

Abstract— Operation research is the representation of real-

world systems by mathematical models together with the use of
quantitative methods (algorithms) for solving such models,
with a view to optimizing. As we know, C++ language is a
middle level language and a computer program with this
language is executed faster than application softwares of the
operation research area. In this paper, a simple template
program with simple C++ instructions is presented for
simulating many types of optimization problems. This template
is very easy to learn and understand for students or anyone
who works in the operation research area. They can quickly
and easily simulate many types of optimization problems with
this template.

Index Terms—computer programming, C++ language,
operation research, optimization, simulation

I. INTRODUCTION

peration Research (OR) is the study of mathematical
models for complex organizational systems.

Optimization is a branch of OR which uses mathematical
techniques such as linear and nonlinear programming to
derive values for system variables that will optimize
performance [1]. Another definition of OR (Operational
Research in Europe) is the study of mathematical models
and tools with the goal of providing solutions and insights
for complex decision problems.
We can also define a mathematical model as consisting of:
 Decision variables or alternatives, which are the

unknowns to be determined by the solution to the model.
 Constraints to represent the physical limitations of the

system
 An objective function which is an appropriate objective

criterion for evaluating the decision variables or
alternatives

 An optimal solution to the model is the identification of a
set of variable values which are feasible (satisfy all the
constraints) and which lead to the optimal value of the
objective function.

In general terms we can regard OR as being the application
of scientific methods / thinking to decision making.
Underlying OR is the philosophy that:
 Decisions have to be made; and

Manuscript received January 5, 2012; revised January 17, 2012. This

work was supported in part by the Islamic Azad University, Falavarjan
Branch, Isfahan, Iran.
Author is a member of department of Computer Engineering, Islamic Azad
University of Falavarjan, Isfahan, Iran (e-mail: Z_asgari@iaufala.ac.ir and
asgarir2000@yahoo.com)

 Using a quantitative (explicit, articulated) approach will
lead to better decisions than using non-quantitative
(implicit, unarticulated) approaches.

Indeed it can be argued that although OR is imperfect, it
offers the best available approach to making a particular
decision in many instances (which is not to say that using
OR will produce the right decision) [2].
The principal phases for implementing OR in practice
include:
1) Definition of the problem
2) Construction of the model (Formulate the Problem)
3) Solution of the model
4) Validation of the model
5) Implementation of the solution.
We suppose that the industrial engineering students or
anyone who works in the operation research area can
construct the mathematical programming model from an
operation research problem. After that, they can solve the
problem with using the presented template program in this
paper. The general form of a mathematical programming
model is:

 min or max f(x1, … , xn)

 s.t: gi(x1, …. , xn) bi (1)

 x ϵ X

Linear program (LP): all functions f and gi are linear and X
is continuous.
Integer program (IP): X is discrete [3].
LP's are important. Because:
 Many practical problems can be formulated as LP's
 There exists an algorithm which enables us to solve LP's

numerically relatively easily.
Computer development during the past fifty years have

led to the improvement of the optimization methods, so that
several methods such as enumeration method, calculus-
based method, heuristic and metaheuristic (Random
method) and combinational optimization have developed
during this period. The growth of OR since it began
(especially in the last 30 years) is, to a large extent, the
result of the increasing power and widespread availability of
computers. Most (though not all) OR involves carrying out a
large number of numeric calculations. Without computers
this would simply not be possible.

As the enumeration method is the simplest algorithm for
implementation and the programs with this algorithm have a

A Simple C++ Template Program for Simulating
Operation Research Problems for Students’

Learning

Zahra Asgari Rizi

O

≤

═

≥

structure without complexity and high comprehensibility for
the students, the implementation of optimization problems is
presented with enumeration method for the learning of the
students.

Because in the enumeration method, just one point of
domain space of objective function is studied at each
iteration, this method is much simpler than other methods
for implementation, but it needs considerable calculations.
In this method, there is no mechanism to reduce domain
space, and searchable domain space is very vast. Execution
complexity or execution order of an enumeration algorithm
depends on the number of decision variables and also the
vastness of the acceptable range for each variable in the
optimization problem. As the number of decision variables
increases and the acceptable range for each variable
expands, computers have to spend more time to execute
optimization problems which are implemented with
enumeration algorithm.

As mentioned, we suppose that the industrial engineering
students or anyone who works in the operation research area
can extract all the required information from the
optimization problems and construct the mathematical
programming model for them. In other word, the students
must be able to define the relations in equation 1 from an
optimization problem. In the next section, the way of
implementation of optimization problems with simple
program with C++ language will be illustrated.

II. HOW CAN WE IMPLEMENT OPTIMIZATION PROBLEMS

WITH A SIMPLE PROGRAM WITH C++ LANGUAGE

To implement optimization problems, at first we should
obtain the exact range of all decision variables from
constraint relations. In other word, we should determine the
minimum value and maximum value for each decision
variable. For example, if we have three constraints as
following:

Subject to:
10 X1 + 4 X2 <=100

5 X1 + 1 X2 <= 40 (2)

X1 , X2 >= 0

In this example, the minimum values for two decision

variables (X1 and X2) are zero. With substituting the
minimum value of X1 in two first constraints, we have:

10 0 + 4 X2 <=100
 (3)
5 0 + 1 X2 <= 40

Since both of the constraints should be correct, so
X2<=25. In the same way, with substituting the minimum
value of X2 in two first constraints, we have:

10 X1 + 4 0 <=100
 (4)
5 X1 + 1 0 <= 40

And therefore X1<=8.
In optimization problems with the aim of maximizing the

objective function, we need minimum value of the objective

function. In this case, the minimum value of the objective
function could be calculated with substituting the minimum
values of the decision variables in the objective function.

In optimization problems with the aim of minimizing
objective function, we need maximum value of the objective
function. In this case, the maximum value of the objective
function could be calculated with substituting the maximum
values of the decision variables in the objective function.

Before describing the template program, we want to
explain three basic C++ instructions which are used in this
template program: the for instruction, the if instruction and
the cout instruction.

In C++ programming language the for instruction is used
to make a loop. In the other word, we use for instruction for
a block of instructions which should be executed several
times. In this template program, the for instruction is used
to make loops for the decision variables.

Another simple instruction that we need in this template
program is if statement. If statement is used for evaluating
some comparing relations or conditions. In this template
program, the if statement is used to check the correctness of
constraints with certain values for the decision variables.

To display the results of the optimization problems, we
use cout instruction before the end of the program.

In this program, at first we should define all decision
variables and objective function symbols in two categories,
after that we should initialize the objective function
variables (MaxF) with its minimum value or MinF with its
maximum value, depending on the aim of the problem. One
category of variables’ definition is for enumerating all
possible values in acceptable range, and another category is
for saving just those values of acceptable range which are
satisfied with all constraints and lead to better optimization.
The following three statements of the template program are
two categories of variables’ definition and then initializing
the MaxF:
 long X1 , X2,…, f; (5)
 long X1result,X2result,…,MaxF;
 MaxF= initialize with the minimum possible value of f;

After definition and initializing MaxF or MinF variables,

we should use one loop for each decision variable to
enumerate all possible values in the related acceptable range
for that decision variable, from the minimum value to the
maximum value of it. Because in many types of
optimization problems, there are at least two decision
variables, so the program has nested loops (a loop which has
another loop in its block).

In the innermost loop, the constraints should be
evaluated. It’s done with the following statement:

if (Constraint1 && Constraint2 && …) (6)

After that, the objective function should be calculated

with those values of the decision variables which are
satisfied with all constraints. This operation is done with the
following statement in this template program:

f=Objective function with substituting current values
of X1 ,X2, … ; (7)

After that, the current value of the objective function
should be compared with the last optimized value that was
calculated from previous iterations. If the current value of
the objective function is better than the last optimized value,
then all the current values of decision variables should be
saved in the related result variables and current value of
objective function should be saved in the MaxF or the
MinF. These operations are done with the following
statement in this template program:
 If (f> MaxF)
 {
 X1result = X1;
 X2result = X2;
 … (8)
 MaxF= f;
 }

After all iterations, when all values in the acceptable
range, for all decision variables, have been enumerated, the
result values of the decision variables and the optimized
value of the objective function must be displayed. The
complete template program is shown in figure 1

.

III. STUDYING OF DIFFERENT OPTIMIZATION

PROBLEMS AND DIFFERENCES IN TEMPLATE

PROGRAM

As there are various types of optimization problems with

different needs, there are some differences in their
implementation with C++ language. In this section, these
differences and their effects in the template program are
presented as follow:

 If the problem is integer linear programming, so in terms

of the range that the decision variables should
enumerate, the decision variables should be defined as
int or long data type, else they should be defined as float
or double data type.

 In an optimization problem, for any decision variable, the
program has one loop.

 If from all constraints of the problem, at least one of them
should be correct, in the if instruction (to check the
correctness of constraints), we must use || operation
symbol (Logical OR) between the constraints. Such as:

 if (Constraint1 || Constraint2 || …) (9)

Fig. 1. C++ template program for simulating operation research problems

include <iostream.h>
void main () {
 long X1 , X2,…, f;
 long X1result,X2result,…,MaxF;
 MaxF= initialize with the minimum possible value of f;
 for (X1= minimum value of X1; X1< =maximum value of X1; X1 ++)
 for (X2= minimum value of X2; X2< =maximum value of X2; X2 ++)
 …
 if (Constraint1 && Constraint2 && …)
 {
 f=Objective function with substituting current values of X1 ,X2, … ;
 If (f> MaxF)
 {
 X1result = X1;
 X2result = X2;
 …
 MaxF= f;
 }
 }
 cout <<endl <<”Maximum f =”<<MaxF;
 cout <<endl <<”X1 solution =”<<X1s;
 cout <<endl <<”X2 solution =”<<X2s;
 …
}

Replace current values of X1, X2
… and f to related result variables;
because the current value of f is
bigger than previous value of
maximum f.

 If the problem is non-integer linear programming or
nonlinear programming with negligible error as ε, in the
for instruction, we use X+= ε instead of X++ (for
Gradient Search [4]) and so the for loop should be
written as following:
 for(X=MinimumValue;X<=MaximumValue;X+= ε)
 (10)

 If the problem has just one decision variable, so the
program has just one for loop.

 If the aim of the problem is minimization, we should
define MinF and initialize it with the maximum possible
value at the beginning of the program. Also the if
statement, for comparing f and MinF, should be written
as following:

if (f<MinF) (11)

 If the problem is zero-one programming, each decision
variable can be zero or one, so the for loop should be
written as following:

for (X1=0;X1<=1;X1++) (12)

In this case the speed of program execution is very high
and it just depends on the number of the decision
variables. Execution order or the big O of the zero-one
programming with n decision variables in this template
program equals to O(2n) [5].

 If the problem has no constraint and it should start with a
certain point (in Unconstraint programming), we should
write the assignment instruction for MaxF or MinF with
substituting the start point values in the objective
function as following. And also in the innermost loop,
it’s not necessary to use if instruction for checking the
correctness of conditional statement for the constraints
[4].

 MaxF= initialize with the start point value;
 Or (13)
 MinF= initialize with the start point value;

 In some optimization problems, there are multiple
objective functions. These problems have known as
Multi-objective function. The simplest method for these
optimization problems is to make one new objective
function as a linear combination of the primary multiple
main objective functions. In this combination, the impact
of each primary objective function is specified with its
coefficient (weight). To implement such these
optimization problems, we should define and implement
the primary main objective functions as peripheral
functions before main() function, and then these
peripheral functions should be called in the statement
which calculates value of f. For example if the linear
combination of the primary multiple main objective
functions was defined as:
 f= a*g1(X1)+b*g2(X2)+… (14)

We should define and implement the g1(X) and g2(X) and
the other primary objective functions before main()
function.

 The big O or the execution order of the presented
template program depends on the number of the decision
variables and the bigness of their acceptable range. If the

problem has n decision variables and the bigness of the
acceptable range of each variable on average is m, so the
big O of the program equals to O(mn).

IV. CONCLUSION

The template program which was presented has a
structure without complexity and high comprehensibility to
learn for students or anyone who works in the operation
research area. It’s not necessary for students to be
professional in programming. They just should be familiar
with the basic instructions of C++ language. To run this
template program for a certain optimization problem, we
just need a C++ compiler such as Turbo C++ version 3.0 or
4.5. These versions of C++ compiler are free, so the
students can simulate optimization problems with this
template for free for the users or themselves. The students
can simulate many types of operation research problems
with this template quickly and easily and then run the
program and get the desirable results or debug the program
and see how it works to get the results.

REFERENCES
[1] M.Galati, “Introduction to Operation Research”, pp.5,

Available:http://coral.ie.lehigh.edu/~maghpresent/stetson01.pdf

[2] Y. İlker Topcu, “Operation Research”, pp.6, Available: http://pdf-
ebooks.org/pdf/41997/OPERATIONS-RESEARCH-LECTURE-
NOTES-pdf.pdf

[3] F.S.Hillier, G.J.Lieberman, “Introduction to Operation Research”, 9nd
Ed. New York:McGraw-Hill, 2010, pp.30-60.

[4] M.Moddares, A.Asefvaziri, “Operation Research, Mathematical
Programming”, 3rd Ed. Tehran:Javan Pub, 2007, pp.184-240.

[5] M.Razavi, “An Introduction to Operation Research”, First Ed. Tehran:
Iran Industrial Research end Education Center Pub, 2006, pp.256-258.

