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High Performance Computation of Iterative
Methods for Matrices Appear in The Field of
Realistic Electromagnetics

Takashi Sekimoto?

Abstract—We estimate performance of the conven-
tional and several hybrids of product-type iterative
method for solution of realistic electromagnetic prob-
lems. Moreover, performance of new coming iteartive
methods based on IDR(s) method will be also exam-
ined. As a result of total ranking on performance, we
will state what iterative method is the most effective
through numerical experiments.

Keywords: iterative method, BiCGSafe method, GBi-
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1 Introduction

We consider to solve efficiently a linear system of equa-
tions Ax = b by state-of-the-art iterative methods.
Here A means a large, sparse and real nonsymmet-
ric coefficient matrix, and «,b is the solution vector
and right-hand side vector, respectively. Among many
iterative methods, product-type of iterative methods
e.g., BiICGStab(Bi-Conjugate Gradient Stabilized)[9] and
GPBiCG(Generalized Product-type BiCG)[10] are often
used for the purpose of solution for realistic problems.
They constitute a sequence of polynomial by multiply-
ing Lanczos polynomials by so-called acceleration polyno-
mial. The acceleration polynomial is categorized into two
groups according to number of term of recurrence That is,
BiCGSTAB method is generated by two-term recurrence
only, and GPBiCG method is generated by three-term re-
currence only. In addition, it must be noted that we meet
with instability of GPBiCG method in many numerical
experiments.

On the contrary, BICGSTAB2 [3] method was proposed
by M. Gutknecht in 1993. Moreover, same name of
BiCGSTAB2 method was proposed as a hybrid version of
GPBiCG method by Zhang [10] in 1997. These two types
of BiICGSTAB2 methods consist of combinated Lanczos
polynomial and acceleration polynomial, and were used
for solution of many electromagnetics problems. It is,
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however, performance of BICGSTAB2 methods are de-
manded for solution of the large scale problems [11]. Re-
cently, on the other hand, various product-type of it-
erative methods were proposed one after another, e.g.,
BiCGSafe [2], GPBiCG_AR [4] by the authors and GP-
BiCG_variant [1] by K. Abe et al. Moreover, a family of
IDR(s) [8] such as BilDR(s) [7] and GBiCGSTAB (s, L)
[6] has attracted attention. Therefore, these iterative
methods have possibility to supply a demand for gain-
ing high performance computing

In this research, we have two objectives. One of them
is that we will implement hybrid methods of BiCGSafe,
GPBiCG_AR and GPBiCG_variant methods as well as
BiCGSTAB2 methods. Another of them is that we will
evaluate convergence rate of a series of product-type iter-
atve method, and a family of IDR(s), and hybrid methods
for matrices appear in the field of realistic electromagnet-
ics problems.

This paper is organized as follows: In section 2, a brief
outline of BiCGsafe2 method as hybrid of the original
BiCGSafe method with combination of two-term and
three-term recurrences will be described. In section 3,
a short description on GBiCGStab(s, L) method includ-
ing GBiCG part and MR part will be done. In section
4, computational cost of some iterative methods will be
estimated. In section 5, several results of iterative meth-
ods will be shown, and it will be made clear that what
is the most effective iterative methods through numerical
experiments. Finally, in section 6, we have concluding
remarks.

2 Hybrid version of BiCGSafe method

We treat with iterative methods for solving a linear sys-
tem of equations

Ax = b, (1)

where A € RV*V is a given nonsymmetric matrix, and x,
b is a solution vector and right-hand side vector, respec-
tively. The parameters (i, nx which are included in accel-
eration polynomial of the original BiCGSafe method are
decided from the local minization of the associate resid-
ual vector of 2-norm as |la_rk||2 = ||Hi+1(A) Ri+1(AN)||2-
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The associate residual a_rj, is defined as follows: consists of GBiCG(s) part and MR(Minimum Residual)
part. In GBiCGSTAB(s, L) method, residual vector 7y,
solution vector xj, and auxiliary matrix Ui_; are updated
Here 7}, denotes the residual vector of the algorithm, and  ¢g ¢, +1, Tryr and Uy, o1 respectively at every L itera-
Yy, denotes also an auxiliary vector. The parameters Cx, tion. Here, k = mL(m = 1,2,...). We denote vectors 7,
i of the original BiCGSafe method are computed as fol-  and matrices Uy, of GBiCG(s) method as r,S® and UEB7

ar, = 1Tp—GATE — Y- (2)

lows: respectively. Then, we set ry and Uy as
(br, br)(ck, ax) — (by, ax)(ck, by) GB GB
= , 3 TR = AP Uk = AU, 21
¢ (ks k) (br, bi) — (b, cx)(cx, by) ®) ¢ = QulAIr™, Ui = QA , @0
¢k, cr)(bg,ar) — (b, cp)(ck, ay and define approximate solution vectors x; and 9 as
(4) g
M = ’
(ck, ek ) (br, br) — (bk, ek ) (ck, br) b— Az, = 7, = Qu(A)rSE, (22)

where we impose that ay = 7y, by =y, ¢, = Ary. b_ A:i:](:) — re = Qu(A )Tk+1 (23)

On the other hand, BiCGSafe2 method with similar prop- _ o _
erty as BICGSTAB2 and GPBiCG_AR alternates com- Here, Qi(t) = pm(t) - p2(D)p1 (1), product of MR poly
putation of parameters (i, 1, of the original BiCGSafe
method. In this approach, we set n; to be zero at even 3.1 GBiCG part
iteration step. We present an algorithm of BiCGSafe2

nomials p;(t)(: = 1,2,...,m).

method as below. In GBiCG part, in k iteration, we update Aijrkch,
AJQkU,?fL 1, and (L'(L)(j = 0,...,L). Here, £ =
Algorithm of BiCGSafe2 method mL(m = 1,2,...). First, we give Qk7€37 QkUEE(j —
0,...,1), and @, to this part. Next, for i-th iteration(i =
Let xo be an initial guess, and put ro = b — Azg 0,2,...,L — 1), Al QkUEE’Z( = 0,...,1) is updated
choose 7y such that (ro,r$) # 0, set 3_1 =0 from AJQk k+z AJri AJQkUk-H Bra(t =
for k= 0,1,...,until [[rg 4[] < [[rol| do: 0,..., 5), and update AJrikH+1 from AIQuriP =
begin AIQuriB, — AT QR USB anyi(j = 0,1,...,4). For a“zé),
P ="k + Br-1 (1 — we1) (%) we update such that & A(Hl) = A( ) + ak+1QkUk+ Fi-
APy = Ari F Bi1 (AP — Aui—) ©) nally this part output AJ QurSB, . AIQUEE Z and
ap = (1, 70)/(Apy, T6) (7) (L) kL FHL-L
ap =71k, by =y, cp = Ary (8) (J =0,. L)'
if mod(k,2) # 0, then 3.2 MR part
Ce = (eksar)/(ck, k), me =0 9)
up = G APy + Br—1Uk—1 (10)  In MR part, we use output of GBiCG part to up-
2z = (T — Qpug (11)  date residual vector, multiple auxiliary vectors and so-
Ypi1 = CkATE — apAuy (12)  Jution vector. First, we choose parameter v(mH)( =
else . B
¢ Bibo)er,ap) = (b ax)(er. by) 15) : ZL Y <12+t1}>1€ Lhdetirete tfR pdyn(f)mla; f.’"““) o
(err cx) (brr br) — (br, ex) (o br) =2 suc at the norm of updating resi
_ (ernen) (b ax) — (b, ex)(ex, ax) w ual 74 1sin1n1mum. Next, from dﬁﬁmtlon of Qr+r(t),
" (enren) (bry br) — (br, ) (er, br) Qr+r-1(t) = pe(k)pe(k— L) - p1(t) = pe(k)Qx(t), we up-
up = APk + M6 (Vi + Br—1Uk—1) (15) date 7y r, Uptrand @i41, as follows:
zZp = CeTk + MkZE—1 — QpUL (16) Qk+LTSEL = rikJrL
Ypr1 = CkATE + MYy — apAug (7)
end if - Z%(m-&-l)AirigfL’ (24)
Tht1 = T + Py + 2k (18) i=1
T}Hi ;:?rkiljf;k e 1 QkJFLUISPLfl = QkUk+L 1
P = C: (rk:"'S) (20) Z ("H_I)AZQ U (25)
End P EYk+L—1-
From eqns.(23) and (24), @1 is updated as
Bi TAB(s, L) method L
3 GBiCGS (s, L) zear = &0 Z’Y(mH)AZ QP (26)

GBiCGSTAB(s, L) method is derived from GBiCG(s) i=1
methods by introducing L-degree stabilization polyno-
mial. Computation per iteration of GBiCGSTAB(s,L) We present an algorithm of BiCGSafe2 method as below.
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Algorithm of GBiCGSTAB(s, L) method

Let @ be an initial guess, and put ro = b — Axg
choose N x s matrices Py

Set Ug = [ro, Aro, . .. ,As_lro]

Set Uy = AUy, M = PTU;,m = PTrg

Solve M~ = m for v (27)
ro =70 — U1, @0 = zo + Uo7y (28)
r1 = Arg,iter = 0,w = —1 (29)
While ||7n||2/||70l]2 > € Do

M= —-wM (30)

For:=0,1,...,L —1 Do
If iter=0and i=0then =1

m=PTr, (31)
xTO = Titer,T0 = Titer (32)
For j=1,2,..., s Do
If j =1 then
Solve M~ = m for ~ (33)

S
Urej =7r— Y  Uregy(q) (k=0,1,...,3)  (34)

q=1
Else
Solve [m, Me1,...,Mej_o, Mej, ..., Mes|y
= Mej_; for v (35)
j—2
Ukej = Ugr1ej—1 —riy(1) = Y Ukrreqv(g+1)
s ! '
=Y Ukegy(q) (k=0,1,...,9) (36)
q=j
End If
Compute Ujy1e; = AUje; (37)
Mej = PTU; e (38)
End Do
Solve M~ = m for ~ (39)
v =7, — U1y (k=0,1,...,49) (40)
xo = xo + Uy (41)
riy1 = Ar; (42)
End Do

For j=1,2,...,L Do

1
Tij:;(m,rj),'rj ZTZ‘]"I"Z' (’i:1,27...,j—1) (43)

K3

o) = (rjr)vy = Uijm,ro) (44)
End Do
VL= p,w =L (45)
, L
vi=v— D, miv (G=L—1,L—2,...,1) (46)
i=j+1
. L—1
v =Vt > mivier =1,2,...,L—1) (47)
i=j+1

’
Ty = xo + Y170, 70 :To—’yL’I‘L,Uo =Up—vUL
Up=Uo—vU; j=1,2,...,L—1)

iter = iter + (s + 1)L
Liter = L0, Titer = T0

End While

(

(
wo::co—l—v;-/rj,ro:ro—v;rj (j=1,2,...,L—1) (50)

(

(
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4 Estimation of computational cost

Table 1 presents computational cost per one iteration of
representative five kinds of methods. In Table 1, “Au”
means number of matrix-vector multiplications. “u’v”
means also number of inner products. Similarly “w + v”
means number of an addition of two vectors. “au, u/a”
means number of a scalar multiplication of a vector. “N”
denotes dimension of matrix, and “NNZ” denotes num-
ber of nonzero entries of matrix. Computational cost per
(s +1) iterations of GBICGSTAB(s, L) method is shown
in Table 1.

5 Numerical experiments

5.1 Computational environment and condi-
tions

All computations were done in double precision floating
point arithmetics of Fortran90, and performed on Dell
PowerEdge R210 IT with CPU of Intel Xeon E3-1220,
clock of 3.1GHz, main memory of 8GB and OS of Scien-
tific Linux 6.0. Optimum option “-03” was used. Stop-
ping criterion of iterative methods is less than 10~7 of
the relative residual 2-norm ||rg41||2/]|b — Azo||2. In all
cases the iteration was started with the initial guess so-
lution @y = (0,0,...,0)”. We examined performance of
ierative methods for two matrices which stem from the
field of electromagnetic analysis. The iterative methods
shown in bold means the hybrid method which combine
between two-term and three-term recurrences. In addi-
tion, we examined performance based IDR(s) method,
i.e., IDR(s), BiIDR(s) and GBiCGSTAB(s, L) methods.

1. GPBICG, BiCGSTAB, BiCGSTAB2

2. GPBiCG_vl, GPBiCG2_vl, GPBiCG.v2, GP-
BiCG2_v2

3. GPBiCG_AR, GPBiCG_AR2
4. BiCGSafe, BiCGSafe2
5. IDR(s), BiIDR(s), GBiCGSTAB(s, L)

All test matrices were normalized with diagonal scaling.
Maximum iteration was fixed as 10000. ILU(0) precon-
ditioning without extra fill-ins are applied to all iterative
methods. Acceleration parameter + for diagonal entries
varied from 1.05 until 1.30 at the interval 0.05. The pa-
rameter s of IDR(s), BiIDR(s) and GBiCGSTAB(s, L)
methods varied as 1, 2, 4 and 8. In a same way, the pa-
rameter L of GBICGSTAB(s, L) method varied as 2 and
3.

Table 2 presents specifications of test matrices stemed
from FEM analysis for electromagnetic problems done
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Table 1: Computational cost per one iteration of five kinds of methods.

operation GPBiCG | BiCGSTAB2 | BiCGSafe | BiCGSafe2 GBICGSTAB(s, L)*
even | odd even | odd
Au (x2NNZ) 2 2 2 2 2 2 (s+1)
uTv (x2N) 7 4 7 7 4 (s> +543)
u+v (xN) 16 16 11 14 14 | 11 | 3(s°L+sL+s>+5s+L+3)
au, u/a (xN) 13 13 9 13 13 9 | 3(s’L+sL+s>+5s+L+3)

Remark: The mark “*” shows computational cost per (s + 1) iterations.

Table 2: Specifications of test matrices.

matrix N
boxshield_20 881,080
IPMSM_120 | 3,628,380

by profs. K. Fujiwara and Y. Takahashi of Doshisha
University [11]. In Table 2, “N” means number of di-
mensions, “N N Z” means number of nonzero entries, and
“ave. NNZ” means average number of nonzero entries
per one row of matrix.

5.2 Numerical results

Table 3 shows convergence of preconditioned
GBiCGSTAB(s,L) method for matrix boxshield 20
when parameter v is fixed as 1.15. Table 4 presents
also convergence of preconditioned GBiCGSTAB(s, L)
method for matrix IPMSM_120 when parameter -y
is fixed as 1.20. Table 5 exhibits performance of 14
kinds of preconditioned iterative methods for matrix
boxshield_20. Similarly, Table 6 shows performance of
14 kinds of preconditioned iterative methods for matrix
IPMSM_120. In Table 3-6, “itr.” means number of
iterations, and “TRR” means values of True Relative
Residual of ||b — Az11]|2/]|b — Azo||2 for the converged
solutions xy41, and “ratio” means ratio of CPU time
of GPBiCG method to that of other iterative methods.
From Table 3, as parameters s and L increase, a number
of iterations decreases except for s 2 for matrix
boxshield_20.

Table 3: Convergence of preconditioned GBi-
CGSTAB(s, L) method for matrix boxshield 20 when
parameter v is fixed as 1.15.

L |s| itr. total ave. logg
time time | (TRR)

[sec.] | [msec.]
111172 | 116.51 96.49 -7.06
22| 1188 | 120.29 98.38 -7.10
411070 | 113.26 | 102.65 -7.23
8| 1062 | 122.17 | 111.82 -7.13
11146 | 115.08 97.43 -7.02
3112|1179 | 120.84 99.58 -7.17
411035 | 111.49 | 104.41 -7.04
8| 1026 | 122.75 | 116.29 -7.03
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NNZ | ave. NNZ

30,716,540 36.96

113,904,598 31.39
Table 4: Convergence of preconditioned GBi-

CGSTAB(s, L) method for matrix TPMSM_120 when
parameter -y is fixed as 1.20.

L |s| itr. total ave. logg
time time | (TRR)

[sec.] | [msec.]
11644 | 674.88 | 393.49 -7.09
2|2 1218 | 517.57 | 401.92 -7.02
4 | 1060 | 475.99 | 422.64 -7.15
8| 990 | 486.63 | 463.25 -7.08
11716 | 710.82 | 397.88 -7.08
321224 | 527.32 | 407.87 -7.09
4 | 1065 | 487.46 | 431.36 -7.26
8| 999 | 510.89 | 483.41 -7.26

From Table 5, we can gain the following observation.

o GPBiCGSTAB(s, L) method shows the least CPU
time, and BiCGSafe method shows the second.

e BiCGSTAB2, BiCGSafe2 and GPBiCG_AR2 meth-
ods present lower iterations and faster CPU time
compared with each original iterative methods.

From Table 6, we get the following observation.

e GPBiCGSTAB(s, L) method shows the least time,
and BiIDR(s) method shows the second of that.

o A family of IDR(s) methods present an excellent con-
vergence rate.

Table 7 demonstrates the ranking of convergence time
and overall for 14 kinds of ILU(0) preconditioned iterative
methods. Fig. 1 exhibit history of relative residual 2-
norm of six kinds of iterative methods.
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Table 5: Summary of performance of 14 kinds of preconditioned iterative methods for matrix boxshield_20.

method v|s|L itr pre. itr. total ave. logq | ratio | ranking
time[s] | time[s] | time[s] | time[ms] | (TRR)
GPBiCG 115 - | - | 624 3.43 | 128.08 | 131.51 205.26 -7.13 | 1.00 12
BiCGSTAB 1.05 | -| - | 718 3.42 | 140.94 | 144.36 196.30 -7.04 | 1.10 14
BiCGSTAB2 1.10 | - | -| 592 3.43 | 120.68 | 124.11 203.85 -7.19 | 0.94 6
GPBiCG_vl 1.10 | - | -| 581 3.43 | 122.81 | 126.24 211.38 -7.34 | 0.96 8
GPBiCG2_v1 1.10 | - | -| 593 3.44 | 123.38 | 126.82 208.06 -7.14 | 0.96 9
GPBiCG._v2 1.10 | - | -| 578 3.43 | 121.35 | 124.78 209.95 -7.16 | 0.95 7
GPBiCG2_v2 1.15 | - | -| 612 3.43 | 127.15 | 130.59 207.76 -7.15 | 0.99 11
GPBiCG_AR 1.10 | - | -| 579 3.42 | 118.23 | 121.65 204.20 -7.20 | 0.93 4
GPBiCG_AR2 1.10 | - | -| 577 3.42 | 116.94 | 120.36 202.67 | -7.05| 0.92 3
BiCGSafe 1.10 | - | - | 582 3.44 | 119.79 | 123.23 205.82 -7.27 | 0.94 5
BiCGSafe2 1.10 | - | -| 575 3.43 | 116.90 | 120.33 203.30 -7.07 | 0.91 2
IDR(s) 1.05 | 8 | - | 1010 3.43 | 134.47 | 137.90 133.14 -7.05 | 1.05 13
BiIDR(s) 1.05 4| - | 1124 3.44 | 123.56 | 126.99 109.93 -7.05 | 0.97 10
GBiCGSTAB(s,L) | 1.15 | 4 | 3 | 1035 3.43 | 108.06 | 111.49 104.41 -7.03 | 0.86 1

Table 6: Summary of performance of 14 kinds of preconditioned iterative methods for matrix IPMSM_120.

method y|s|L itr pre. itr. total ave. logq | ratio | ranking
time[s] | time[s] | time[s] | time[ms] | (TRR)
GPBiCG 1.15 | - | -| 859 | 28.03 | 719.64 | 747.67 837.76 -7.13 | 1.00 12
BiCGSTAB 1.10 | - | - | 1010 28.00 | 804.74 | 832.74 796.77 -7.04 | 1.11 13
BiCGSTAB2 1.20 | - | -| 818 28.04 | 680.47 | 708.51 831.87 -7.19 | 0.95 10
GPBiCG._vl 115 | - | -| 720 | 28.02 | 619.46 | 647.48 860.36 -7.34 | 0.87 7
GPBiCG2_v1 1.25 | - | - | 962 28.00 | 815.82 | 843.83 848.05 -7.14 | 1.13 14
GPBiCG_v2 110 | - | -| 779 | 27.99 | 666.82 | 694.81 855.99 -7.16 | 0.93 9
GPBiCG2_v2 1.15| - | - | 823 28.01 | 696.89 | 724.90 846.77 -7.15 | 0.97 11
GPBiCG_AR 110 | - | -| 683 | 28.04 | 571.37 | 599.40 836.56 -7.20 | 0.80 5
GPBiCG_AR2 1.20 | -| -| 800 | 28.02 | 664.54 | 692.56 830.68 -7.05 | 0.93 8
BiCGSafe 115 | -| -| 654 | 28.03 | 543.53 | 571.56 831.09 -7.27 | 0.76 4
BiCGSafe2 1.10 | - | -| 744 | 28.04 | 616.22 | 644.26 828.25 -7.07 | 0.86 6
IDR(s) 1.30 [ 4| -| 1042 | 28.06 | 541.57 | 569.64 519.74 -7.05 | 0.76 3
BilDR(s) 1.30 | 4| -| 1041 | 28.02 | 473.27 | 501.30 | 454.63 | -7.05| 0.67 2
GBiCGSTAB(s,L) | 1.20 | 4 | 2 | 1060 | 27.99 | 448.00 | 475.99 422.64 -7.08 | 0.64 1

Table 7: Ranking of CPU time and overall for 14 kinds of preconditioned iterative methods.

method ranking total score || overall
boxshield_20 | IPMSM_120 ranking
GPBIiCG 12 12 24 13
BiCGSTAB 14 13 27 14
BiCGSTAB2 6 10 16 8
GPBiCG_vl 8 7 15 7
GPBiCG2_v1l 9 14 23 12
GPBiCG_v2 7 9 16 8
GPBiCG2_v2 11 11 22 11
GPBiCG_AR 4 5 9 3
GPBiCG_AR2 3 8 11 5
BiCGSafe 5 4 9 3
BiCGSafe2 2 6 8 2
IDR(s) 13 3 16 8
BilDR(s) 10 2 12 6
GBiCGSTAB(s, L) 1 1 2 1
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Figure 1: History of relative residual 2-norm six kinds of methods.

6 Concluding Remarks

In this paper, we examined convergence rate of sev-
eral product-type iterative methods and a family of
and IDR(s) based on iterative methods for two matri-
ces stemed from FEM analysis for electromagnetic prob-
lems. Through numerical experiment, it turned out that
GBiCGSTAB(s, L) and BiCGSafe2 methods have ef-
fectiveness and robustness compared with the other iter-
ative methods. We will analyse effect of SSOR, precondi-
tioning with Eisenstat trick. We would like to consider
mathematical theory and aspect as a future work.
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