

Abstract—A dynamic programming is a solution for special

type of application such as context free language recognition
matrix chain multiplication and optimal binary trees.
Unfortunately these implementation exhibit poor cache
performances. The purpose of this paper is to design,
implement empirically evaluates divide and conquer algorithm
that exhibit cache performance problem.
Keywords: Dynamic Programming, Cache Oblivious, Cache efficient,
Cache hit, Cache miss;

I. INTRODUCTION

In modern hardware configuration of system, the main
memory is divided into two levels, low and high
respectively, which are L1 and L2 cache, now days it is
extended up to L3 cache. Optimizing cache performance to
achieve better overall performance is a difficult problem.
Modern computers are including deeper and deeper memory
hierarchies to hide the cost of cache misses. Dynamic
Programming is widely used algorithmic technique [7].
However, standard implementation of these algorithms often
fails to exploit the temporal locality of data which leads to
poor I/O performance [10].

1.1 Cache Efficiency:

 The I/O model [1] is simple abstraction of memory
hierarchy which consists of cache size m and its partitioned
number of blocks B. A cache complexity of an algorithm is
measured in number of cache misses and number of blocks
transfers or I/O operations it causes. The cache oblivious
model [10] with additional feature of this model that do not
use knowledge of M and B. it is flexible and portable and
adapts all levels of memory hierarchy. There are some
aspects which lead to it having good cache performance.
The first, it must process data in place if it needed extra
memory for input and output. For example in quick sort,
merge sort process. Second it executes in divide-conquer
approach for large size data for example matrix
multiplication [3]. It assumes that the parameters M, B are
unknown to the algorithms. In present algorithm that has
been dealt with yet, need the programmer to specify M, B.

Korde P.S. is with Department of Computer Science, Shri Shivaji
College,Parbhani (M.S.) India
Telephone no : 02452-224197
Mobile no:9420530657,9422878547
Email:korde.parmeshwar@rediffmail.com, korde.parmeshwar@yahoo.com

Khanale P.B.is with Department of Computer Science, Dnyopasak College
Parbhani (M.S.) India
Email prakashkhanale@gmail.com

1.2 Other Related Work :

The memory model [1] is the original model of two level

memory hierarchies. It consists of size M and data. The
algorithms can transfer contiguous block of data size B to or
form disk. The Textbook of data structure in this model is
the B-tree, a dynamic directory that support inserts, deletes

and predecessor quarries in (logBN) per operations.
 Cache Oblivious Model [5] arose in particular model

multilevel memory hierarchies. The process is: analysis hold
for an arbitrary M and B at each level memory hierarchy.
The algorithm could not worry about block replacement
strategy. The development of these algorithms which give
solutions to problems finding the best ways to enforce
 data locality.

 R. Chowdary[8] present an efficient cache oblivious
algorithms for several dynamic programs. These includes

new algorithm with improved cache performance for
largest common subsequence(LCS) and Least Weight
Subsequence. His present new cache oblivious framework
called Gaussian Elimination Paradigm (GEP) which gives
cache algorithm for Floydwarshall all pairs shortest paths in
graph among other problems.

Dynamic programming is a powerful algorithmic tool [8]
because most dynamic programming which have high
complicity (n2,n3 and worse). There are various techniques
significant efforts has been put to reduce complexity several
algorithm [4], Monge propery[2] has been carryout.

The cache oblivious approach invented by M. Frigo[5]
does not use tuning parameters but relies on structure of an
algorithm to achieve good cache performance

2. Cache Oblivious Dynamic Programs

 Dynamic Programming is a method for solving

complex problems by breaking them into simpler sub
problems. It is applicable to problems exhibiting properties
of overlapping sub problems which are only slightly smaller
and optimal substructure. It takes less time than native
methods.

 We present a cache-oblivious implementation of the
classic dynamic programming algorithms using Transferring
values and storing value methods. Our algorithms continues

to run in (m+n) space and perform (mn/BM) block
transfers. Experimental Algorithms shows the faster than
widely used algorithms. We consider three variants
algorithms as

Dynamic Programming for Improving Cache
Efficiency

 korde P.S., Khanale P.B, Member, IAENG

1) Diagonal Algorithms for simple Dynamic
programming
2) Horizontal Algorithm for simple Dynamic
programming
3) Vertical Algorithm for simple Dynamic programming

Diagonal
Algorithms for
simple
Dynamic
programming

Horizonta
l Algorithm
for simple
Dynamic
programmin
g

Vertical
Algorithm for
simple Dynamic
programming

For d=2 to n
For i= 1 to n-
d+1

 For
j=d+i-1

 For k =1 to
j-1

D[i,j]=D[i,j]
+D[i,k].D[k+1,
j]

For i = n-
1 to 1

 For j =
i+1 to n

For k =1
to j-1

D[i,j]=D[i
,j]+D[i,k].D[
k+1,j]

For j = 2 to n
For i = j-1 to

1 For
k =1 to j-1

 D[i,j]=
D[i,j]+D[i,k].D[
k+1,j]

Fig 1: Cache oblivious Dynamic Programming Algorithms

 In simple Dynamic programming we must define

storage D[i,j], 1< = i < = j < = n. These algorithms have
poor cache performance.

3. Cache allocation and organization
The cache memory is organized in blocks or lines. When

data is transferred between caches or between cache and
main memory the entire block containing the desired
address is transferred.

There are three ways in which the cache memory is
organized depending on how a block is placed and found in
the upper level of the memory hierarchy.

The first cache organization is called direct mapping. In a
direct mapped cache a given address can only appear in one
possible location in cache, and hence it is easy to map an
address to its location in cache, and it is easy to determine if
an address is in cache. The mapping is done using the
formula: (Block address) MOD (Number of blocks in the
cache) .

The disadvantage of a direct mapped cache is that an
address might cause a miss while the cache is not full. If a
block can be placed anywhere in the cache the cache is said
to be fully associative. A fully associative cache must be
searched to determine if the desired address is in cache.
However misses only occur when the cache is full.

The last cache organization called a set associative cache
is a compromise between these two extremes. In this case
the cache is split into sets, with each set containing the same
number of blocks. A block that maps into a set can be
placed in any block in the set.

The cache is characterized by the cache access time,
which represents the cache latency in case of a hit. Let’s call
this the Hit Time or t

hit.
The probability of having a cache

miss is P
miss

. The transfer time between the main memory
and cache is T

miss
or the miss penalty time

.
This means that

the effective cache latency time is equal to

t
avg

 =(1- P
miss

) t
hit

 + P
miss

 (t
hit

 + T
miss

) =

 t
hit

 - P
miss

 t
hit

 + P
miss

 t
hit

 + P
miss

 t
miss

 =

 t
hit

 + P
miss

 t
miss

Fig 2. Mihai Alexandru Furis et al [6]

4. The Gap Problem
 The gap problem [8] is a generalization of the edit

distance problem that arises in execution speed. When
transferring a values of D[i,j] into compiling time. When we
implement two methods as Transferring values, Storing
values in array.

 Fig 3: Gap Equation

Assuming m=n, this problem can be solved in internal

memory [11] in (n3) time using (n2) space: this
algorithms incurs θ(n3/B) I/Os[11]

.

5. Experimental Results
 We implemented three variants of our algorithms 1)

Diagonal Algorithms for simple Dynamic programming 2)
Horizontal Algorithm for simple Dynamic programming 3)
Vertical Algorithm for simple Dynamic programming.
There are several things to note down about Diagonal
algorithms. Horizontal and Vertical Algorithms solve
problems in different orders. The given algorithms have
better performance as cache efficiency.

 When we implement Transferring values and Storing
values through these methods cache hit and cache miss ratio
is n=n/2. We also measure the execution time with different
array size for cache performance.

Transferring Values Vertical Algorithms
void main()
{
 int a[2][2],b[2][2];
 int i,j,k,l;
 cout<<"\n Enter the elements of matrix ";
 for(i=0;i<=2;i++)
 { for(j=0;j<=2;j++)
 { cin>>a[i][j];
 } } for(j=2;j<=2;j++)
 { for(i=j-1;i>=0;i--)
 { for(k=i;k<=j-1;k++)
 { a[i][j]=a[i][j]+a[i][k]*a[k+1][j];
 } } }
Storing Values in array Vertical Algorithms
void main()
{
int a[3][3]={1,2,3,4,5,6,7,8,9};
 int b[2][2];
 int i,j,k,l;
 clrscr();
 for(j=2;j<=2;j++)
 { for(i=j-1;i>=0;i--)
 { for(k=i;k<=j-1;k++)
 { a[i][j]=a[i][j]+a[i][k]*a[k+1][j];
 } } }

Fig 4: Dynamic Vertical Algorithms

We present here general free cache oblivious of

performance, we consider here 3×3, 4×4, 5×5 matrices then
find out cache miss and cache hit ratio of two methods
shown in table.

S

r.no
.

Matr
ices

Method Cach
e hit

Cach
e miss

1 3 × 3 Diagonal
Algorithms

6 4

2 3 × 3 Horizontal
Algorithms

5 4

3 3 × 3 Vertical
Algorithms

5 4

4 4 × 4 Diagonal
Algorithms

10 6

5 4 × 4 Horizontal
Algorithms

10 6

6 4 × 4 Vertical
Algorithms

11 5

7 5 × 5 Diagonal
Algorithms

6 18

8 5 × 5 Horizontal
Algorithms

6 19

9 5 × 5 Vertical
Algorithms

7 18

Fig 5: Ratio of Cache hit and Cache miss

In 2×2 Matrices, 3×3 Matrices the cache miss ratio n as
n+1 but when size of array increase and length of cache
miss ratio also goes to rises as shown in fig.

Fig 6: 3×3 Matrices cache miss ratio

Fig 7: 4×4 Matrices cache miss ratio

Fig 8: 5×5 Matrices cache miss ratio

We tested three algorithms Diagonal Algorithms for

simple Dynamic programming, Horizontal Algorithm for
simple Dynamic programming, Vertical Algorithm for
simple Dynamic programming for time execution as shown
in Fig 8.

6 Time Slots of Dynamic Programming Vertical
Algorithms

Sr.no. Matrices Time in nanoseconds

01 3×3 Matrices 0.164835
02 4×4 Matrices 0.164835
03 5×5 Matrices 0.164835
04 6×6 Matrices 0.21978
05 7×7 Matrices 0.274725
06 8×8 Matrices 0.274728
07 9×9 Matrices 0.32967

 Fig 9: Time slots for dynamic Programming

All three methods which required execution time as

shown in tables graphically how it process shown in fig 10.

Fig 10: Slots of Dynamic Programming

All figures shows cache performance of all algorithms in

L1 and L2 cache. The normalized cache miss are shown on
difference between three standard algorithms have a more
cache misses on largest problem size. It is interesting to
calculate cache misses and cache simulations.

7. Conclusions

 We have demonstrated Diagonal Algorithms,

Horizontal Algorithms, and Vertical Algorithms for solving
simple dynamic problem. These have good cache
performance and cache aware sense.

 Our Framework can be applied for several other
dynamic programming problems including local alignments,

multiple sequence alignments, sorting functions, sum of pair
functions, objective functions.

8. Future Work

We presented practically Dynamic Algorithms with

different methods, the methods which shows execution
process and cache behavior.

 Fig 10 gives cache performance Dynamic Algorithms,
the standard algorithms have a more cache misses on largest
problem size. We were not able to efficiently implement it.

REFERENCES

[1] A. Aggarwal and J. Vitter, “The Input/Output
Complexity of Sorting and Related Problems,” Comm.
ACM, vol. 31, pp. 1116-1127, 1988.

[2] Bingsheng He, Qiong Luo Cache Oblivous Nested
Loop Joins CIKM06 2006 ACM

[3] Joon Sang Park Optimizing Graph Alogorithms for
Improved Cache Performance IEEE Transanctions on
Parallel and Distributed system Vol 15 No 9 Sept 2004.

[4] M. Sniedovich. Dynamic Programming. The Marcel
Dekker, Inc., New York, NY, USA, 1992.B. Smith, “An
approach to graphs of linear forms (Unpublished work style),”
unpublished.

[5] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachan-
dran. Cache-oblivious algorithms. In Proc. of the 40th
Annual Symposium on Foundations of Computer
Science , pages 285–297, 1999.

[6] Mihai Alexandru Furis Cache Miss Analysis of Walsh-
Hadamard Transform Algorithms Master thesis

[7] R. Bellman. Dynamic Programming. The Princeton
University Press, Princeton, New Jersey, 1957.

[8] (a) R. Chowdhury V. Ramachandaran Cache Oblivious
Dynamic Programming NSF Grant CISE Research
Infrastructure NSF Grant CCF0514871
(b) R. Chowdhury V. Ramachandaran Cache Oblivious
Dynamic Programming for Bioinformatics IEEE
Bioinformatics Vol7No3 July Sept 2010

[9] Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R.
Johnson Implementation of Streassen’s Algorithms
089719-854-1/1996IEEE Explore

[10] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, 2nd ed., 2001.

[11] Tobias Johnson Cache-Oblivious of an Array’s Pair
May 7 2007

