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Abstract—For a fixed unsatisfiable formula C, we introduce
the class of (C, r)-maximal satisfiable subformulas S and study
its basic properties, for every positive integer r ≥ 1. The
parameter r means the smallest number such that the addition
of arbitrary r further clauses from C to S always yields
an unsatisfiable subformula of C. Regarding the base case
r = 1 we give a full characterization of the collection of all
(C, 1)-maximal satisfiable subformulas of C. We also clarify
the connection to the class of minimal unsatisfiable formulas.
Finally, we provide some connections to matroids of clause sets.

Index Terms—propositional satisfiability, hypergraph, mini-
mal unsatisfiable formula, fibre-transversal, matroid

I. INTRODUCTION

The classical propositional satisfiability problem (SAT) of
conjunctive normal form (CNF) formulas is a central combi-
natorial problem, namely one of the first problems that have
been proven to be NP-complete [2]. More precisely, it is
the natural NP-complete problem and thus lies at the heart
of computational complexity theory. Moreover SAT plays a
fundamental role in the theory of designing exact algorithms,
and it has a wide range of applications because many
problems can be encoded as a SAT problem via reduction
[6] due to the rich expressiveness of the CNF language.
The applicational area is pushed by the fact that meanwhile
several powerful solvers for SAT have been developed (cf.
e.g. [7], [10] and references therein).

The focus of this paper is the structural investigation of
certain CNF subformula classes regarding SAT. Concretely,
we introduce the notion of C-maximal satisfiable formulas
with respect to a given unsatisfiable formula C. A subfor-
mula S of C is called C-maximal satisfiable if the addition of
any further clause of C to S yields an unsatisfiable formula.
We show the connection to the well known class of minimal
unsatisfiable formulas, and give a full characterization of the
set of all C-maximal satisfiable clause sets, if an arbitrary
unsatisfiable formula C is given. Moreover, we clarify how
an unsatisfiable formula C can be constructed such that a
given satisfiable formula S becomes a C-maximal satisfiable
formula. We also prove that there always exists a maximal
satisfiable subformula for each unsatisfiable clause set. Fur-
ther, we consider the generalization to (C, r)-maximal satisfi-
able formulas S ⊆ C, for fixed positive integer r ≥ 1. Here,
by definition, one always obtains an unsatisfiable formula
when adding at least r further clauses from C to S, and
there is no number less than r satisfying that property. Some
hints are given, how (C, 1)-maximal and (C, r)-maximal
satisfiable subformulas are connected. Finally, some relations
to matroids are discussed.

Methodical, we shall make use of the so-called fibre-view
on clause sets which is introduced in [9], and a central
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result established therein. A fibre of a formula simply is
the collection of all its clauses that contain the same set
of variables.

II. NOTATION AND PRELIMINARIES

Let CNF denote the set of formulas (free of duplicate
clauses) in conjunctive normal form over propositional vari-
ables x ∈ {0, 1}. Each formula C ∈ CNF is considered as a
set of its clauses C = {c1, . . . , c|C|} having in mind that it
is a conjunction of these clauses. A positive (negative) literal
is a (negated) variable. The negation (or complement) of a
literal l is l̄. A clause c ∈ C is a disjunction of different
literals, and is also represented as a set c = {l1, . . . , l|c|}.
For formula C, clause c, by V (C), V (c) we denote the
variables contained (neglecting negations), correspondingly.
Furthermore, CNF+ denotes the set of monotone formulas,
i.e., every variable occurs unnegated, only.

The satisfiability problem (SAT) asks, whether input C ∈
CNF has a model, which is a truth value assignment t :
V (C) → {0, 1} assigning at least one literal in each clause
of C to 1. Let UNSAT denote the set of all unsatisfiable
members of CNF, and let SAT denote the set of all satisfi-
able members of CNF. Clearly, we have ∅ ∈ SAT, i.e., the
empty clause set is satisfiable. Given a set V of propositional
variables, it is convenient to identify an assignment t with
a clause of length V in the following way: Let x0 := x̄,
x1 := x. Then we can identify t : V → {0, 1} with the
literal set {xt(x) : x ∈ V }. Similarly, for b ⊂ V , we identify
the restriction t|b of t to b with the clause {xt(x) : x ∈ b}.
The collection of all clauses of length |V | and containing
literals over all variables in V is denoted as WV and, by the
identification described previously, WV can be regarded as
the set of all total assignments V → {0, 1}.

For a clause c we denote by cγ the clause in which all its
literals are complemented. In case of an assignment t ∈ WV ,
we have the correspondence of tγ to the assignment 1− t :
V → {0, 1} complementing all truth values. Similarly, let
Cγ = {cγ : c ∈ C} denote the complemented clause set
version of C.

The fibre-view as introduced in [9] regards a clause set
C as composed of fibres over a hypergraph: All clauses
c of C projecting onto the same variable set b = V (c),
when negations are eliminated, form the fibre Cb over b,
namely Cb = {c ∈ C : V (c) = b}. The collection of these
base elements b determines the edge set of a hypergraph,
the base hypergraph H(C) = (V (C), B(C)) of C, i.e.,
B(C) = {V (c) : c ∈ C} ∈ CNF+ which can be regarded
as a monotone clause set. Hence, C is the disjoint union
of all its fibres: C =

⋃
b∈B(C) Cb. Conversely, we can start

with a given arbitrary hypergraph H = (V,B) serving as
a base hypergraph if its vertices x ∈ V are regarded as
Boolean variables such that for each x ∈ V there is a
(hyper)edge b ∈ B containing x. Recalling that Wb collects



all possible clauses over b, the set of all clauses over H
is KH :=

⋃
b∈B Wb, also called the total clause set over

H. Wb is the fibre of KH over b that sometimes is refered
to as the complete fibre over b. For example, given V =
{x1, x2, x3}, and B = {b1 := x1x2, b2 := x1x3}, we have
KH = Wb1 ∪Wb2 where Wb1 = {x1x2, x̄1x2, x1x̄2, x̄1x̄2},
Wb2 = {x1x3, x̄1x3, x1x̄3, x̄1x̄3} are the complete fibres
over b1, b2.

A formula over H (or a H-based) formula is a subset
C ⊆ KH such that Cb := C ∩ Wb 6= ∅, for each b ∈
B. Given a H-based formula C ⊆ KH with the additional
property that C̄b := Wb \ Cb 6= ∅ holds, for each b ∈ B,
then we can define its H-based complement formula C̄ :=⋃

b∈B C̄b = KH \ C with fibres C̄b. By construction C̄ has
the same base hypergraph as C. For example, given H =
(V,B) with V = {x1, x2, x3}, and B = {x1x2, x1x3}, let
C = {x1x2, x1x̄2, x1x̄3, x̄1x̄3} then KH = C ∪ C̄ where
C̄ = {x̄1x2, x̄1x̄2, x1x3, x̄1x3}.

Let H = (V,B) be a fixed base hypergraph with total
clause set KH. Recall that C ⊆ KH is called minimal
unsatisfiable if C is unsatisfiable but ∀c ∈ C : C \ {c}
is satisfiable, see for instance [1].

A fibre-transversal of KH (not to be confused with a
hitting set [5]) is a H-based formula F ⊂ KH such that
|F ∩ Wb| = 1, for each b ∈ B. Hence F is a formula
containing exactly one clause of each fibre Wb of KH; let
that clause be refered to as F (b). An important type of
fibre-transversals F are those containing each variable of
V as a pure literal, that is, occurring in F with a single
polarity only. Such fibre-transversals are called compatible
and have the property that

⋃
b∈B F (b) ∈ WV . As a simple

example for a compatible fibre-transversal, consider the
base hypergraph with variable set V := {x1, x2, x3} and
B := {b1 := x1x2, b2 := x1x3, b3 := x2x3}. Then, e.g.,
the clauses c1 := x̄1x2 ∈ Wb1 , c2 := x̄1x̄3 ∈ Wb2

and c3 := x2x̄3 ∈ Wb3 , denoted as literal strings, form
a compatible fibre-transversal of the corresponding KH,
because c1 ∪ c2 ∪ c3 = x̄1x2x̄3 ∈ WV .

We can define a (compatible) fibre-transversal of a H-
based formula C ⊂ KH as a (compatible) fibre-transversal
KH that is contained in C.

The following result proved in [9] characterizes satisfiabil-
ity of a formula C in terms of compatible fibre-transversals
in its based complement formula C̄.

Theorem 1: [9] For H = (V,B), let C ⊂ KH be a
H-based formula such that C̄ is H-based, too. Then C
is satisfiable if and only if C̄ admits a compatible fibre-
transversal F . Moreover, the union of all clauses in F γ is a
model of C.

III. THE CONCEPT OF r-MAXIMAL SATISFIABILITY

In this section we introduce the notion of (C, r)-maximal
satisfiable clause sets and provide some basic examples and
facts. Let us begin with the formal definition.

Definition 1: Let H = (V,B) be a fixed base hypergraph.
Given a fixed unsatisfiable formula C ⊆ KH with B(C) =
B, we call a (proper) subset S ⊆ C a (C, r)-maximal
satisfiable clause set if S is satisfiable and r is the smallest
positive integer such that for each r-subset Ŝ ⊆ C \ S
the clause set S ∪ Ŝ is unsatisfiable. S simply is called C-
maximal satisfiable if r = 1.

Addressing the natural question whether there are C-
maximal satisfiable formulas at all, we can provide a direct
answer on basis of minimal unsatisfiable formulas [1]. By
definition such a formula becomes satisfiable if any of its
clauses is removed. Therefore, if C is minimal unsatisfiable,
and c is a clause of C then obviously S = C \ {c} is C-
maximal satisfiable. Here arise two questions. First, does the
converse of the previous argument also hold? And closely
related, are all maximal satisfiable formulas as trivial as
those corresponding to minimal unsatisfiable ones? We give
answers to both questions subsequently by the next example
that can be obtained in view of Theorem 1 as follows.
Consider the total clause set KH, for any base hypergraph
H = (V,B), then clearly KH ∈ UNSAT. Moreover, let
t ∈ WV be chosen arbitrarily. Then tB := {t|b : b ∈ B} is a
compatible fibre-transversal of KH. Therefore S = KH \ tB
is a satisfiable formula with model tγ according to Theorem
1 as S̄ exists. Furthermore, adding any clause of tB to S
provides a complete fibre in the resulting formula which
cannot be satisfiable, therefore S is KH-maximal satisfiable.

Lemma 1: For any t ∈ WV , tγ is the unique model of
KH \ tB .
PROOF. By construction we have KH \ tB = tB which is
the only compatible fibre-transversal therein, hence tγ is the
unique model of KH \ tB . 2

In the next section we shall provide a precise characteri-
zation of the class of all maximal satisfiable clause sets of a
given unsatisfiable formula C.

Let us briefly return to the first question stated above,
namely whether every C-maximal satisfiable formula S has
the property that S∪{c} is minimal unsatisfiable, for arbitrary
c ∈ C \S. A counterexample already is provided by the last
example: Since the clause set (KH \ tB) ∪ {c} contains the
complete fibre WV (c), it is unsatisfiable. However, removing
a clause of any other fibre of the formula leaves the resulting
clause set unsatisfiable.

Addressing the case r > 1, let us first investigate whether
there exists a pair S, C, and a positive integer r ≥ 2 such that
S is (C, r)-maximal satisfiable. Assume that the edge set B
of H contains edges b with |b| > log r and again consider
KH and t ∈ WV as above. Let S be the formula obtained
from KH \ tB by removing r − 1 clauses from any of its
fibres whose base point b satisfies |b| > log r. Then S is an
example for a (KH, r)-maximal satisfiable formula. Indeed,
we have to verify that each T ⊂ KH \S with |T | = r yields
an unsatisfiable formula S∪T . This is clear because there is
only one such set namely T = KH \ S. To see that r is the
smallest integer with that property, let T ⊂ (KH \ S)b with
|T | = r − 1 and such that t|b /∈ T , then S ∪ T is satisfiable
with model tγ according to Theorem 1.

The next result which can easily be established takes the
converse perspective.

Proposition 1: Assume C ∈ UNSAT. Let S be a (C, r)-
maximal satisfiable formula, where r ≥ 2. Then there exists a
set T ⊆ C\S of r−1 elements such that S∪T is C-maximal
satisfiable.
PROOF. Let S be (C, r)-maximal satisfiable. Since r is the
smallest integer for which this property holds, there must
exist a subformula T of C\S consisting of r−1 clauses such
that S ∪ T remains satisfiable. However adding an arbitrary
further clause from C\(S∪T ) to S∪T yields an unsatisfiable



formula. Thus S ∪T is C-maximal satisfiable as asserted. 2

It is far less easy to clarify whether the converse of the
previous result also holds.

IV. CHARACTERIZATION OF THE CASE r = 1
Next, let us concentrate on the base case r = 1 addressing
the following topics:

(1) Given C ∈ UNSAT; does there always exist a C-
maximal satisfiable subformula?

(2) How can C-maximal satisfiable clause sets be fully
characterized?

(3) What is the structural relationship between maximal
satisfiability and minimal unsatisfiability?

Regarding question (1), we already saw that it can be
answered positively whenever C is minimal unsatisfiable, or
is the total clause set. Below we shall provide a positive
answer in the general case also exploring that the minimal
unsatisfiable clause sets in a certain sense are an extreme
subclass. Before, let us address the second topic. To that end,
we provide a useful operation as follows. Given C ∈ CNF
and t ∈ WV (C), we set

C 	 t := C \ tB(C)

where tB(C) := {t|b : b ∈ B(C)}. So, from C we obtain
C 	 t by substracting the clause t|b from every fibre Cb of
C, where b runs through all edges of the base hypergraph
B(C) of C. Let C ∈ UNSAT, and S = C 	 t, for any
t ∈ WV (C). Observe that in case of B(C) = B(S) we have,
in fact, that tγ is a model of S by Theorem 1. Observe that,
since C ∈ UNSAT we always have C∩tB(C) 6= ∅, for every
t ∈ WV (C). Otherwise there is a t with tB(C) ⊆ C̄ meaning
that C is satisfiable according to Theorem 1. We state an
useful Lemma the proof of which is obvious.

Lemma 2: For a formula C and t, t′ ∈ WV (C), it holds
that C 	 t = C 	 t′ if and only if

(∗) tB(C) ∩ C = t′B(C) ∩ C

Moreover, it holds that C ∩ tB(C) 6= ∅, for every t ∈ WV (C),
iff C ∈ UNSAT.

For C ∈ CNF and V := V (C), defining

t1 ∼ t2 iff C 	 t1 = C 	 t2

obviously yields an equivalence relation on WV , with pair-
wise disjoint classes [t̃j ] ⊆ WV , for arbitrary fixed repre-
sentatives t̃j , where the index j runs through an appropriate
finite index set J satisfying WV =

⋃
j∈J [t̃j ]. We clearly have

that tγ is a model of Sj := C 	 t̃j , for every t ∈ [t̃j ]. But
there might exist further models of Sj not contained therein.
The next result provides a precise criterion for the existence
of a C-maximal satisfiable subformula S in case of equal
base hypergraphs.

Theorem 2: Let C ∈ UNSAT be fixed and let S ⊆ C be
a satisfiable subformula with B(S) = B(C). Then S is a
C-maximal satisfiable formula if and only if each model t of
S satisfies S = C 	 tγ , i.e., [t]γ equals the set of models of
S.
PROOF. Fix C ∈ UNSAT, and let S ⊆ C be satisfiable. For
the if-direction we assume that each model t of S satisfies
S = C 	 tγ . Observe that B(S) = B(C) =: B implies
V (S) = V (C) =: V . Let t ∈ WV be a fixed model of S,

and tγ be its corresponding compatible fibre-transversal of S̄
according to Theorem 1. For an arbitrary clause c ∈ C \ S,
there is a b ∈ B such that c = tγ |b. Otherwise we have c ∈ S,
because B(S) = B(C). For verifying S ∪ {c} ∈ UNSAT,
we first note that B(S ∪ {c}) = B(C) = B, thus we have
to distinguish two cases.
Case (1): B(S ∪ {c}) ⊂ B. Then both the fibres Cb contain-
ing c and also [S ∪ {c}]b are complete, i.e., they both equal
Wb yielding an unsatisfiable fibre of S ∪ {c}.
Case (2): B(S ∪ {c}) = B. Theorem 1 directly implies
that tγ cannot be a compatible fibre-transversal in S ∪ {c}
meaning that t is no model of S ∪ {c}. Moreover, assume
that there is another assignment t̃ ∈ V which is a model of
S ∪ {c}. Then t̃ specifically is a model of S, too; hence it
satisfies S = C	t̃γ where t̃γ is the corresponding compatible
fibre-transversal of S ∪ {c}. Obviously, we therefore have
t̃γ |b 6= c = tγ |b. Because of c ∈ C we obtain a contradiction
to the fact that tγB ∩ C = t̃γB ∩ C 6= ∅ according to (∗) in
Lemma 2. Thus S ∪ {c} cannot have a model finishing the
argumentation.

For the converse direction, suppose that S is a C-maximal
satisfiable subformula of C hence S̄ exists. Let t ∈ WV be
an arbitrary model of S, and let tγ be the corresponding
compatible fibre-transversal of S̄ according to Theorem 1.
We claim that S = C	 tγ . Indeed, otherwise there is a base
point b ∈ B such that c ∈ Cb \Sb and c 6= t|b. This however
implies that S∪{c} also is satisfiable by t contradicting that
S is C-maximal satisfiable. On the other hand, there can be
no clause from S removed when calculating C	 tγ , because
this requires b ∈ B such that tγ |b ∈ Sb which is impossible
as tγ is a compatible fibre-transversal of S̄, hence tγ |b ∈ S̄b

verifying the claim. 2

However, it is by no means guaranteed that t is the unique
model of C	tγ as it was the case for C = KH. Actually, we
obtain the following connection between maximal satisfiable
formulas and those possessing a unique model.

Corollary 1: For C ∈ UNSAT and a satisfiable subfor-
mula S with B(S) = B(C) = B, it holds that S is a C-
maximal satisfiable formula with unique model t ∈ WV (C)

if and only if S = C 	 tγ and tγB ∩ C can be extended to
a compatible fibre-transversal of S̄ only by tγB \ C, which
specifically holds if tγB ⊆ C.
PROOF. Assume that S = C 	 tγ and that tγB ∩ C can be
extended to a compatible fibre-transversal of S̄ only by tγB \
C. Then clearly t is a model of S. Since tγB∩C must be fixed
and B(S) = B(C), there can be no other t̃ ∈ WV (C) such
that S = C	 t̃γ according to Lemma 2. Thus t is the unique
model of S and Theorem 2 tells us that S is a C-maximal
satisfiable formula.

For the converse direction, let S be a C-maximal satisfi-
able formula with unique model t then Theorem 2 directly
yields S = C	tγ . Suppose there is a further t 6= t̃ ∈ WV (C)

such that (tγB∩C)∪(t̃γB \C) is a compatible fibre-transversal
of S̄. Then, according to Theorem 1, this yields another
model [(tγB(C) ∩ C) ∪ (t̃γB \ C)]γ of S which cannot exist
by assumption. 2

Let us consider the question under which conditions a
satisfiable formula S with a unique model admits an en-
largement C such that S is C-maximal satisfiable. The next
result states the answer including the case B(S) ⊂ B(C); by
2M we denote the power set of a (finite) set M . Moreover,



recall that tB(S) := {t|b : b ∈ B(S)}.
Theorem 3: For S ∈ SAT with the unique model t ∈

WV (S), let T = A ∪D be a non-empty clause set such that

A ⊆ tγB(S) and D ⊆ {tγ |b : b ∈ 2V (S) \B(S)}

Then S is (S ∪ T )-maximal satisfiable, and moreover, there
exists no other superset C of S such that S is C-maximal
satisfiable.
PROOF. First, we have to verify that C = S ∪ T ∈ UNSAT
whenever T = A ∪ D 6= ∅. First suppose that c ∈ A 6= ∅.
Then over B(S) there can be no compatible fibre-transversal
since t, by assumption, is unique. Therefore no partial
fibre-transversal over 2V (S) can be enlarged to a complete
compatible fibre-transversal in C̄. So, we conclude that
C ∈ UNSAT. Next assume D 6= ∅. Observe that for each
c ∈ D there is b ∈ 2V (S) \B(S) such that c = tγ |V (c). Thus
from c ∈ D it follows that there can be no enlargement of the
unique partial transversal tγ over Wb yielding C ∈ UNSAT
also in this case. Obviously, the preceding argumentation also
shows that S ∪ {c} ∈ UNSAT for every c ∈ T .

It remains to prove the last statement of the assertion. To
that end, observe that any other superformula C ′ of S either
properly satisfies V (C ′) = V (S) and b ∈ 2V (S) \ B(S)
contains one of the superformulas C as described above. Or it
contains a clause c with at least one new variable x /∈ V (S).
In the latter case, we consider S ∪ {c} where c = cn ∪ cS

such that V (cn) ∩ V (S) = ∅ and V (cS) ⊆ V (S). Then tγ

can be extended to a compatible fibre-transversal of S ∪ {c}
because there always is the clause d = tγ |V (cS) ∪ cγ

n in
WV (c), and tγ ∪ d is compatible. In the first case, we can
add a clause c ∈ C ′ \ (tγB(S) ∪ {t

γ |b : b ∈ 2V \B(S)}) to S
yielding a satisfiable formula, as we can provide a compatible
fibre-transversal using the clauses in tγB(S)∪{t

γ |b : b ∈ 2V \
B(S)} ⊂ S ∪ {c}. So, S cannot be C ′-maximal satisfiable.
2

To finish the structural characterization of maximal satis-
fiable formulas, we have to generalize the last result to for-
mulas S with more than one model. This requires that each
enlargement of S disturbs all models of S simultaneously.
Again let us include the case B(S) ⊂ B(C) and profit by
the fibre-view on clause sets. The proof proceeds similar to
the previous one and is omitted therefore.

Theorem 4: For S ∈ SAT with the set of models φ(S) ⊆
WV (S), let T = A∪D be a non-empty clause set with A = ∅
or

A ⊆
⋃

t∈φ(S)

tγB(S) s.t. ∀t ∈ φ(S) : A ∩ tγB(S) 6= ∅

and D = ∅ or

D ⊆
⋃

t∈φ(S)

tγB′(S) s.t. ∀t ∈ φ(S) : D ∩ tγB′(S) 6= ∅

where B′(S) := 2V (S) \ B(S). Then S is (S ∪ T )-maximal
satisfiable, and moreover, there exists no other superset C of
S such that S is C-maximal satisfiable.

Finally, let us reformulate without proof the last result
from the perspective of a given C ∈ UNSAT, i.e., general-
izing Theorem 2 for the case B(S) ⊆ B(C).

Theorem 5: Let C ∈ UNSAT be fixed, let S ⊆ C be a
satisfiable subformula and let φ(S) ⊆ WV (S) be the set of

its models. Then S is a C-maximal satisfiable formula if and
only if V (S) = V (C) =: V and
(1) ∀t ∈ φ(S) : S = CB(S) 	 tγ ,
(2) ∀t ∈ φ(S),∀c ∈ CB′(S) : c ∈ tγB′(C),
where B′(S) := B(C) \ B(S) and CB :=

⋃
b∈B Cb, for

every B ⊆ B(C).
Observe that tγB′(C) in condition (2) is well defined

because V (S) = V (C) must hold. Moreover, Theorem 5
becomes Theorem 2 in case that B′(S) = ∅ as then condition
(2) becomes a tautology.

In view of the preceding discussion we realize that mini-
mal unsatisfiable formulas, that we collect in I ⊂ UNSAT,
are the most easy candidates to provide maximal satisfiable
subformulas. First notice that for C ∈ I the complement
formula C̄ always is defined as long as |B| > 1; the case
|B| = 1 is trivial and therefore omitted in what follows.
Moreover, let C ∈ I with H(C) = (V,B) then we have
|C ∩ tB | = 1, for every t ∈ WV . Conversely, for fixed
t ∈ WV there is exactly one b ∈ B such that t|b /∈ C̄b.
Meaning that C and S := C 	 t must differ in exactly
one clause c = t|b, which also holds for all t̃ ∈ φ(S).
In that sense I admit maximal satisfiable subformulas with
minimal complement. In a natural generalization, we define
the classes Is within UNSAT of s-minimal unsatisfiable
formulas, for every positive integer s: C ∈ Is iff for each
T ⊂ C with |T | = s − 1, we have C \ T ∈ I. Specifically
it is I1 = I. The next assertion is easy to verify and states
the relationship to maximal satisfiability.

Theorem 6: Let s > 0 be any integer, then for every C ∈
Is and T ⊂ C with |T | = s we have that S = C \ T is
C-maximal satisfiable.
PROOF. Case s = 1 is clear. Fix s ≥ 2, C ∈ Is and let
T ⊂ C with |T | = s be chosen arbitrarily. By definition of
Is, we have S = C \T ∈ SAT. Suppose there is c ∈ T such
that S ∪ {c} is satisfiable, it follows that C \ (T \ {c}) ∈ I
is satisfiable yielding a contradiction. 2

The question, for which values of s > 1 the family Is 6= ∅
is worth to be addressed in the future. The other extreme is
given by the class of formulas N ⊂ UNSAT the members
of which admit no maximal satisfiable subformulas at all.
Meaning that for each C ∈ N there is no T ⊂ C such that
C \ T is a maximal satisfiable subformula. The answer to
question (3) posed in the beginning of this section is open
so far. If N 6= ∅ it must be answered negative, but we finally
have a positive answer.

Theorem 7: It holds that N = ∅, i.e., for each C ∈
UNSAT there is a C-maximal satisfiable subformula.
PROOF. Let C ∈ UNSAT and set V := V (C), B := B(C).
Define

µ(C) := min{|tB ∩ C| : t ∈ WV }

as the minimum intersection cardinality of assignments with
C. Collect all assignments fulfilling that cardinality in the
subset W

µ(C)
V . Since C ∈ UNSAT we always have µ(C) ≥

1. Now, we claim that St := C	t is a C-maximal satisfiable
subformula if t ∈ W

µ(C)
V . Clearly, St is satisfiable because

tγ ∈ φ(St). Assume there is c ∈ C \ St such that St ∪
{c} is satisfiable with model t̃γ . Then t̃γ also is a model
of St. Since c ∈ tB we have c 6∈ t̃ and therefore t̃B ∩
C 6= tB ∩ C. However, since t̃γ is a model of St which is
no model of C it must have been created by the operation



C 	 t. Thus t̃B ∩C ⊆ tB ∩C; in summary we obtain |t̃B ∩
C| < |tB ∩ C| = µ(C) yielding a contradiction. Hence St

is maximal satisfiable. Since C ∈ UNSAT, it always holds
that W

µ(C)
V 6= ∅ completing the proof. 2

Note that µ(I) = 1 whenever I ∈ I. Moreover for
the class I we also have the converse of the claim in the
preceding proof. Indeed, assume for I ∈ I there is t ∈ WV (I)

such that |tB(I) ∩ I| ≥ 2 and St = I 	 t is I-maximal
satisfiable. Let c, c′ be two of the clauses in the intersection.
Then clearly S ∪ {c} = I \ {c′} is satisfiable yielding a
contradiction.

In that respect minimal unsatisfiable formulas are extreme
candidates for providing maximal satisfiable subformulas. In
view of Lemma 1 we see that the total clause set provides the
extreme coming from the other side, because the minimum
intersection cardinality then equals the number of edges of
the base hypergraph. In general the converse of the claim in
the last proof does not hold and we refer to Theorems 2 and
5 regarding the full characterization.

V. SOME OBSERVATIONS REGARDING MATROIDS

This section is devoted to reveal some connections of maxi-
mal satisfiable clause sets to matroids. Matroids are a well-
known concept in combinatorics and algebra [8]. From an
algorithmic point of view, matroids are closely related to
greedy algorithms, a prominent example is the matroid of
forests in the context of minimum spanning trees in edge-
weighted simple graphs [3]. Here, we consider some clause
sets with matroid structure. For given H = (V,B) and
C ⊆ KH, denote by S(C) the collection of all C-maximal
satisfiable clause sets.

Definition 2: A matroid M = (C, T ), T ⊆ 2C is called
a matroid of satisfiable clause sets (mscs) if T ⊂ SAT. The
set of bases of M is denoted as U(M) and let φ(M) :=⋂

U∈U(M) φ(U). An mscs M is called satisfiable if φ(M) 6=
∅.
Not any matroid of satisfiable clause sets is satisfiable. For
instance consider M = {∅, {c1}, {c1}}, which trivially is
a matroid of satisfiable clause sets but is not a satisfiable
matroid.

A first obvious example providing the connection to max-
imal satisfiable clause sets is given by the class I as follows.

Proposition 2: For each C ∈ I we have that (C, 2C \
{C}) is a mscs and S(C) = {C \ {c} : c ∈ C} is the set of
its bases. The matroid is unsatisfiable.
PROOF. We only verify the second assertion, namely that the
mscs defined in the Proposition is unsatisfiable. This can be
seen easily relying on Theorem 5. Indeed, let c1, c2 ∈ C
and suppose t ∈ φ(S1) ∩ φ(S2), where Si := C \ {ci},
i = 1, 2. Since S1, S2 both are C-maximal satisfiable, we
have V (S1) = V (S2) = V (C) =: V , hence t ∈ WV . It
is c2 ∈ S1 therefore c2 6⊂ tγ . Either B(S2) = B(C), then
c2 ⊆ tγ because c2 /∈ S2. Or it holds that B(S2) ⊂ B(C)
then c ∈ tγB′(S2)

also implying c2 ⊆ tγ . So, we obtain a
contradiction in either case. 2

Relying on the total clause set over H = (V,B), we obtain
the next obvious assertion.

Proposition 3: For each S ∈ S(KH), (KH, 2S) is a
satisfiable matroid.

However, we cannot enlarge the previous matroid by the
power set of a further KH-maximal satisfiable subformula
without disturbing its matroid structure.

Theorem 8: There is no matroid over KH containing more
than one KH-maximal satisfiable formula.
PROOF. Using the results of the previous section it is not
hard to see that every maximal satisfiable subformula of KH
is of the form St := KH 	 t, for a t ∈ WV . So, let t, s ∈
WV , t 6= s and assume that both St, Ss are members of the
same matroid set system T , then clearly the power sets of
both also are in T . It suffices to verify that then there are
T,U ∈ T with |U | = |T | + 1 and there is no c ∈ U \ T
such that T ∪ {c} ∈ T . Since t 6= s there is b ∈ B such that
ct := t|b 6= s|b =: cs. Moreover cs ∈ St, and ct ∈ Ss. We
claim that U := St and T := SS \ {ct} is a pair having the
desired property. Choose an arbitrary c ∈ U\T . Since c ∈ sB

we have T ∪{c} ∈ UNSAT. Indeed, let V (c) = b′ 6= b, then
T ∪ {c} contains the complete fibre Wb′ . If V (c) = b then
c = cs and T ∪ {cs} has at b the fibre Wb \ {ct}. Thus we
also obtain an unsatisfiable formula because (s \ cs) ∪ ct is
the only candidate for a compatible fibre-transversal in the
based complement formula T ∪ {cs}. However, that cannot
work as, by assumption, we have ct 6= cs meaning, e.g.,
x ∈ cs and x̄ ∈ ct implying {x, x̄} ⊂ (s \ cs)∪ ct. It follows
that there is no t′ ∈ WV with T ∪ {c} ⊂ St′ , which is valid
for every c ∈ U \ T . Thus we cannot enlarge T by further
KH-maximal satisfiable formulas. 2

The last assertion can easily be reformulated as follows.
Lemma 3: An mscs M over KH is satisfiable if and only

if there is a KH-maximal satisfiable clause set containing
all bases of M. 2

So, we have to search for satisfiable matroids over KH
appearing as the intersection of those matroids for different
KH-maximal satisfiable subformulas. Observe that for every
tγ ∈ φ(M) no base U ∈ U(M) is allowed to contain a
clause being a subset of t. For a given tγ ∈ φ(M) we have
St = KH \ tB . Hence we obtain

⋂
tγ∈φ(M) St = KH \

[
⋃

tγ∈φ(M) tB ].
The previous Lemma directly yields the following state-

ment, because if M = (KH, T ) is a satisfiable matroid, then
for each tγ ∈ φ(M) it holds that U ⊂ St,∀U ∈ U(M).

Lemma 4: Let M = (KH, T ) be a satisfiable ma-
troid with U(M) the set of its bases, then U ⊆ KH \
[
⋃

tγ∈φ(M) tB ], for each U ∈ U(M). 2

VI. CONCLUDING REMARKS AND OPEN PROBLEMS

We introduced the concept of (C, r)-maximal satisfiable
clause sets and studied its basic properties. Specifically, we
provided a full characterization of the set of all C-maximal
satisfiable subformulas of a given unsatisfiable formula C.
We also investigated the relationship to minimal unsatisfiable
clause sets. Concretely, we proved that for the class I it
holds that I 	 t is an I-maximal satisfiable subformula iff
t ∈ W

µ(I)
V . In that respect minimal unsatisfiable formulas

are extreme candidates for providing maximal satisfiable
subformulas. In general, only the if-direction of the assertion
holds true implying that every unsatisfiable formula C admits
a C-maximal satisfiable subformula.

There remain several open problems for future research.
First of all to investigate the existence problems and the
structural features of (C, r)-maximal satisfiable clause sets



more deeply. Observe that the argumentation providing a
(KH, r)-maximal subformula, in general cannot be trans-
fered when the total clause set KH is replaced with an
arbitrary unsatisfiable C ⊂ KH. From the structural point
of view, the main topic that remained open is whether one
can proof the converse of Prop. 1, namely the conjecture that
S is a (C, r)-maximal satisfiable formula, for fixed r ≥ 2, if
and only if there exists a set T ⊆ C \ S of r − 1 elements
such that S∪T is C-maximal satisfiable. A deeper structural
reasearch with respect to matroids might help here; in that
direction we only made some first steps.

The criteria for (C, r)-maximal satisfiable subformulas,
r ≥ 1, presented so far are inadequate for an efficient
algorithmic construction of maximal satisfiable subformulas
of C ∈ UNSAT. Perhaps Theorem 7 might provide some
efficient approach. However, notice that already in the case
of C-maximal satisfiable subformulas with a unique model a
recognization is algorithmically hard, even if one knows that
only one model exists [11]. Closely related is the question
whether one can identify fixed-parameter tractable classes
with respect to the parameter r [4]. However for gaining
a progress in that direction, a deeper understanding of r-
maximal satisfiability is required.

Finally one should study in more detail how the concept
of maximal satisfiability could be applied in the area of
combinatorial optimization.
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