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Abstract—This paper proposes a model of a colluding attack
in Volunteer Computing (VC), where some of participants are
unreliable and may return incorrect results. The colluding
attack is one of the most important issues to realize reliable
VC because it may ruin the most basic assumption, i.e.
“the majority in voting is correct”. Especially, check-by-voting
archives the largest efficiency by sorting reliable participants
based on whether their results are the majority or not. Thus, if
some incorrect results become the majority by colluding attack,
it may have significant impacts on check-by-voting. In this
paper, we perform a Monte Carlo simulation of VC using the
proposed colluding model and evaluate the sabotage-tolerance
performance of voting methods. Simulation results show that
check-by-voting works well if colluding attack happens.

Index Terms—Parallel Computing, Job Scheduling, Mathe-
matical Modeling, Desktop Grids.

I. INTRODUCTION

Volunteer computing (VC) is a type of Internet based
parallel computing paradigm, which allows any participants
in the Internet to contribute their idle computing resources
towards solving large problems in parallel. By making it easy
for anyone on the Internet to join a computation, VC makes
it possible to build very large and high performance global
computing environment with a very low cost. The most
popular example of VC is SETI@home [1]. It is currently
employing hundreds of thousands of volunteer participants.
Nowadays, VC has a major role in scientific computations
such as [2].

In VC, a management node (master) divides a compu-
tation into small independent jobs and allocates them to
participant nodes (workers). Then, the workers execute the
allocated jobs in parallel and return their results to the
master. Since VC allows anyone in the Internet to join the
computation, workers in VC may not be reliable as in grid
computing. Those workers may behave erratically due to
hardware/software failures or virus infections, or may behave
maliciously to falsify the computation, each of which results
in sabotage to the computation. Hence, there is a need for
sabotage-tolerance mechanisms to improve the reliability of
computation in VC.

The basic mechanism for sabotage-tolerance is voting,
which collects multiple results for one job and determines the
final result through a voting. After voting, collected results
are divided into two groups, the majority and the minority.
The minority results will be eliminated as incorrect ones and
the majority ones are accepted as the final results because the
majority seems to be correct.
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Two major voting methods are M -first voting and check-
by-voting. M -first voting simply collects M matching results
for each job. Because of its simpleness, M -first voting is
used in major VC middle-ware such as BOINC[5]. Check-
by-voting [3], [4] is the upgraded version of M -first voting
based on the idea of weighted voting for performance im-
provement. Check-by-voting can guarantee that the error rate
of computation ε is less than given value εacc by determining
the weight well. Both of these two voting methods assume
the basic requirement that the majority in voting is always
correct.

However, the majority in voting may not be correct as
pointed out in [7]. For example, VC which distributes large
size jobs by P2P communication techniques requires worker-
worker communication networks. Some malicious workers
(saboteurs) also can communicate with each other using this
network. They can generate the incorrect results with the
same value and dominate majority of voting by their results.
To deal with this threat of colluding attack, verifications
and improvements of current sabotage-tolerance methods are
needed.

In this paper, we perform simulation-based performance
evaluations using a model of colluding attack for verifications
of two voting methods, M -first voting and check-by-voting.
First, we introduce a colluding probability c into the existing
saboteurs’ model. In case of c = 0, no colluding attack
happens like the existing model, while all saboteurs always
collude in c = 1 as the worst scenario. Then, we perform
simulations of VC by changing the parameter c from 0 to
1 and evaluate throughputs and error rates of both M -first
voting and check-by-voting.

II. VC MODEL

A. Computation Model
The computation model of VC in this paper is the well

known work-pool-based master-worker model. Figure 1 il-
lustrates the model. Details of the model are described as
follows.

• A VC system consists of a management node (master)
and W different participant nodes (workers).

• A computation to be executed in the VC system is
divided into N independent jobs.

• The master gives a job to each idle worker in each time
step. Then, each worker executes an allocated job and
returns the result to the master.

• The computation finishes when the time step reaches a
given deadline P .

B. Sabotage model
In the modeling of workers’ behaviors, the presence of

saboteur is one of the most important components. To



Fig. 1. Computation Model of VC systems

discuss the sabotage-tolerance problem of VC, Sarmenta [6]
proposed the following sabotage model.

• A certain faulty fraction f of W workers is assumed to
be saboteurs.

• Each saboteur is assumed to return an incorrect result
with a constant probability s, which is known as the
sabotage rate.

• The values of f and s are unknown to the master.
In the VC system with saboteurs, the performance is

evaluated by two performance metrics, the throughput and
the error rate. The throughput T is given as the number of
finished jobs when the time step reaches the dead line P .
The master may accept an incorrect result as final one of a
job. In this case, the job is called an incorrect job. The error
rate ε is given as the ratio of incorrect jobs to finished T
jobs.

Using no sabotage-tolerance methods, each job is finished
with one result whether the result is correct or not. If all
W workers function at the same speed and execute a job
in a unit time, T is given by W × P and ε is given by
W ×f×s×P/T = f×s. It is clear that ε is proportional to
the number of saboteurs and sabotage rate s. Therefore, to
reduce the error rate, some sabotage-tolerance methods must
be used.

III. SABOTAGE-TOLERANCE METHODS

A. Basic approach
The most basic approach to sabotage-tolerance is the

adoption of redundant computation. Voting is one of the
redundant computation techniques and has been widely used
in many areas such as fault-tolerant computing.

Two major voting methods are M -first voting and check-
by-voting. In these methods, each job is replicated and
allocated to several workers so that the master can collect
several results and compare their values. The results collected
for a job are then classified into groups (called result groups)
according to the value of the results. The master decides
which result group should be accepted as the final result
through voting.

B. M -first-voting
In M -first voting, the result group which collects M

matching (the same value) results first is accepted as the
final result. Because of its simpleness, M -first voting is used

in major VC middle-wares such as BOINC[5]. However,
M -first voting has a serious drawback on the performance
because the master always need to collect multiple (at least
M ) results for each job, whether each result is reliable or
not. Compared to a VC system with no sabotage-tolerance
methods, M -first voting degrades the throughput less than
1/M . Because the minimum number of M is 2, M -first
voting always degrades the throughput less than half.

C. Check-by-voting

1) Basic idea: Check-by-voting [3], [4] is the upgraded
version of M -first voting based on the idea of weighted
voting. In check-by-voting, the master gives a credibility
value to each worker which represents how the worker is
reliable. The master changes the credibility value with time
based on the workers’ behavior in the computation, e.g. the
number of returned results. The credibility is used as its
weight in voting so that the number of results collected for
one job is not fixed. Note that, if the credibility of a worker
is enough high, a job can be finished with just one result.This
implies the throughput of check-by-voting can get above of
the limitation of M -first voting, i.e. the half throughput.

The problems of check-by-voting are how to check the
workers’ reliability and to calculate the proper value of
credibility. For these problems, the authors have proposed the
following checking technique and the calculating formula. As
a feature, the credibility in the proposed formula is given as
a conditional probability so that the expected value of the
error rate ε is less than an arbitrary value εacc for any cases
of s and f . In the proposed method, this condition ε ≤ εacc
is called the reliability condition.

2) Checking technique: Checking technique is the method
to check whether a worker is reliable or not through each
voting. When a job is finished through a voting, the collected
results are divided into two groups, i.e. the majority results
and minorities ones. In this technique, a worker w who re-
turned the majority results is regarded as “a reliable worker”
and the parameter kw is counted up, which represents how
many times w becomes the majority (kw = 0 at the start of
the computation). On the other hand, workers who returned
the minority results are regarded as saboteurs. Those workers
are eliminated from the system (blacklisting) and all returned
results from those workers are invalidated (backtracking).

Using the checking technique, a worker who returns cor-
rect results continuously gets larger kw and gains credibility.
The results returned from such reliable workers tend to be
accepted, which leads to reduce the error rate. Also, after
the worker gains enough credibility, the throughput can be
improved because the worker produces reliable results, which
can finish one job with just one result.

3) Calculating Formula of Credibility: After checking the
worker w, the credibility CW (w) is given based on the
parameter kw. Eq.(1) shows CW (w) when all W workers
execute a job in a unit time. Because s and f are unknown
to the master, the credibility should be given by the upper
bound for s and f . The parameter fmax is the assumed ratio
of saboteurs and given by the master so that the condition
f ≤ fmax is satisfied.



CW (w) = (1){
1− fmax if kw = 0,
1− fmax

1−fmax
×max( 1

kwe(1−εacc)
, εkw

acc) otherwise.

IV. COLLUDING ATTACK

A. The definition
In a recent VC, workers can communicate each other

for several reasons [7]. For example, VC which distributes
large size jobs by P2P communication techniques requires
worker-worker communications. Saboteurs in such VC also
can communicate with each other using this network. They
can generate and return the incorrect results which have the
same value to increase the probability that the master accepts
saboteurs’ results.

In this paper, the colluding attack is defined as returning
incorrect results which have the same value. Figure 2 shows
an example of colluding attack. For a job “1+1=?”, saboteurs
can communicate with each other and generate the same
incorrect results “3”, while the correct result is “2”. In this
case, the saboteurs’ results “3” becomes majority, which are
accepted by the master. As shown in this case, the majority
in voting is not always correct if colluding attack happens.

B. Colluding Method
The collusion attack is classified into the following three

categories depending on how to determine incorrect values.
• Direct colluding method

The direct colluding method allows a saboteur to com-
municate with other saboteur directly and determine the
incorrect value for every sabotaging. In this method, the
number of saboteurs in each colluding group tends to
be small since each saboteur must know informations
about other saboteurs for direct communications.

• Indirect colluding method
The indirect colluding method extends direct colluding
to enable building an extensive colluding group of
saboteurs. Instead of the direct communication, the
saboteurs access to a third party, e.g. a colluding server,
and obtain the value which should be set to the in-
correct result. Thus, saboteurs can communicate with
each other indirectly (via the colluding server) without
knowing informations of other saboteurs. This method
has a possibility of allowing all saboteurs to collude

Fig. 2. An Example of Colluding Attack

together, and increasing the error rate of a computation
dramatically.

• Accidental colluding method
The accidental colluding happens in case of accident.
For example, incorrect values may match when a
multiple-choice question is given as a job. This implies
a colluding can happen depending on the type of job
even if workers have no malicious intent.

C. Effect on Sabotage-tolerance

The current sabotage-tolerance methods do not assume the
presence of colluding attacks since they focus on traditional
VC, which does not need worker-worker commnications, and
assume the incorrect values are random (not matches each
other). If colluding happens, the performance metrics may
be affected by the following reasons.

• Error rate ε
The error rates of voting methods will become larger
since the incorrect results may become the majority
and be accepted by the master. Especially, in check-
by-voting, such saboteurs may gain the credibility il-
legally by returning colluding results. This implies the
reliability condition ε ≤ εacc may not be guaranteed
because the credibility formula (eq.(1)) does not assume
colluding attacks.

• Throughput T
The throughput T of check-by-voting will become
smaller since the correct results returned from non-
saboteurs may be invalidated. This invalidation happens
when non-saboteurs’ results become minority in voting
by colluding attacks.

D. Model of Colluding Attack

To evaluate the effect of colluding shown in Section
IV-C, colluding attacks should be modeled. In this paper,
we propose a colluding model based on the colluding rate c.
The details of the proposed model is the following.

• When a saboteur generates an incorrect result with
probability s, the saboteur performs colluding attack
with the probability c and performs random attack with
the probability 1− c.

• In case of the colluding attack, the saboteur generates
a colluding result which has a predetermined incorrect
value.

• In case of the random attack, the saboteurs generates an
incorrect result having a random incorrect value.

Note that a saboteur generates a correct results with the
probability 1− s.

The behavior of a saboteur is summarized as follows.
For each job, a saboteur returns a colluding result with
the probability sc, returns a random incorrect results with
the probability s(1 − c) and returns a correct result with
the probability 1 − s. Using the proposed model and the
parameter c, we can generate any case of sabotaging and
colluding. If c = 0, the computation model is the same as the
existing one. On the other hand, the case of c = 1 generates
the worst case, i.e. all saboteurs always collude and return
the same incorrect results.



V. SIMULATION

A. Evaluation Method
The error rate ε and the throughput T is evaluated in

the VC model with saboteurs who may perform colluding
attacks. This evaluation can cover any situation of VC by
changing the colluding probability c from 0 to 1, including
the existing VC model (c = 0). The evaluation targets of
sabotage-tolerance methods are the following.

• 2-first-voting
2-first-voting is an instance of M -first voting where M
is set to the minimum number 2. As M becomes larger,
the throughput tends to be smaller since each job is
replicated for more workers. Thus, 2-first-voting shows
the best throughput in M -first voting.

• Check-by-voting
Check-by-voting is the proposed voting method as an
improved version of M -first voting shown in Section
III-C. For job scheduling, the existing method is used
same as in [4].

B. Simulation Condition
Table I shows the simulation parameters in our evaluation.

The assumed ratio of saboteurs fmax is set to 0.35 based on
the real VC experiments [8]. The simulation conditions are as
follows. All W workers are assumed to have the same speed
and execute a job in a unit time as in [4]. In check-by-voting,
the checking technique checks all votings and imposes two
penalties to minority workers in voting, where all returned
results from minority workers are invalidated (backtracking)
and those workers can not get any more jobs from the master
(blacklisting) [4].

C. Simulation Results
1) Colluding rate c: Fig.3 shows the error rate ε and

the throughput T for colluding rate c. Fig.3(a) shows the
error rate of 2-first voting increases with the colluding
rate c. Since larger c increases the probability of returning
colluding results, the colluding results tend to be the majority.
Especially, in case of s = 1.0, the error rate exceeds the given
parameter εacc = 0.05 if c is greater than 0.4. This figure
shows 2-first voting can not achieve the required reliability
because the values of s and c are unknown to the master.

On the other hand, the error rate of check-by-voting is
almost constant for any c and is smaller than the given εacc.
To discuss this result, we should reconfirm the simulation
conditions. In this simulation, all workers produce the same
number of results and the ratio of incorrect results is f ×
s. As long as f is smaller than 0.5, the incorrect results
are the minority in all results, whether saboteurs collude or

TABLE I
SIMULATION PARAMETERS

Computation deadline P 100
The number of workers W 100

The maximum number of jobs N 10000
The assumed ratio of saboteurs fmax 0.35

The actual ratio of saboteurs f 0 ～ fmax

Sabotage rate s 0 ～ 1
Acceptable error rate εacc 0.01, 0.05

not. Even if the colluding workers become the majority in
some jobs, their results for other jobs may be the minority.
Therefore, those incorrect results become the minority in a
voting at any point of the computation. When an incorrect
result from a saboteur becomes the minority, all the results
returned from the saboteur are invalidated by backtracking.
The master reevaluates the past all votings of jobs which
include the results from the saboteur. In such reevaluation,
the correct results tend to be majority because the incorrect
results have been invalidated. This is the reason why the error
rate of check-by-voting becomes smaller.

Fig.3(b) shows the throughput of check-by-voting is al-
most constant for any c. This implies almost all saboteurs
become the minority in any voting and take the penalty
(blacklisting). In this situation, the rest few saboteurs do not
affect the throughput even if s and c are large. On the other
hand, the throughput of 2-first voting depends on c (from
2500 to 3200 at s = 1) because all saboteurs survive until
the end of the computation. Note that the throughput of 2-first
voting is always less than W × P/2 = 5000 because 2-first
voting requires at least two results for each job, while check-
by-voting outperforms 2-first-voting for any c and achieves
over T = 6000 for any c.

Fig.4 shows the simulation results in case of εacc = 0.01.
The result of 2-first-voting is the same as in Fig.3 because
2-first-voting does not use εacc. Fig.4(a) shows that check-
by-voting guarantees the reliability condition ε ≤ εacc for
any c, despite εacc changes from 0.05 to 0.01. This is a
feature of check-by-voting. The credibility changes depends
on given εacc (Eq.1) and then the number of collecting
results (redundancy) changes depending on the credibility.
Generally, if εacc becomes smaller, the credibility values
become smaller and the required redundancy becomes larger
to eliminate incorrect results through voting. As shown in
Fig.4(b), the throughput also changes depending on εacc. For
instance at s = 1, T = 6500 at εacc = 0.05 and T = 5800 at
εacc = 0.01. This implies check-by-voting obtains less error
rate to satisfy ε ≤ εacc at the expense of throughput.

2) The actual ratio of saboteurs f : Fig.5 shows the error
rate and the throughput for the actual ratio of saboteurs f . In
this figure, the colluding rate is assumed as the worst case,
i.e. c = 1.0. Fig.5(a) shows the error rates of both 2-first
voting and check-by-voting increase with f . Especially, for
s = 1, the error rate rapidly increases with f . This implies
the powerful influence of saboteurs on the error rate, who
always return incorrect and colluding results. However, in
check-by-voting, the reliability condition ε ≤ εacc is satisfied
as long as f is smaller than the assumed fmax.

As shown in Fig.5(b), for larger f , the throughput of
check-by-voting becomes smaller because the ratio of non-
saboteurs (1 − f ) becomes smaller. In check-by-voting, the
throughput mainly depends on the number of non-saboteurs
because almost all saboteurs are blacklisted by the checking
technique. On the other hand, the throughput of 2-first voting
is almost constant for any f since saboteurs will not be
checked. However, the throughput of check-by-voting is
almost two times and outperforms 2-first voting for any f .

3) Sabotage rate s: Fig.6 shows the error rate and the
throughput for the sabotage rate s. In this figure, the collud-
ing rate c is set to 1 to assume the worst case. Fig.6(a) shows
the error rate of check-by-voting has two local maximal
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values at s = 0.2 and s = 1.0. This result implies the
difficulty of guaranteeing the reliability condition, which
means the worst case is not always at s = 1.0. To guarantee
ε ≤ εacc for any s, we must investigate the reason why these
local maximal points arise.

One of the reasons may be that larger s increases both the
ratio of incorrect results to all results and the probability of
being detected as saboteurs. First, at s = 0, the error rate
is 0. As s increases, the error rate tends to increase because
the number of incorrect results increases. However, larger s
also increases the probability of producing incorrect results,
which may be minority ones in the checking technique. Thus,
when s reaches a certain value (s = 0.2 in this case), the error
rate becomes smaller as s increases due to the invalidation
of incorrect results by backtracking. After s reaches 0.7, the
ratio of incorrect results becomes enough large so that those
incorrect results tend to be majority. Therefore, the error
rate increases with s between s = 0.7 to 1.0. The above
speculation seems to be true in our simulation. However, the

condition of arising such local minimal is not known and
should be in our future work.

VI. CONCLUSION

In this paper, we perform simulation-based performance
evaluation of both M -first voting and check-by-voting. For
the evaluation we introduce a colluding probability c into the
existing saboteurs’ model and propose colluding model. In
case of c = 0, no colluding attack happens as the existing
model, while all saboteurs always collude in c = 1 as the
worst scenario. The simulation results show that check-by-
voting guarantees the reliability condition ε ≤ εacc for any
s,f and c, while the throughput always outperforms that
of 2-first voting. However, there are still unknown parts
of colluding. One of our future work is analyzing these
behaviors and guaranteeing the condition ε ≤ εacc in any
case of saboteurs’ behavior.
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