − δ)Ns columns with

smallest reduced cost with π′ and d
ρ
j < 0 from L. That is,

some columns with d
ρ
j < 0 are used instead of some with

smaller reduced cost with π′.
To efficiently select columns from L, two dimensional

buckets are used to rank columns, which have approximately
equal reduce costs with π′ and ρ placed in the same bucket.
If ah ∈ Li,j and ag ∈ Li+1,j then dπh ≈ dπg and d

ρ
h < d

ρ
g ,

and if ag ∈ Li,j+1 then dπh < dπg and dρh ≈ d
ρ
g .

D. Optimality

Note that the slacken piercing point doesn’t consider all
columns in the probe operation, and the corresponding π′

may not be dual feasible for primal problem (P). Neverthe-
less, if the reduced cost of a column with the slacked piercing
point is negative, it is still possible to become non-negative
in the later iterations. Although it is possible that we can’t
obtain the optimum of the original problem by this method
after satisfying condition τ = 0, it is usual that the incumbent
is very close to it.

If a column not dual feasible for π exists after loop, call
the SPRINT algorithm to guarantee the convergence. As
for the SPRINT algorithm, it uses an array of appropriate
size to accommodate the potential columns. The columns
with negative reduced cost with ρ are appended from the
beginning of the array, and others less than some threshold
(such as 10−5) are appended from the bottom to back. The
columns with negative reduced cost can override the others,
and not true in turn. The simplification is rooted in that the
initial basis is very close to the optimal point.

E. Analysis

There are several reasons why this approach is compu-
tationally efficient. First, it uses τ 6 θ to update π′ in the
probe operation so that a larger dual object value is obtained,
although it is slightly not dual feasible for the original
problem (P). At the same time, it adds more good columns
for the current subproblem (dρj < 0), which will decrease the
object value of the next subproblem more rapidly. Therefore,
it converges to some good feasible point for (P) more quickly.
Second, this strategy lightens the burden on the probe and
sort operation in each iteration, especially beneficial to large
scale problem. Finally, even a column may become not dual
feasible in some iteration, it is not permanent. It still has the
possibility of becoming dual feasible later. The convergence
point of the P-D phase is usually so close to the optimum of
the original that it can rapidly derive optimality by SPRINT
algorithm.

IV. COMPUTATIONAL EXPERIENCE

In this study, a number of problems were experimented on
a 2.66GHz PC with 4GB of RAM, and Xpress [8] was used
as the LP solver for the subproblems. These problems came
from the operation control system of a large international
airline in China, and targeted on different crew ranks. In fact,
each rank has its model characteristic since the corresponding
business rules are appropriative. Table I presents the numbers
of crews and tasks with the scale of constraint matrix in the
problems solved.

Table II presents each operation’s time of the modified
algorithm for every problem listed in Table I. Every problem



TABLE II
OPERATION TIME IN THE MODIFIED ALGORITHM FOR THE PROBLEMS

Prob. Major Simplex Probe Price SPRINT Totaliter. iter. time update sort Iter. iter. time price

No.1 66 151796 15.08 2.73 3.54 4.23 3 7392 1.23 0.20 27.13
No.2 129 245002 22.35 10.47 11.49 11.17 55.70
No.3 77 260290 22.45 11.10 15.53 4.97 3 712 0.45 0.86 55.63
No.4 54 394199 38.95 10.94 15.87 7.24 11 26634 6.84 2.50 82.80
No.5 49 98661 8.17 13.84 17.58 11.01 51.42
No.6 58 138609 11.33 23.02 27.65 13.75 2 24 0.17 1.20 77.83

TABLE IIIa
COMPARISON WITH P-D SUBPROBLEM SIMPLEX ALGORITHM FOR NO.1 ∼ 3

No.1 No.2 No.3

Major iterations 379 66 82.6% 429 129 69.9% 90 77 14.4%

Solving (SP) time 22.56 15.08 33.2% 24.17 22.35 7.5% 33.23 22.45 32.4%

Probe time 22.90 2.73 88.1% 43.13 10.47 75.7% 20.22 11.10 45.1%

Update time 20.58 3.54 82.8% 38.15 11.49 69.9% 18.29 15.53 15.1%

Sort time 24.49 4.23 82.7% 36.99 11.17 68.8% 7.90 4.97 37.1%

Probe+Sort/iter. 0.13 0.11 15.4% 0.19 0.17 10.5% 0.31 0.21 32.3%

SPRINT phase 1.43 1.31

Total 90.77 27.13 70.1% 142.63 55.70 60.9% 79.88 55.63 30.4%

TABLE IIIb
COMPARISON WITH P-D SUBPROBLEM SIMPLEX ALGORITHM FOR NO.4 ∼ 6

No.4 No.5 No.6

Major iterations 129 54 58.1% 107 49 54.2% 149 58 61.1%

Solving (SP) time 57.10 38.95 31.8% 14.89 8.17 45.1% 19.43 11.33 41.7%

Probe time 40.87 10.94 73.2% 41.47 13.84 66.6% 76.11 23.02 69.8%

Update time 38.14 15.87 58.4% 38.91 17.58 54.8% 71.59 27.65 61.3%

Sort time 23.40 7.24 69.1% 36.03 11.01 69.4% 49.55 13.75 72.3%

Probe+Sort/iter. 0.50 0.34 32.0% 0.72 0.51 29.2% 0.84 0.63 25.0%

SPRINT phase 9.38 1.39

Total 159.95 82.80 48.2% 131.83 51.42 61.0% 217.36 77.83 64.2%

TABLE I
PROBLEMS FOR CREW ROSTERING

Prob. Crews Tasks Rows Columns

No.1 372 208 1412 1, 922, 626
No.2 263 208 1319 2, 343, 817
No.3 356 274 1855 4, 386, 271
No.4 584 323 1859 9, 412, 213
No.5 476 237 1224 12, 446, 241
No.6 485 239 1237 15, 761, 156

was solved through setting Ns = 2 × 104, ε+ = 200, ε− =
400 and δ = 0.8. These results showed that the optimal
solution was usually very close to that of the primal problem
after solving the relaxed problem. It also showed that the
algorithm worked well for various sizes of problems and for
various models that targeted on different crew ranks.

Table IIIa,IIIb give comparisons of each operation with the
P-D subproblem simplex algorithms. For each problem, the
first column indicates the P-D subproblem algorithm, and the
second indicates the modified algorithm. The third indicates
improved percentages yielded by the modified algorithm
which equals to the difference of column 1 and 2 divided
by the first column. For the P-D subproblem algorithm, the
parameter Ns was also set to 2×104, while any column with
dπj > 300 couldn’t join the subproblems.

There are some results shown in Table IIIa,IIIb. Firstly, the
improvement of the modified algorithm mainly came from its
dramatically decrease of the iterations. This proves that the
columns selection criteria of the modified algorithm is more
effective and efficient. Secondly, the improvement of the
probe and sort operation (interpreted as “Probe+Sort/iter.”)
also contributed largely to the overall performance, especially
for the large scale problems.

V. CONCLUSION

In this study, we have modified the concept of probe
operation and proposed a modified column selection criteria
for the crew rostering problem taking place in airlines, which
can be used to design a subproblem based algorithm. The
idea of the modification is to divide variables into groups,
and only price columns in the most promising group at each
step. At the same time, consider two factors, one for primal
problem and the other for its dual, to select columns.

The computational experiments on the real-world prob-
lems have been presented, which have shown that the mod-
ified algorithm saved about one-half time with compare to
the primal-dual subproblem algorithm.
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