
 

 
Abstract—A dynamic programming is a solution for special 

type of application such as context free language recognition 
matrix chain multiplication and optimal binary trees. 
Unfortunately these implementation exhibit poor cache 
performances. The purpose of this paper is to design, 
implement empirically evaluates divide and conquer algorithm 
that exhibit cache performance problem. 
Keywords: Dynamic Programming, Cache Oblivious, Cache efficient, 
Cache hit, Cache miss; 

I. INTRODUCTION 

In modern hardware configuration of system, the main 
memory is divided into two levels, low and high 
respectively, which are L1 and L2 cache, now days it is 
extended up to L3 cache. Optimizing cache performance to 
achieve better overall performance is a difficult problem. 
Modern computers are including deeper and deeper memory 
hierarchies to hide the cost of cache misses. Dynamic 
Programming is widely used algorithmic technique [7]. 
However, standard implementation of these algorithms often 
fails to exploit the temporal locality of data which leads to 
poor I/O performance [10]. 

 
1.1 Cache Efficiency: 
 

 The I/O model [1] is simple abstraction of memory 
hierarchy which consists of cache size m and its partitioned 
number of blocks B. A cache complexity of an algorithm is 
measured in number of cache misses and number of blocks 
transfers or I/O operations it causes. The cache oblivious 
model [10] with additional feature of this model that do not 
use knowledge of M and B. it is flexible and portable and 
adapts all levels of memory hierarchy. There are some 
aspects which lead to it having good cache performance. 
The first, it must process data in place if it needed extra 
memory for input and output. For example in quick sort, 
merge sort process. Second it executes in divide-conquer 
approach for large size data for example matrix 
multiplication [3]. It assumes that the parameters M, B are 
unknown to the algorithms. In present algorithm that has 
been dealt with yet, need the programmer to specify M, B. 

 

 
Korde P.S. is with Department of Computer Science, Shri Shivaji 
College,Parbhani (M.S.) India  
Telephone no : 02452-224197 
Mobile no:9420530657,9422878547  
Email:korde.parmeshwar@rediffmail.com,  korde.parmeshwar@yahoo.com 
 
Khanale P.B.is with Department of Computer Science,  Dnyopasak College 
Parbhani (M.S.) India 
Email  prakashkhanale@gmail.com 

 

 
1.2 Other Related Work : 
 
 
The memory model [1] is the original model of two level 

memory hierarchies. It consists of size M and data. The 
algorithms can transfer contiguous block of data size B to or 
form disk. The Textbook of data structure in this model is 
the B-tree, a dynamic directory that support inserts, deletes 

and predecessor quarries in  (logBN) per operations. 
 Cache Oblivious Model [5] arose in particular model 

multilevel memory hierarchies. The process is: analysis hold 
for an arbitrary M and B at each level memory hierarchy. 
The algorithm could not worry about block replacement 
strategy. The development of these algorithms which give 
solutions to problems finding the best ways to enforce 
 data locality. 

 R. Chowdary[8] present an efficient cache oblivious 
algorithms for several dynamic programs. These includes  

new algorithm with improved cache performance for 
largest common subsequence(LCS) and Least Weight 
Subsequence. His present new cache oblivious framework 
called Gaussian Elimination Paradigm (GEP) which gives 
cache algorithm for Floydwarshall all pairs shortest paths in 
graph among other problems. 

Dynamic programming is a powerful algorithmic tool [8] 
because most dynamic programming which have high 
complicity (n2,n3 and worse). There are various techniques 
significant efforts has been put to reduce complexity several 
algorithm [4], Monge propery[2] has been carryout. 

The cache oblivious approach invented by M. Frigo[5] 
does not use tuning parameters but relies on structure of an 
algorithm to achieve good cache performance 

 
2. Cache Oblivious Dynamic Programs 

 
 Dynamic Programming is a method for solving 

complex problems by breaking them into simpler sub 
problems. It is applicable to problems exhibiting properties 
of overlapping sub problems which are only slightly smaller 
and optimal substructure. It takes less time than native 
methods. 

 We present a cache-oblivious implementation of the 
classic dynamic programming algorithms using Transferring 
values and storing value methods. Our algorithms continues 

to run in (m+n) space and perform (mn/BM) block 
transfers. Experimental Algorithms shows the faster than 
widely used algorithms. We consider three variants 
algorithms as 
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1)   Diagonal Algorithms for simple Dynamic 
programming 
2) Horizontal Algorithm for simple Dynamic 
programming 
3) Vertical Algorithm for simple Dynamic programming  
        

Diagonal 
Algorithms for 
simple 
Dynamic 
programming 

 

Horizonta
l Algorithm 
for simple 
Dynamic 
programmin
g 

 

Vertical 
Algorithm for 
simple Dynamic 
programming       

 

For d=2 to n 
For i= 1 to n-
d+1 

      For 
j=d+i-1 

 For k =1  to 
j-1 

D[i,j]=D[i,j]
+D[i,k].D[k+1,
j] 

For  i = n-
1 to 1 

 For j = 
i+1 to n 

For k =1  
to j-1 

D[i,j]=D[i
,j]+D[i,k].D[
k+1,j] 

For  j = 2 to n 
For i = j-1 to 

1                  For 
k =1  to j-1 

  D[i,j]= 
D[i,j]+D[i,k].D[
k+1,j] 

Fig 1: Cache oblivious Dynamic Programming Algorithms 
 
 
 
 In simple Dynamic programming we must define 

storage D[i,j], 1< = i < = j < = n. These algorithms have 
poor cache performance. 

 
 

3. Cache allocation and organization 
The cache memory is organized in blocks or lines. When 

data is transferred between caches or between cache and 
main memory the entire block containing the desired 
address is transferred.  

There are three ways in which the cache memory is 
organized depending on how a block is placed and found in 
the upper level of the memory hierarchy.  

The first cache organization is called direct mapping. In a 
direct mapped cache a given address can only appear in one 
possible location in cache, and hence it is easy to map an 
address to its location in cache, and it is easy to determine if 
an address is in cache. The mapping is done using the 
formula: (Block address) MOD (Number of blocks in the 
cache) . 

The disadvantage of a direct mapped cache is that an 
address might cause a miss while the cache is not full. If a 
block can be placed anywhere in the cache the cache is said 
to be fully associative. A fully associative cache must be 
searched to determine if the desired address is in cache. 
However misses only occur when the cache is full. 

The last cache organization called a set associative cache 
is a compromise between these two extremes. In this case 
the cache is split into sets, with each set containing the same 
number of blocks. A block that maps into a set can be 
placed in any block in the set. 

The cache is characterized by the cache access time, 
which represents the cache latency in case of a hit. Let’s call 
this the Hit Time or t

hit. 
The probability of having a cache 

miss is P
miss

. The transfer time between the main memory 
and cache is T

miss 
or the miss penalty time

. 
This means that 

the effective cache latency time is equal to 
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Fig 2. Mihai Alexandru Furis et al [6] 
 
 
 
 

4. The Gap Problem 
 The gap problem [8] is a generalization of the edit 

distance problem that arises in execution speed. When 
transferring a values of D[i,j] into compiling time. When we 
implement two methods as Transferring values, Storing 
values in array. 

 
 
 
 
 
 
 
 
 
 
 
                  Fig 3: Gap Equation 
 

 
 
Assuming m=n, this problem can be solved in internal 

memory [11] in (n3) time using (n2) space: this 
algorithms incurs θ(n3/B) I/Os[11]  

 
. 

5. Experimental Results 
    We implemented three variants of our algorithms 1) 

Diagonal Algorithms for simple Dynamic programming 2) 
Horizontal Algorithm for simple Dynamic programming 3) 
Vertical Algorithm for simple Dynamic programming. 
There are several things to note down about Diagonal 
algorithms. Horizontal and Vertical Algorithms solve 
problems in different orders. The given algorithms have 
better performance as cache efficiency.  

 When we implement Transferring values and Storing 
values through these methods cache hit and cache miss ratio 
is n=n/2. We also measure the execution time with different 
array size for cache performance. 

 



 

 
Transferring Values  Vertical Algorithms 
void main( ) 
{ 
  int a[2][2],b[2][2]; 
  int i,j,k,l; 
  cout<<"\n  Enter the elements of matrix "; 
  for(i=0;i<=2;i++) 
  {  for(j=0;j<=2;j++) 
  {    cin>>a[i][j]; 
    }    }   for(j=2;j<=2;j++) 
   {   for(i=j-1;i>=0;i--) 
   {     for(k=i;k<=j-1;k++) 
     {       a[i][j]=a[i][j]+a[i][k]*a[k+1][j]; 
        }   }      } 
Storing Values in array  Vertical Algorithms 
void main( ) 
{ 
int a[3][3]={1,2,3,4,5,6,7,8,9}; 
  int b[2][2]; 
  int i,j,k,l; 
  clrscr(); 
     for(j=2;j<=2;j++) 
   {    for(i=j-1;i>=0;i--) 
   {      for(k=i;k<=j-1;k++) 
     {       a[i][j]=a[i][j]+a[i][k]*a[k+1][j]; 
        }    }    } 
 

Fig 4: Dynamic Vertical Algorithms 
 
We present here general free cache oblivious of 

performance, we consider here 3×3, 4×4, 5×5 matrices then 
find out cache miss and cache hit ratio of two methods 
shown in table. 

 
S

r.no
. 

Matr
ices 

Method Cach
e hit 

Cach
e miss 

1 3 × 3 Diagonal 
Algorithms 

6 4 

2 3 × 3 Horizontal 
Algorithms 

5 4 

3 3 × 3 Vertical 
Algorithms 

5 4 

4 4 × 4 Diagonal 
Algorithms 

10 6 

5 4 × 4 Horizontal 
Algorithms 

10 6 

6 4 × 4 Vertical 
Algorithms 

11 5 

7 5 × 5 Diagonal 
Algorithms 

6 18 

8 5 × 5 Horizontal 
Algorithms 

6 19 

9 5 × 5 Vertical 
Algorithms 

7 18 

Fig 5: Ratio of Cache hit and Cache miss 
 

In 2×2 Matrices, 3×3 Matrices the cache miss ratio n as 
n+1 but when size of array increase and length of cache 
miss ratio also goes to rises as shown in fig. 

 

 
 
Fig 6:  3×3 Matrices cache miss ratio 
 

 
 
Fig 7:  4×4 Matrices cache miss ratio  

 
 
Fig 8: 5×5 Matrices cache miss ratio 
 
We tested three algorithms Diagonal Algorithms for 

simple Dynamic programming, Horizontal Algorithm for 
simple Dynamic programming, Vertical Algorithm for 
simple Dynamic programming for time execution as shown 
in Fig 8. 

 



 

6 Time Slots of Dynamic Programming Vertical 
Algorithms 

 
Sr.no. Matrices Time in nanoseconds 

01 3×3 Matrices 0.164835 
02 4×4 Matrices 0.164835 
03 5×5 Matrices 0.164835 
04 6×6 Matrices 0.21978 
05 7×7 Matrices 0.274725 
06 8×8 Matrices 0.274728 
07 9×9 Matrices 0.32967 

     Fig 9: Time slots for dynamic Programming  
 
All three methods which required execution time as 

shown in tables graphically how it process shown in fig 10. 

 
        
Fig 10: Slots of Dynamic Programming 
 
All figures shows cache performance of all algorithms in 

L1 and L2 cache. The normalized cache miss are shown on 
difference between three standard algorithms have a more 
cache misses on largest problem size. It is interesting to 
calculate cache misses and cache simulations. 

 
 

7. Conclusions 
 
 We have demonstrated Diagonal Algorithms, 

Horizontal Algorithms, and Vertical Algorithms for solving 
simple dynamic problem. These have good cache 
performance and cache aware sense. 

 Our Framework can be applied for several other 
dynamic programming problems including local alignments, 

multiple sequence alignments, sorting functions, sum of pair 
functions, objective functions. 

 
8. Future Work 

 
We presented practically Dynamic Algorithms with 

different methods, the methods which shows execution 
process and cache behavior. 

 Fig 10 gives cache performance Dynamic Algorithms, 
the standard algorithms have a more cache misses on largest 
problem size. We were not able to efficiently implement it. 
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