
Data Search Algorithms based on Quantum Walk
Masataka Fujisaki∗†, Hiromi Miyajima∗‡, Noritaka Shigei∗§

Abstract—For searching any item in an unsorted database
with N items, a classical computer takes O(N) steps but
Grover’s quantum searching algorithm takes only O(

√
N)

steps. However, it is also known that Grover’s algorithm is
effective only in the case where the initial amplitude distribution
of dataset is uniform, but is not always effective in the non-
uniform case. In this paper, we propose some quantum search
algorithms. First, we propose an algorithm in analog time based
on quantum walk by solving the schrodinger equation. The
proposed algorithm shows best performance in optimum time.
Next, we will apply the result to Grover search algorithm. It is
shown that the proposed algorithm shows better performance
than the conventional one. Further, we propose the improved
algorithm by introducing the idea of the phase rotation. The
algorithm shows best performance compared with the conven-
tional ones.

Index Terms—quantum search algorithm ; Grover search
algorithm; initial amplitude distributions of dataset; observed
probability

I. INTRODUCTION

With quantum computation, many studies have been made.
Shor’s prime factoring and Grover’s data search algorithms
are well known[1], [2], [4]. Further, Ventura has proposed
quantum associative memory by improving Grover’s algo-
rithm [3], [5]. Data search problem is to find any data effec-
tively from unsorted dataset. For searching any item in an
unsorted database with N items, a classical computer takes
O(N) steps, but Grover’s algorithm takes only O(

√
N) steps.

However, it is also known that Grover’s algorithm is effective
only in the case where the initial amplitude distribution of
dataset is uniform, but is not always effective in the non-
uniform case[3]. Further, Ventura has proposed the quantum
searching algorithm but it is effective only in the special case
for the initial amplitude distribution[6], [7]. Therefore, it is
necessary to find effective algorithms even in the case where
the initial amplitude distribution of dataset is not uniform.
For example, associative memory needs non-uniform initial
data distribution [3]. In this paper, we propose some quantum
search algorithms. First, we propose an algorithm in analog
time based on quantum walk by solving the schrodinger
equation. The proposed algorithm shows best performance
in optimum time. Next, we will apply the result to Grover
search algorithm. It is shown that the improved algorithm
shows better performance than the conventional one. Further,
we propose the algorithm by introducing the idea of the phase
rotation[8]. The proposed algorithm shows best performance
compared with the conventional ones.
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II. PRELIMINARY

The basic unit in quantum computation is a qubit c0|0〉+
c1|1〉 , which is a superposition of two independent states
|0〉 and |1〉 corresponding to the states 0 and 1 in a classical
computer, where c0 and c1 are complex numbers such that
|c0|2 + |c1|2 = 1. We use the Dirac bracket notation, where
the ket |i〉 is analogous to a column vector. Let n be a positive
integer and N = 2n. A system with n qubits is described
using N independent state |i〉(0 ≤ i ≤ N − 1) as follows:

N−1∑
i=0

ci|i〉 (1)

where ci is a complex number,
∑N−1

i=0 |ci|2 = 1 and |ci|2
is the probability of state |i〉.The direction of ci on the
complex plane is called the phase of state |i〉 and the absolute
value |ci| is called the amplitude of state |i〉. In quantum
system, starting from any quantum state, the desired state is
formed by multiplying column vector of the quantum state
by unitary matrix. Finally, we can obtain the desired state
with high probability through observation[2]. The problem is
how we can find unitary matrix. Grover has proposed the fast
data search algorithm. Let us explain the Grover’s algorithm
shown in Fig.1. Grover has proposed an algorithm for
finding one item in an unsorted database. In the conventional
computation, if there are N items in the database, it would
require O(N) queries to the database. However, Grover has
shown how to perform this using the quantum computation
with only O(

√
N) queries[2]. Let ZN = {0, 1, · · · , N − 1}.

Let us define the following operators.

Ia = Identity matrix except for

I(a+ 1, a+ 1) = −1, a ∈ ZN (2)

which inverts any state |ψ〉 and

W (x, y) =
1√
N

(−1)x0y0+···+xN−1yN−1

for x =

N−1∑
i=0

xi2
i, y =

N−1∑
i=0

yi2
i, (3)

which is called the Walsh or Hadamard transform and
performs a special case of discrete Fourier transform. We
begin with the |0̄〉 state and apply W operator to it, where
|0̄〉 means that all states are 0 and the number of 0’s for 0̄ is
N . As a result, all the states have the same amplitude 1/

√
N .

Next, we apply the Iτ operator, where |τ〉 is the searching
state. Further, we apply the operator

G = −WI0W (4)

Followed by the Iτ operator T = (π/4)
√
N times and

observe the system[2]. G operator has been described as
inverting each of the state’s amplitudes around the average



1. Initial state |ψ〉
2. |ψ〉 = W |0̄〉 = |1̄〉
3. Repeat T times
4. |ψ〉 = Iτ |ψ〉
5. |ψ〉 = G|ψ〉
6. Observe the system

Fig. 1. Grover search algorithm

one of all states.
Example 1 [6]:

Let n = 4 and N = 16. Let searching data |τ〉 = |6〉 =
|0110〉 and the number of stored (memorized) data l = 16.
Then, the desired data 0110 is obtained with the probability
0.96 by using Grover’s algorithm. We can get the searching
data with high probability.

Next, assuming that stored data are |0〉, |3〉, |6〉, |9〉, |12〉,
and |15〉, and searching data is |6〉, that is l = 6. The initial
state |ψ〉 is as follows:

|ψ〉i =
{

1 for any i of stored date
0 otherwise,

(5)

Then, the desired data 0110 is obtained with the probability
0.44. It shows that Grover’s algorithm does not always give
a good result in the case where N 6= l.

Therefore, it is needed to find effective algorithms even in
the case where the initial amplitude distribution of dataset is
not uniform.

III. QUANTUM SEARCH IN ANALOG MODEL BASED ON
QUANTUM WALK
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Fig. 2. Description of data search problem

In the following, we introduce a quantum search algorithm
using analog model of quantum walk. In order to clarify
the problem, we will explain the Fig.2. It is assumed that l
pieces of data are memorized (stored) in the system of N
pieces of data. Now we want to find any data in m pieces of
data (marked) with high probability. Grover has shown the
effective algorithm in the case of N = l, m = 1 (see Fig.1).

A. Schroedinger equation and quantum walk

In this chapter, we propose an algorithm based on quantum
walk in analog time model. As the state of system in quantum
model is determined by the Schroedinger equation , we can
obtain the result by solving the Schroedinger equation under
the special condition[9],[10].

The Schroedinger equation for the state of system is
represented as follows[9]:

ih̄
d|ψ〉
dt

= H|ψ〉, (6)

where h̄ is Plank constant and H is Hamiltonian which
means all the energy of the system. Then H = H† holds,
where H† is the transposed matrix of complex conjugate for
H .

Then the solution is represented by

|ψ(t)〉 = U(t)|ψ(0)〉, (7)

where
U(t) = exp(−itH) (8)

and U(t) is called time expansion operation of the state
and |ψ(0)〉 is the initial state of system. Therefore, the state
of system is determined by Hamiltonian H . Let Pw(t) be
defined as the observed probability of system at time t as
follows:

Pw(t) = |〈w|U(t)|ψ(0)〉|2. (9)

The state of system to search is called the marked one and
the other is called the unmarked state. The number of marked
states is m(see Fig.2). Hamiltonian Hρ corresponding to the
potential energy is represented by an identity matrix except
for

Hρ(ji, ji) = −1, (10)

where i ∈ Zm.
Let L be the state assignment over the graph. Then the

Hamiltonian H of the system is defined using the mobility
r as follows[9]:

H = −γL+Hρ (11)

Let G = (V ,E) be the perfect graph to act for system,
where V is the set of vertexes and E is the set of edges.
Then L is represented as follows:

L = −NI +


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1


= −NI +

∑
x

∑
y

|x〉〈y|

= −NI +N |s〉〈s|, (12)

where

|s〉 = 1√
N

N−1∑
x=0

|x〉 (13)

Finally, Hamiltonian H is represented as follows:

H = γNI − γN |s〉〈s|+Hρ (14)

It is known that any quantum arrives at any place (state)
in O(

√
N) steps by using quantum walk. Assuming that

the potential energy of the place to arrive is low, the high
probability of the state is performed.

Then, let U be defined as follows:

U = exp(−1

2
itγNI) exp(itA), (15)

where

A = γN |s〉〈s| −Hρ −
1

2
γNI (16)



B. Derivation of the time expansion operator U

Let us compute the Eq.(15).
Let C be any matrix. Then the following relation holds:

exp(C) =

∞∑
r=0

1

r!
Cr. (17)

In order to compute the Eq.(15), Ar must be computed.
Here, in order to understand the computation of Ar easily,

we will consider the case of N = 8.

Ar =

ζ(r) δ(r) α(r) α(r) δ(r) δ(r) α(r) α(r)
β(r) ε(r) β(r) β(r) η(r) η(r) β(r) β(r)
α(r) δ(r) ζ(r) α(r) δ(r) δ(r) α(r) α(r)
α(r) δ(r) α(r) ζ(r) δ(r) δ(r) α(r) α(r)
β(r) η(r) β(r) β(r) ε(r) η(r) β(r) β(r)
β(r) η(r) β(r) β(r) η(r) ε(r) β(r) β(r)
α(r) δ(r) α(r) α(r) δ(r) δ(r) ζ(r) α(r)
α(r) δ(r) α(r) α(r) δ(r) δ(r) α(r) ζ(r)


(18)

From the relation that Ar+1 = ArA and A1 is known,
the following recursion formula are obtained:

β(r + 1) =

{
(N −m)γ − 1

2

}
β(r)

+(m− 1)γη(r) + γε(r) (19)

η(r + 1) = (N −m)γβ(r) +

{
(m− 1)γ +

1

2

}
η(r)

+γε(r) (20)
ε(r + 1) = (N −m)γβ(r) + (m− 1)γη(r)

+(γ +
1

2
)ε(r) (21)

α(r + 1) =

{
(N −m− 1)γ − 1

2

}
α(r)

+mγδ(r) + γζ(r) (22)

δ(r + 1) = (N −m− 1)γα(r) + (mγ +
1

2
)δ(r)

+γζ(r) (23)
ζ(r + 1) = (N −m− 1)γα(r) +mγδ(r)

+(γ − 1

2
)ζ(r) (24)

Now, let v1(r),v2(r),K1andK2 be defined as follows:

v1(r) =

 β(r)
η(r)
ε(r)

 (25)

v2(r) =

 α(r)
δ(r)
ζ(r)

 (26)

K1 =

 γ(N −m)− 1
2 γ(m− 1) γ

γ(N −m) γ(m− 1) + 1
2 γ

γ(N −m) γ(m− 1) γ + 1
2


(27)

K2 =

 γ(N −m− 1)− 1
2 γm γ

γ(N −m− 1) γm+ 1
2 γ

γ(N −m− 1) γm γ − 1
2


(28)

Then, the following relation hold:

v1(r + 1) = K1v1(r) (29)
v2(r + 1) = K2v2(r) (30)

By diagonalizing the matrixes K1 and K2, v1 and v2 are
obtained. As a result, the operator U is obtained as follows:

U =



ζ δ α α δ δ α α
β ε β β η η β β
α δ ζ α δ δ α α
α δ α ζ δ δ α α
β η β β ε η β β
β η β β η ε α β
α δ α α δ δ ζ α
α δ α α δ δ α ζ


(31)

β =
P1R1

λ11
exp (−i√γmt)− Q1L1

λ12
exp (i

√
γmt)

(32)

η = − 1

m
+
R1

λ11
exp (−i√γmt)− L1

λ12
exp (i

√
γmt)

(33)

ε =
m− 1

m
+
R1

λ11
exp (−i√γmt)− L1

λ12
exp (i

√
γmt)

(34)

α = − 1

N −m
exp(−it)

+
R2

λ21
exp (−i√γmt)− L2

λ22
exp (i

√
γmt)

(35)

δ =
P2R2

λ21
exp (−i√γmt)− Q2L2

λ22
exp (i

√
γmt)

(36)

ζ =
N −m− 1

N −m
exp(−it)

+
R2

λ21
exp (−i√γmt)− L2

λ22
exp (i

√
γmt)

(37)

λ11 = 1
2 −√

γm
λ12 = 1

2 +
√
γm

P1 =
√
γm√

γm−1

Q1 =
√
γm√

γm+1

R1 =
γmQ1+

1
2Q1−γm

m(Q1−P1)

L1 =
γmP1+

1
2P1−γm

m(Q1−P1)

(38)



λ21 = 1
2 −√

γm
λ22 = 1

2 +
√
γm

P2 =
√
γm−1√
γm

Q2 =
√
γm+1√
γm

R2 =
γ(N−m)(1−Q2)+

1
2Q2

(N−m)(P2−Q2)

L2 =
γ(N−m)(1−P2)+

1
2P2

(N−m)(P2−Q2)

(39)

IV. SEARCH ALGORITHMS BASED ON QUANTUM WALK

A. Application to quantum search problem in analog time

The result of the chapter III is applied to quantum search
problem. Remark that t is in analog time. The method is



called the method 1 (in analog time)[9]. The probability
Pw(t) is computed by the Eq.(9). Then the initial amplitudes
ψa(0) and ψb(0) of memorized and non-memorized data of
time 0 is as follows, respectively:

ψa(0) =
1√
l

(40)

ψb(0) = 0 (41)

From the Eq.(7), the following result is obtained

ψa(t) =
1√
l
[(l −m)αm + (m− 1)βm + δm]

=
1√
l
cos

√
γmt+ i

√
l√

mN
sin

√
γmt (42)

As a result, the observed probability of search data Pw(t) is
obtained from the Eq.(9) as follow:

Pw(t) =
1

l
cos2

√
m

N
t+

l

mN
sin2

√
m

N
t (43)

Let us show the example of four cases, (1) m = 1, l = N ,
(2) m = 2, l = N , (3) m = 1, l = N/2, (4) m = 2, l =
N/2 for N = 1024. The result shows Pw((π/2)

√
N/m) =

l/(mN), where t = (π/2)
√
N/m is the optimum time. If

l = N , then Pw(t) = 1/m and Pw(t) = 1 for m = 1. Fig.3
shows the simulation result. The case1 and case2 for N = l
shows high probability.
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Fig. 3. The simulation result of the method 1 for four cases

Then, how is the case where l 6= N . In this case, the
maximum probability is computed by solving dPw(t)/dt =
0. Fig.4 shows the results which are Pw(t) 6= 1 except for
N = l and Pw(t) ≤ 0.5 for l < N/2.

B. Improved search algorithm in analog time

The state ψa(t1) of memorized data after t1 step and
the state ψb(t1) of non-memorized data after t1 step are
represented as follows:

ψa(t1) =
1√
l
cos

√
l

N
t1 + i

1√
N

sin

√
l

N
t1 (44)

ψb(t1) = i
1√
N

sin

√
l

N
t1 (45)

When t1 = (π/2)
√
N/l, it holds ψa(t1) = ψb(t1).

Therefore, the states except for marked data at the step t1
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Fig. 4. Maximum probability for the number of memorized data

are identical, so the method 1 is possible to apply at the time
t = t1. The use of the method 1 for the time interval t2 leads
to the following probability:

ψw(t2 + t1) =
i√
N

[(N −m)αm + (m− 1)βm + δm]

= i
1√
N

cos

√
m

N
t2 −

1√
m

sin

√
m

N
t2 (46)

Pa(t2 + t1) =
1

N
cos2

√
m

N
t2 +

1

m
sin2

√
m

N
t2 (47)

By taking t2 = (π/2)
√
N/m, it holds Pa(t1 + t2) = 1/m.

The method is called the proposed method 2 in analog time.
Fig.5 shows the numerical example the comparison between
method 1 and proposed method 2 for N = 1024,m = 1, l =
512.
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Fig. 5. The comparison between the method 1 and the proposed method 2

C. The application to Grover search algorithm of the pro-
posed methods

In this section, let us apply the proposed method 2
obtained in the section B to Grover search algorithm shown
in Fig.1. Fig.6 shows the proposed method 3 (in digital time)
corresponding to the proposed method 2 Let us compute the



1. Initial state |ψ〉
2. Repeat T1 times
3. |ψ〉 = Iρ|ψ〉
4. |ψ〉 = G|ψ〉
5. Repeat Tg times
6. |ψ〉 = Iτ |ψ〉
7. |ψ〉 = G|ψ〉
8. Observe the system

Fig. 6. The algorithm of the proposed method 3

time T1 as the same method used in the section B.

ψa(T1) =
1√
l
cosω1T1 (48)

ψb(T1) = − 1√
N − l

sinω1T1, (49)

where

ω1 = arccos

(
N − 2l

N

)
. (50)

Therefore, we can find the time when ψa(T1) = ψb(T1) as
follows:

T1 = CI

π − arctan

(√
N−l
l

)
arccos

(
N−2l
N

)
 , (51)

where CI(x) means rounding of x. Fig.7 shows the result
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Fig. 7. The comparison among the proposed algorithms

of numerical simulation for N = 256.
Example 2:

Let n = 4 and N = 16. Let |2〉, |6〉, |11〉, |12〉 be stored
data.

|ψ〉 = 1

2
(0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0)t (52)

The suffix t means the transpose of the vector The following
reult is obtained by applying Iρ and G to the initial state of
the Eq.52.

|ψ〉 = 1

4
(−1,−1, 1,−1,−1,−1, 1,−1,−1,−1,−1, 1,

1,−1,−1,−1)t (53)

As T1 = 2, Iρ and G to the Eq.53 are iterated one more
time. As a result, the following state is obtained:

|ψ〉 = 1

4
(−1,−1,−1,−1,−1,−1,−1,−1,−1,

−1,−1,−1,−1,−1,−1,−1)t (54)

Further, iterating the steps 5 to 8 of the proposed method 3
to the Eq.54, the desired data is obtained with the probability
0.96.

Next, supposing that the stored data are
|0〉, |2〉, |3〉, |6〉, |7〉, |10〉, |11〉, |12〉 as follows:

|ψ〉 = 1

2
√
2
(1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0)t (55)

When the steps 2 to 4 of the proposed method 3 are iterated
for the Eq.55, the following state is obtained:

|ψ〉 = − 1

2
√
2
(1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0)t (56)

Then, the desired data is obtained with the probability 0.5
after applying the steps 5 to 8. It shows that the proposed
method 3 does not always give a good result.

As shown in Fig.7. we can not always get the maximum
result, because the maximum value of T1 is real number in
analog model. Therefore, in order to improve the result we
can introduce the phase rotation[8]. These are represented as
the following unitary matrixes:

W = I − (1− e−iα)
l∑

k=1

|ρk〉〈ρk| (57)

V = (1− eiβ)|s〉〈s|+ eiβI (58)

1. Initial state |ψ〉
2. Repeat T2 times
3. |ψ〉 = W |ψ〉
4. |ψ〉 = V |ψ〉
5. Repeat Tg times
6. |ψ〉 = Iτ |ψ〉
7. |ψ〉 = G|ψ〉
8. Observe the system

Fig. 8. The algorithm for the proposed method 4

The method is called the proposed method 4 The Fig.8
shows the algorithm for the proposed method 4. Matrixes Iρ
and G used before are the special case for α = β = π of
W and V , respectively. Let us compute the time T2. Let us
consider the case of T2 = 2. Then, as the imaginary parts of
ψa(2) and ψb(2) are agree, we will find the condition that
the real parts of ψa(2) and ψb(2) are agree. The following
relation is satisfied with the condition:

α = arccos

(
−N − 2l

2l

)
(59)

where l ≥ (1/4)N
Fig.7 shows the results of Grover and two proposed

algorithms.
Example 3:

Let n = 4 and N = 16. Let the initial state be defined
as the Eq. 55. In the proposed method 4, α is set to π/2.



TABLE I
A SUMMARY OF THE PROPOSED METHODS.

Analog model Digital model
Schroedinger Method 1 Grover algorithm

equation Proposed method 2 Proposed method 3
Proposed method 4

As T2 = 2, the steps 3 to 4 of the proposed method 4 are
iterated two times. Then, the following state is obtained:

|ψ〉 = 1

4
√
2
(−1 + i,−1 + i,−1 + i,−1 + i,

−1 + i,−1 + i,−1 + i,−1 + i− 1 + i,−1 + i,

−1 + i,−1 + i,−1 + i,−1 + i,−1 + i,−1 + i)t (60)

Grover algorithm shows good performance only in the case
of N = l. The proposed method 3 shows better performance
compared with Grover algorithm, but does not always show
good performance in the case of N 6= l.

The proposed algorithm 4 shows best performance of three
algorithms in digital model.

V. CONCLUSIONS AND FUTURE WORK

The result in this paper is summarized in Table I. The
method 1 and the proposed method 2 are obtained by
solving the schrodinger equation. The method 1 and the
proposed method 2 in analog time lead to Grover algorithm
and the proposed method 3 in digital time. The proposed
method 2 in analog time gives the optimum solution, but the
proposed method 3 in digital method 3 does not give the
optimum solution, because the optimum time is real number.
Therefore, we propose the method 4 and show that it gives
the optimum solution. As the future work, we will consider
the relation between the proposed method 2 and 4.
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