
Design and Implementation of DF-Salvia which
Provides Mandatory Access Control based on Data

Flow
Shozo Ida, Takehiro Kashiyama, Eiji Takimoto, Shoichi Saito, Eric Wallace Cooper, and Koichi Mouri

Abstract—Recently, incidents in which data such as private
information has leaked have occurred frequently. In many cases,
the main causes of data leakage are as follows: taking data
out illegally or unfairly, erroneous operation by a user with
authority to access the data. We developed the operating system
Salvia for the purpose of preventing data leakage resulting
from these causes. Salvia provides the capability to attach data
protection policies to each file. In addition, Salvia monitors
resource access that may incur the possibility of data leakage.
When a process requests to access to such resources, Salvia
allows the operation only if it does not violate the policies of
all files which are read by the process. That is, Salvia controls
resource access by process. In this paper, we propose DF-Salvia,
based on Salvia. An access control unit of DF-Salvia is data flow,
which is finer-grained than the process-based access control of
Salvia. This means that DF-Salvia applies a policy not to each
process but to each data flow in a process in order to limit the
extent of the effect of the policy to corresponding data flow.
The results show a solution to the problem of over-restriction
of irrelevant data.

Index Terms—file access control, secure OS, data flow anal-
ysis.

I. INTRODUCTION

RECENTLY with the popularization of computer sys-
tems, digitization of private information has been pro-

moted. As a result, working efficiency and quality of service
have been improved. On the other hand, the digitization has
caused data leak incidents through networks and removable
storage media. The data leak incidents result in invasions
of privacy. In addition, leaks worsen a corporate image and
impose monetary burdens on corporations.

In response to this situation, the Personal Information
Protection Law [1] went into effect on April 1. 2005, which
establishes duties and constraints on handling of personal
information by companies and local governments. As a
result, awareness of the importance of personal information
protection is increasing but data leakage incidents still occur.
The literature [2] on surveys of private information leakage
incidents has reported that many data leak incidents are

Manuscript received December 30, 2011; revised January 18, 2012.
S. Ida is with Department of Computer Science, Ritsumeikan University,

Shiga, JAPAN e-mail: sida@asl.cs.ritsumei.ac.jp
T. Kashiyama is with Ritsumeikan Global Innovation Research

Organization, Ritsumeikan University, Shiga, JAPAN e-mail: t-
kashi@fc.ritsumei.ac.jp

E. Takimoto is with Department of Computer Science, Ritsumeikan
University, Shiga, JAPAN e-mail: takimoto@asl.cs.ritsumei.ac.jp

S. Saito is with Graduate School of Engineering, Nagoya Institute of
Technology, Nagoya, JAPAN e-mail: shoichi@nitech.ac.jp

E. W. Cooper is with Department of Computer Science, Ritsumeikan
University, Shiga, JAPAN e-mail: cooper@is.ritsumei.ac.jp

K. Mouri is with Department of Computer Science, Ritsumeikan Univer-
sity, Shiga, JAPAN e-mail: mouri@cs.ritsumei.ac.jp

caused by erroneous operation, theft, mismanagement, and
loss or misplacement. As an example of erroneous operation,
cases of sending mail to which private information is attached
have been reported. As an example of theft, mismanagement,
and loss or misplacement, cases of taking out storage media
on which private data of customers is stored have been
reported one after another.

Some data leak incidents are caused by users with au-
thority to data access rather than illegal access. The security
mechanisms which are designed to prevent external attacks,
such as encryption technology or authentication technology
cannot prevent data leaks caused by such users. In the above
situations, data protection mechanisms which prevent private
data leaks should be developed. In addition, the mechanism
should consider the following.

• Private Data Protection
After a consensus is built on the handling conditions
of private data between the owner and receiver, the
private data is provided from owner to receiver. Han-
dling conditions of private data differ depending on the
owner. Therefore, the data protection mechanism should
achieve access control which reflects the objectives of
the owner.

• Adaptation to existing applications
Private data is used by various applications. If a security
configuration for each application is required, that raises
the probability of erroneous operation. Therefore, the
data protection mechanism should have the ability to
adapt to existing applications.

• Data protection considering usability
The data protection mechanism has the possibility to
be used by various companies or local governments.
Introduction of the mechanism must not cause lower
efficiency of work for example cases in which available
applications are limited or authentication is required
every time private data is used.

We developed the operating system Salvia [3] which
provides a data protection mechanism that satisfies the above
criteria. Salvia provides the capability to configure data
protection policy and attach a data protection policy to
each file. In addition, Salvia enforces mandatory access
control on processes that read data from protected files.
More specifically, when a process seeks to access a resource
which has a possibility of data leakage, Salvia allows the
access only if the access does not violate any policy which
was read by the process. That is, Salvia controls resource
access by processes. Salvia can adapt the data protection
mechanism to all applications executed on the operating

Process

Protected Fileread

 Policy
(write: deny)

+

 File

write

Protected Data

Unprotected Data

control

Unprotected File

Fig. 1. Excessive Access Restriction in Salvia.

system transparently.
In this paper, we propose DF-Salvia which can control

access to resources based on data flow, a finer-grained object
than a process. DF-Salvia distinguishes the data processes
write to resources, and determines a policy for access control
according to the file on which the data had been stored.
This method solves the problem of excessive access control
enforcement in Salvia.

In this paper, Section 2 describes Salvia. Section 3 pro-
poses an access control method in DF-Salvia, and Section
4 describes the implementation. Section 5 describes the
evaluation and Section 6 describes related works.

II. ACCESS CONTROL METHOD OF SALVIA

A. Overview
Salvia [3] is an operating system which provides manda-

tory access control to prevent private information from
leaking by authorized users. Because private data should be
handled in keeping with the intent of its purveyor, Salvia pro-
vides the capability to attach data protection policy to each
file. A data protection policy is a list of control conditions and
access control configurations. A state of process or computer,
which is called context, such as user ID, time, location of
computer and IP address of destination terminal, is available
as a condition of policy. Salvia can selectively control file
access which have the possibility of data leakage based on
context. For example, Salvia can achieve access control as
follows: access to the protected file at between 19:00 and
7:00 is prohibited, writing data to USB flash memory is
prohibited, and writing data to the network is prohibited.

Information leakage occurs in processes which read pro-
tected data. Therefore, when a process tries to read data from
a protected file via system calls, Salvia hooks the system
call and reads the protection policy of the file. From that
point on, Salvia starts monitoring the behavior of the process
and controlling its resource access. In a monitored process,
resource access is restricted based on the read protection
policy. When a system call for access to a resource (e.g., file
and socket) is executed, Salvia determines whether to execute
the system call according to the read protection policy and
context.

B. Issues
Salvia enforces access control on the process which reads

protected data according to the policy. More specifically,

3: fscanf(fp1,.....,buf);

4: fprintf(fp2,....,buf);

 :
1: fp1 = fopen(...);
2: fp2 = fopen(...);
 :
3: fscanf(fp1,...,buf);
 :
4: fprintf(fp2,...,buf);
5: fprintf(fp2,...,"log data");
 :

Definition

Use Point

Data Flow

Fig. 2. Definition-Use Chain.

when a process attempts resource access which has a pos-
sibility of data leakage, Salvia allows the resource access
only if the resource access does not violate any policy which
was read by the process. That is, Salvia controls resource
access based on process. The access control achieves data
protection that considers privacy, but the access control has
the possibility to restrict resource access excessively.

Fig.1 shows an example in which a process reads data
from a protected file and writes the data on another file. In
this case, all data writing is prohibited even if the data does
not include protected data. For this reason, the following
programs have the possibility to not operate as intended.

• Programs which create temporary files
Even if a process does not attempt to write protected
data to a temporary file, creation of a temporary file is
prohibited.

• Programs which generate a log or configuration file
As with programs which create a temporary file, cre-
ation of log or configuration file is prohibited.

• Programs which open more than one file at once
In a case of an editor, if protected data has been read into
an edit buffer, the editor cannot save the data on other
edit buffers even if there has been no data exchange
between edit buffers.

In all of the above, each program should be able to operate
normally, unless there is data exchange between protected
file and other files. The cause of this problem is that Salvia
restricts a resource access based on a protection policy which
is applied not to data but processes. Solving this problem
requires access control which distinguishes each data and
determines the protection policy according to the data.

III. ACCESS CONTROL MODEL OF DF-SALVIA

To solve the problem that access control of Salvia has
the possibility to restrict resource access excessively, units
of access control must be divided smaller than processes.
Therefore, we propose DF-Salvia, which achieves resource
access based on data flow by cooperating with a compiler.
This section explains data flow analysis on a compiler and
access control method of DF-Salvia.

A. Data Flow Analysis

A compiler analyzes source code and then generates the
object code. At the time of compilation, a compiler performs
code optimization in order to decrease the size of object code
and to make its execution faster [4]. The code optimization
needs to comprehend flow of variable definitions in source
code. The flow of variable definitions is called data flow. A

ID: 2

...

ID: x
Data Flow

ID: 1

Process

Protected File

read
write

Policy
(write: deny)

+

write

File

Source Code

(1)

(2)
(3)(4)

List of Data flow

Fig. 3. Access Control Model of DF-Salvia.

compiler can analyze various kinds of data flows. DF-Salvia
uses definition-use chain analysis which is one kind of flow.
Definition-use chain consists of a definition statement which
defines value of a variable and a set of use statements which
use defined variables.

Fig. 2 shows the example of definition-use chain. The right
side of Fig. 2 is definition-use chain of the program, which
is shown in the left side of Fig. 2. Variable buf which is
defined by function fscanf in the third line is used by function
fprintf in the fourth line. More specifically, a library function
or system call which reads data from a file is analyzed
as a definition statement, and a library function or system
call which writes data that has been read by the definition
statement is analyzed as a use statement. The reason that
the definition statement is limited to library functions or
system calls which read the data from files is that only these
statements define variables which read from protected files.

By using definition-use chains, DF-Salvia understands the
statements which use variables on which protected data is
stored, and determines the protection policy according to the
data used. In Fig. 2, when protected data is read by function
fscanf in the third line, DF-Salvia enforces access control
only on the function in the fourth line.

B. Access Control Method

DF-Salvia changes the monitor object from process to data
flow in order to achieve access control based on data flow.
Fig. 3 shows the access control method of DF-Salvia. DF-
Salvia performs access control with the following procedure
(the numbers of procedure are also indicated in Fig. 3).

1) When a process is executed, DF-Salvia imports the data
flow information which has been analyzed at the time
of compilation.

2) When a read system call is invoked, the data protection
policy of the file being read is applied to data flow
which contains the library function call that invoked
the read system call.

3) When a write system call is invoked, DF-Salvia checks
the data flow, which contains the library function call
that invoked the write system call.

4) If data protection policies have been applied to the data

fscanf(fp1,.....,&buf);

fprintf(fp2,....,buf);

Definitionvoid A(int a)
{

 fscanf(fp1,.....,&buf);
 :
 if (a == 1){
 fprintf(fp2,....,buf);
 }

 Last Use Point;

}

void A(int a);

a == 1 ?

Yes

No

Flow of Processing

Data Flow Last Use Point ;

Last Use Point Inserted System Call

Orignal
Last Use Point

Inserted Data Flow

Fig. 4. Insertion of Last Use Point by Compiler.

flow, DF-Salvia controls the write system call based on
the data protection policies.

DF-Salvia uses the instruction address of the library func-
tion call that invoked the system call in order to identify data
flows which contain library function calls that invoked the
system call in the procedures 2) and 3). Specifically, DF-
Salvia refers to a Data Flow ID List which is generated by
data flow analysis at compilation. The Data Flow ID List has
the following elements.

• The instruction address of the library function call in
user program

• Data Flow ID
• The Last Use Point flag (as discussed later)
When a system call is invoked, DF-Salvia analyses the

instruction address of the library function call which invoked
the system call by tracing back the stack of the process. In
addition, DF-Salvia identifies Data flow ID by comparing the
analytical instruction address and the instruction addresses
contained in the Data Flow ID List.

We are also developing an automatic Data Flow ID List
generation system by reworking COINS [5], which will be
described in future works.

C. Manage of Data Flow

DF-Salvia manages data protection policies based on the
Data flow ID of each process because the access control
unit of DF-Salvia is data flow. Specifically, when protected
data is read, the protection policy is registered on the policy
managent list (policy list) whose keys are process ID and
Data Flow ID. DF-Salvia finds appropriate policies with
these keys. Thus DF-Salvia can apply different policies
to each data flow. However, it is necessary to solve two
problems for the above policy management. The problems
are described as follows.

1) Deletion of Policy: Salvia deletes policies which were
applied to a process from the policy list, when the process
terminates. On the other hand, DF-Salvia deletes the policies,
when the last statement of data flow terminates. A protection
policy is used only for access control of the operation of data

Protected file A

+

ID x

fscanf

fprintf

read

write

Processing flow Policy Applied

void recur(int x)
{
 fscanf(fp1,.....,&buf);
 if(x == 1) recur(0);
 fprintf(fp2,....,buf);
}

read Protected file B

+

ID x

fscanf

fprintf

void recur(int x)
{
 fscanf(fp1,.....,&buf);
 if(x == 1) recur(0);
 fprintf(fp2,....,buf);
}

Access Control

ID x

fscanf

fprintf

first call

second call

second call

Last Use Point

int main()
{
 :
 recur(1);
 :
}

first call
second call

void recur(int x)
{
 fscanf(fp1,.....,&buf);
 if(x == 1) recur(0);
 fprintf(fp2,....,buf);
}

void recur(int x)
{
 fscanf(fp1,.....,&buf);
 if(x == 1) recur(0);
 fprintf(fp2,....,buf);
}

ID x

fscanf

fprintf

Fig. 5. Data Flow ID in Recursive Function.

flow to which the policy has been applied. Therefore, if the
last statement of the data flow, called the Last Use Point, has
terminated, the policy is unnecessary.

In summary, after access control on the Last Use Point,
DF-Salvia deletes the protection policies applied to data
flows which contain the Last Use Point. However, if the Last
Use Point is surrounded by an if or loop statement, the above
policy deletion process is not enough. If the Last Use Point
is surrounded with if statement, the operation of Last Use
Point may not execute. In this case, policies are not deleted.
If the Last Use Point is surrounded by a loop statement,
the protection policy is deleted in the first loop. Thus, the
access control of Last Use Point cannot execute correctly
in the second loop, because the policy to which the access
control should refer does not exist. To solve this problem,
the Last Use Point is set at the end of if statements and loop
statements at the time of compilation.

Fig. 4 shows an example of setting the Last Use Point into
end of an if statement. In this case, DF-Salvia can delete data
protection policies which have been read on function fscanf
because the operation of Last Use Point always eventually
executes regardless of branching by if statements.

2) Distinction Between Policies: Fig. 5 shows the example
of access control based on a recursive function. The function
main invokes the function recur which has Data flow ID x
twice. The function recur invokes itself. The point is that the
definition statement operation executes once again, before the
Last Use Point operation executes. Thus, if function fscanf

:

User Process

System Call Handler

History Logger

History
Repository

System Call
Table

Action Controller

DF-Salvia(kernel)

refer

System call

hook
update

Stack Backtracer

get value of
EBP register

data
flow ID

call

Policy ListData Flow ID List

register

refer

refer

Compiler
&

Linker

register

overwrite

(pointer)

...
refer

: Alternative System Call Module
(read, write)

: Alternative System Call Module
(open)

Fig. 6. System Structure of DF-Salvia.

reads data from different protected files in the second call
and the first call, two protection policies were applied to
Data flow ID x. Accordingly, although the second call of
function fprintf is independent from the first call of function
fprintf, the operation of function fprintf in the second call is
controlled excessively based on the two policies.

Hence, it is necessary to distinguish data protection poli-
cies applied to data flow based on each processing of recur-
sive function call. In order to achieve this, DF-Salvia assigns
classification numbers to data flow. Specifically, when the
operation of definition statement executes, DF-Salvia assigns
a classification number (1 of x-1 or 2 of x-2 in Fig. 5) to the
data flow. DF-Salvia applies the data protection policy to the
data flow which has a classification number that corresponds
to the definition statement execution. Consequently, DF-
Salvia can deal with data flows of both sequential processing
and iterative processing.

IV. IMPLEMENTATION

A. System Structure

DF-Salvia has been implemented in the Linux-2.6.8 kernel
which is based on the Intel x86 architecture. Fig. 6 shows
the system structure of DF-Salvia. The data protection mech-
anism of DF-Salvia is constructed with the following three
modules; History Logger which gets histories of system calls,
History Repository which stores the histories of system calls
as time-series data, and Action Controller which controls
system calls based on the contexts.

History Logger gets the time, the call’s arguments, the
call’s return value, and the attribute value of each process
when target system calls are invoked. Target system calls
contain the following three types; factors of data leakage
(read, etc), triggers of changing values which have possibil-
ities to be context (setuid, etc) and triggers of DF-Salvia
operation (open, etc). The attribute value of a process is

context, which has been stored in the process structure (user
ID, etc).

History Repository manages histories of system calls
which History Logger gets and stores as time-series data.

Action Controller reads policies and interprets them, and
determines availability of system call execution. The access
control of each system call needs to understand the data
structure of its arguments. Therefore, Alternative System
Call Modules are prepared for each system call. When an
Alternative System Call Module determines availability of
a system call execution, it refers to contexts which are
managed by History Repository. Policy List stores policies
which were read into DF-Salvia. When DF-Salvia reads the
protected data, the protection policy is read, and is stored
to Policy List. Stack Backtracer identifies Data Flow ID
which is necessary for registering policies and control of
writing data to resources. Data Flow ID List stores data flow
information that is necessary for Stack Backtracer to identify
Data Flow ID.

Details of History Logger and History Repository have
been described in the literature[3].

B. Identify Data Flow ID

Stack Backtracer identifies Data Flow ID which contain li-
brary functions that invoke the system calls. Stack Backtracer
has been implemented on the Action Controller Module by
LKMs. Stack Backtracer is invoked by each Alternative
System Call Module and returns the Data Flow ID, which
contains a library function that invokes the Alternative System
Call Module. The specific procedure is shown below.

1) When system calls are invoked, each Alternative Sys-
tem Call Module invokes Stack Backtracer.

2) Stack Backtracer gets the value of EBP register at
the time the system call is invoked from History
Repository.

3) Stack Backtracer analyzes stack of the process by using
the value of the EBP register and gets the instruction
address of the library function call.

4) Stack Backtracer gets the Data Flow ID by comparing
the obtained address to the addresses which have been
stored in Data Flow ID List, and Stack Backtracer
returns the Data Flow ID to the Alternative System
Call Module, which is the invoker.

The value of EBP register which is used by the procedure
3) is the value of the stack base pointer. The return address
of a library function can be identified by tracing back stack
frames based on the base pointer. DF-Salvia identifies the
instruction address of the library function call by using its
return address.

C. Procedure of Access Control

This section explains the procedure of access control on
each system call.

First, the procedure for open system calls is shown below.
1) When a process opens a protected file, DF-Salvia

begins to monitor the process. In addition, the Al-
ternative System Call Module related to open system
calls overwrites the read/write function entry in file
operation table of the file object.

TABLE I
DATA FLOW ID LIST.

Line number Instruction address Data Flow ID Last Use Point flag
18 fgets 0x080485d9 1 false
19 fgets 0x080485f6 2 false
21 fputs 0x0804860b 1 true
23 fputs 0x08048631 2 true

2) When the monitored process invokes a system call,
History Logger gets the history and registers it on
History Repository.

Next, the procedure for read system calls is shown below.
1) When a process reads protected data, Alternative Sys-

tem Call Module related to the read system call is
invoked instead of read system call. the Alternative
System Call Module reads and interprets the policy of
the protected data, and determines the availability of
read system call execution.

2) If the execution of read system call is allowed, Alterna-
tive System Call Module executes the read system call
and then invokes Stack Backtracer to get the Data Flow
ID which contains the library function that invoked the
read system call. Otherwise, Stack Backtracer deletes
the data protection policy which is read.

3) Alternative System Call Module registers the data pro-
tection policy on Policy List. The classification number
is calculated from the number of same Data Flow ID,
as registered in Policy List.

Finally, the procedure for write system calls is shown
below.

1) When a process writes data on computer resources,
Alternative System Call Module related to the write
system call is invoked instead of the write system
call. The Alternative System Call Module invokes Stack
Backtracer to get the data ID which contains the
library function which invoked the write system call.
In addition, the Alternative System Call Module checks
whether the library function is the Last Use Point or
not.

2) The Alternative System Call Module gets the data
protection policy from Policy List with the Data Flow
ID, and then determines the availability of write system
call execution based on the policy.

3) If the library function which invoked the write system
call is the Last Use Point, the Alternative System Call
Module removes the policy from Policy List.

V. EVALUATION

A. Functional Evaluation

We have tested to confirm whether DF-Salvia can control
accessing computer resources based on data flow.

1) Experiment Description: Fig. 7 shows a test program
(copy.c) and two protected files (Personal Information addr
and Personal Information tel) which were used in the ex-
periment. Table I shows a Data Flow ID List generated by
the use of objdump. The test program reads one sentence
data from each protected file protected file and writes it
into another file. The policy of Personal Information addr

 1: #include <stdio.h>
 2: #include <stdlib.h>
 3: #define MAX 256
 4:
 5: int main(){
 6:
 7: FILE *file1,*file2,*file3,*file4;
 8: char buf1[MAX],buf2[MAX];
 9:
10: file1 = fopen("Personal_Information_addr","r");
11: file2 = fopen("Personal_Information_tel","r");
12:
13: file3 = fopen("normal1.txt","a");
14: setbuf(file3,NULL);
15: file4 = fopen("normal2.txt","a");
16: setbuf(file4,NULL);
17:
18: fgets(buf1,MAX,file1);
19: fgets(buf2,MAX,file2);
20:
21: if(fputs(buf1,file3) == -1)
22: perror("write normal1.txt");
23: if(fputs(buf2,file4) == -1)
24: perror("write normal2.txt");
25:
26: fclose(file1);
28: fclose(file2);
29: fclose(file3);
30: fclose(file4);
31:
32: return 0;
33: }

copy.c

Mike Roft 1-2-2 Sibuya Tokyo
Inoki Kanji 1-8-1 Meguro Tokyo
Apple Ringo 2-20-3 Sinjuku Tokyo
Baba Toshiya 1-1-1 Minato Tokyo
 :

Mike Roft 03-4332-5300
Inoki Kanji 03-5759-7001
Apple Ringo 03-5334-2000
Baba Toshiya 03-3457-4511
 :

Personal_Information_addr

Personal_Information_tel

Policy:
read:allow
write:deny

Policy:
read:allow
write:allow

Fig. 7. Test Program and Protected Files.

denies writing its protected data. The policy of Per-
sonal Information tel allows writing its protected data.

The Data Flow ID List of this test program is shown in
Table I. Definition statements are function fgets in line 18
and line 19 which read protected data from each files. Use
statements are function fputs in line 21 and line 23 which
write each data which were read in line 18 and line 19.
Therefore, the test program has two data flows. Data flow ID
1 is the data flow which contains function fgets in line 18
and function fputs in line 21. Data flow ID 2 is the data flow
which contains function fgets in line 19 and function fputs in
line 23. In addition, function fputs in line 21 and line 23 are
Last Use Point, because use statement which corresponds to
function fgets in line 18 or line 19 does not exit after line
21 and line 23.

2) Experiment Result: Fig. 8 shows an execution result of
the test program with Salvia. Salvia enforces access control
which based on Personal Information addr which was read

Fig. 8. Execution Result on Salvia.

Fig. 9. Execution Result on DF-Salvia.

by function fgets in line 18, on a process. Therefore, because
the write operation of function fputs in both line 21 and line
23 is restricted, both normal1.txt and normal2.txt are empty.
That is, while Salvia can prevent a data leakage, excessive
access control occurs.

Fig. 9 shows an execution result of the test program with
DF-Salvia. When function fgets in line 18 reads data from
Personal Information addr, the policy is applied to the Data
Flow ID 1. The operation of function fputs in line 21, which
belongs to Data Flow ID 1, was restricted according to
the policy. When function fgets in line 19 reads data from
Personal Information tel, the policy is applied to the Data
Flow ID 2. The operation of function fputs in line 23, which
belongs to Data Flow ID 2, was allowed according to the
policy. As a result, normal1.txt is empty and normal2.txt
contains the data of Personal Information tel. Therefore,
DF-Salvia can control access to resources based on data
flows, and excessive access control, such as in Salvia, does
not occur.

B. Performance Evaluation

We have measured DF-Salvia performance.

TABLE II
EXPERIMENT ENVIRONMENT.

CPU Intel Pentimu M 1.4GHz
Memory 512MB

OS DF-Salvia or Linux 2.6.8

TABLE III
PROCESSING TIME OF SYSTEM CALL.

OS open read write
DF-Salvia 8.04 24.86 (9.28) 7.23 (8.57)

Linux 2.6.8 1.35 1.24 1.52

1) Experiment Description: DF-Salvia hooks open, read,
and write system calls, and executes processing for access
control. In this experiment, we measured the processing time
on each system call in Linux and DF-Salvia for the purpose
of understanding overhead on the access control. Table II
shows the computer which was used in the experiment.

As the details of the experiment, we executed each system
call 1000 times and calculated the average processing time.
The processing time of a read or write system call on DF-
Salvia is affected by search time required to identify Data
Flow ID, which contains the library function that invokes
the system call. The search time is affected by amount of
data flow, which is the total number of items in the Data
Flow ID list. In this experiment, we used a program which
was assumed to be a practical program, whose Data flow ID
list contains 5,000 items. In the measurement of read system
calls, we distinguished between first reading and subsequent
reading from protected file. The reason is that the processing
for reading a protection policy is executed only on the first
system call. Similarly, in the measurement of write system
call, we distinguished the system call invoked by library
functions that are Last Use Point from the system calls
invoked by other function. The reason is that the processing
for deleting a protection policy which is applied to data flow
is executed on only the call from Last Use Point. Read/write
data size affects the processing time of system calls but does
not affect the overhead of access control. In this experiment,
256KB data was used.

2) Experiment Result: Table III shows the measured result
of processing times on each system call. As a result of the
read system call, values in brackets are the processing time in
first reading, and values outside brackets are the processing
time in subsequent reading. As a result of the write system
call, values in brackets are the processing time on Last Use
Point, and values outside brackets are the processing time
for other functions.

The processing time of open system call on DF-Salvia is
about 5.9 times longer than that on Linux. The difference is
thought to be caused by overhead for the processing which
overwrites read/write function entry in file operation table of
the file object.

The processing time of read system call on DF-Salvia
is about 20 times longer than that on Linux for the first
read, and is about 7.5 times longer than that on Linux for
subsequent read. The difference is thought to be caused by
overhead for the processing of reading each protection policy.
If a protection policy which defines many contents is attached
to each protected file, it is thought that the difference of
processing time between DF-Salvia and Linux would become
large.

The processing time on write system calls on DF-Salvia
is about 20 times longer than that on Linux in cases that
the system call is invoked by Use Last Point, and is about

4.8 times longer than that on Linux in cases in which a
system call is invoked by an other function. In addition, the
processing time in read system calls increases more than that
of write system calls. In read/write system calls, DF-Salvia
identifies data flow, which contains the library function that
invoked the system call, and determines availability of the
system call execution. Additionally, in read system calls,
DF-Salvia applies the protection policy to the data flow.
Therefore, the processing time in read system calls increased
more than that of other system calls.

As mentioned above, DF-Salvia needs processing time
for execution of system calls longer than Linux. However,
because the increment of overhead is limited to µs order, we
consider that DF-Salvia can achieve access control which
provides viable processing speed.

C. Future Issues

In line 21 and line 23 of the test program, function setbuf
disables I/O buffer of library functions. If I/O buffer is
available, write system call is invoked not by function fgets
but by the buffer flush of function fclose. In this case, as the
write system call is not invoked from an instruction address
of Data Flow ID List (Table I), DF-Salvia cannot controlled
the write system call. This increases execution overhead of
programs which use I/O library functions. Solutions to this
problem are shown below.

The first solution is to insert a Last Use Point which flushes
the buffer into source code. As a result, because the write
system call is invoked from an instruction address of Data
Flow ID List, DF-Salvia can controll the write system call
on the Last Use Point.

The next solution is to treat function fclose as a use
statement. As a result, because Data Flow ID Lists have an
instruction address of function fclose, DF-Salvia can controll
write system calls which are invoked from function fclose.

The last solution is to analyze data flows within li-
brary functions. As a result, definition statements and use
statements are not library function calls but system calls.
Hence write system calls are controlled because instruction
addresses of system calls are written into Data Flow ID Lists.

VI. RELATED WORK

In this section, we discuss existing work intended to
prevent leakage of private information.

SAccessor [6] separates file access control mechanism
from an operating system in order to protect file access
control from attack which exploits security holes of an
operating system. SAccessor runs two operating systems,
which are work OS and authentication OS, on a machine
with virtual machine monitor (VMM). The authentication
OS provides a file server to the user and controls file access.
The work OS provides an interface for file access. When the
user seeks to access files, the work OS sends a request to
the authentication OS. The authentication OS permits the
requests only to add data to a system file, and controls
accessing a user file based on the policy. Even if programs on
the work OS are attacked, SAccessor can prevent file access
by the attacker and minimize damages. However, SAccessor
controls resource access only, and cannot prevent data leaks
through networks and removable storage media.

VOFS (View-Only File System) [7] allows user to only
read sensitive information regardless of user authority. VOFS
runs three VM (Guest VM, SVFS VM, Domain 0 VM) on
VMM. Guest VM provides an operating system environment
to users. SVFS VM manages sensitive files with SVFS [8].
SVFS is a file system and achieves protection of important
files. Domain 0 VM manages the whole system of VOFS.
First, when the user seeks to read a file, Guest VM gets
encrypted sensitive files through network and saves its file
on SVFS VM. Next, if legitimacy of Guest VM behavior is
confirmed, SVFS VM decodes the sensitive file, and requests
Domain 0 VM to create a snapshot of Guest VM and disable
device output. Finally, after the decoded sensitive file is sent
from the SVFS VM to the Guest VM, the user can read data
from the sensitive file. Because device output is disabled,
the user can only read sensitive files. Therefore, data leaks to
the exterior are not prevented. However, because VOFS does
not consider creation of sensitive files and use of sensitive
data, operating efficiency may be reduced and the merit of
digitization may be hindered.

HiGATE [9] is PC-based High Grade Anti-Tamper Equip-
ment which allows data to be handled without revealing the
data content to administrators or users. HiGATE achieves
tamper resistance by improving both hardware and software.
An improved point of hardware is adoption of a function
which proves that the hardware is unopened. That is, Hi-
GATE uses tamper-resistant labels. If the tamper-resistant
label is broken, efficacy of the data stored on the hardware
is lost. In addition, the system introduces techniques of auto-
matic shutdown and memory erasure when the hardware case
is forced open. An improved point of software is adoption of
two functions such as HDD encryption and program start-up
control. HDD encryption prevents information leakage by
attaching an HDD, which was detached from a computer,
on to another computer. Program start-up control limits
executable programs, and prevents malicious programs from
stealing and fabricating data. However, because HiGATE ex-
ecutes predetermined programs only, the applications which
the user can use are restricted. Moreover, because HiGATE
developers only can register a program with HiGATE, the
user cannot install or update applications easily.

VII. CONCLUSION

In this paper, we proposed DF-Salvia, whose access con-
trol is finer-grained than the process-based access control
of Salvia. DF-Salvia distinguishes each writing of protected
data to computer resources by the use of data flow in-
formation which is generated by static data flow analysis.
Specifically, DF-Salvia can determines the policy for access
control according to the protected data which is requested to
be written to computer resources by a process. That is, DF-
Salvia can prevent excess access control which may occur
in Salvia.

Future work is to develop an automatic Data Flow ID List
generation system and to solve problems in the access control
on library functions which provide I/O buffering.

REFERENCES

[1] Consumer Affairs Agency, Goverment of Japan, The Personal Informa-
tion Protection Law.
(http://www.caa.go.jp/seikatsu/kojin/houritsu/index.html)

[2] Japan Network Security Association, The investigation report about an
information security incident (in Japanese).
(http://www.jnsa.org/result/incident/data/2010incident survey PIL v1.4.pdf)

[3] Kazuhisa Suzuki, Koichi Mouri, Eiji Okubo, Salvia: A Privacy-Aware
Operating System for Prevention of Data Leakage, Advances in Infor-
mation and Computer Security, IWSEC 2007, LNCS 4752, pp. 230-245,
2007.

[4] Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman, Compil-
ers: Principles, Techniques, and Tools (2nd Edition), Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, 2006.

[5] COINS project homepage, COINS Project.
(http://www.coins-project.org/)

[6] Yuji Takizawa, Kenichi Kourai, Shigeru Chiba, Yoshisato Yanagisawa,
SAccessor; A Secure File Access Control System for Desktop PC (in
Japanese), Computer System Symposium, IPSJ, pp.79-86, 2007.

[7] Kevin Border, Xin Zhao, Atul Prakash, Securing Sensitive Content in
a View-Only File System, DRM’06:Proceedings of the ACM workshop
on Digital rights management, pp. 27-36, 2006.

[8] Xin Zhao, Kevin Border, Atul Prakash, Towards Protecting Sensitive
Files in a Compromised System, SISW’05:Proceedings of the IEEE
International Security in Strage Workshop, pp. 21-28, 2005.

[9] Koji Hasebe , Ryoichi Sasaki, Development of a method for using High-
Grade Anti-Tamper Equipment for privacy protection in epidemiology
investigations that use data from multiple Organizations, Proceeds
of the 2nd International Conference on Information and Multimedia
Technology, pp. 99-103, 2010.

