

Abstract — Recent years, the Cloud computing technologies

have become more and more important for many existing

database applications. The Cloud platform provides an ease to

use interface between providers and users, allow providers to

develop and provide software and databases for users over

locations. Currently, there are many Cloud platform providers

support large-scale database services. However, most of these

Cloud platform architectures only support simple keyword-

based queries and can’t response complex query efficiently due

to lack of efficient in multi-attribute index techniques. Existing

Cloud platform providers seek to improve performance of

indexing techniques for complex queries. In this paper, we

evaluate the existing multi-attribute indexing structures for

Cloud platform. We conclude our experimental results to

suggest the more efficient and scalable multi-attribute index

structure for Cloud platform.

Index Terms — Cloud computing, multi-attribute index,

R-tree, k-d tree

I. INTRODUCTION

he Cloud computing is an emerging business solution. It

can address the requirements of each software service to

distribute the storage space and all kinds of the service on the

resource pool. The user does not need to purchase any

hardware or software and flexible to upgrade amount of

resource according their own actual demand from provider.

The Cloud system generated business opportunity and future

trend in the software industry. According to estimation from

Merrill Lynch [14], by 2011, the profit of Cloud computing

market should reach $160 billion, including $95 billion in

business and $65 billion in online advertising. Due to the

commercial potential of the Cloud platform, more IT

companies are increasing their investments in Cloud develop.

Existing Cloud infrastructures include Amazon’s Elastic

Computing Cloud (EC2) [15], IBM’s Blue Cloud [12] and

Google’s Map Reduce [6]. Luis M. Vaquero etc. [18] listed

up to 22 definitions and analyses about Cloud computing.

There are ten characteristics of Cloud computing in their

summaries: user friendliness, virtualization, Internet centric,

variety of resources, automatic adaptation, scalability,

resource optimization, pay-per-used, service SLAs (Service-

Level Agreements) and infrastructure SLAs [9].

The Cloud computing is a virtual computation resource

which may maintain and manage by itself, normally for a lot

of large-scale server cluster structures including computation

servers, storage servers, the bandwidth resources and so on

[21]. Cloud platform compose by a number of computer

1 This work was supported by National Science Council of ROC Grant NSC

100-2221-E-324-027.

2 Yu-Lung Lo and Choon-Yong Tan are with the Department of Information

management, Chaoyang University of Technology, Wufong District,

Taichung, 41349 Taiwan. Phone: +886-04-2332-3000 ext. 7121; fax:

+886-4-2374-2337; e-mail: yllo@cyut.edu.tw; s9914644@cyut.edu.tw.

resources and store a large number of data, and provide

services to millions of global user. Resource allocation

usually computes in Cloud platform and make user feel that

owns personal infinite resources. Providing scalable database

services is one of most important issue for extending many

applications of the Cloud platform. The Cloud platform

simplifies to provide a large-scale distributed database system

however performing indexing and searching in such a

database on the Cloud platform has become new challenges to

realize.

The traditional distributed system structure lacks of

scalability and reliability therefore it cannot be directly

applied to the new platform. Due to the diversity of

applications, database services on the Cloud must support

large-scale data analytical tasks and high concurrent On-Line

Transaction Processing (OLTP) queries. When unexpected

large searching enquiries occur, it may happen that users meet

the situation of out of supported by system resource and

disable of quality of service [23]. However, currently the

Cloud platform only supports simple keyword-based queries.

It can't answer complex queries efficiently due to lack of

efficient index techniques. There were few research reports

proposed indexing schemes for Cloud platform to manage the

huge and variety data. These schemes create global index for

master nodes and local index for each slave (or storage) node

as shown in Figure 1. To prevent the bottleneck, the global

index is distributed and maintained in several master nodes.

The local index manages the local data in a slave node for

local data search and the global index manages the tree node

in local index for searching entries of slave nodes. All these

index structures are based on existing index structures, such

as R-tree[10] and k-d tree[7], which can support multi-

attribute/multi-dimensional indexing or spatial indexing. In

this paper, we would like to survey and evaluate the existing

multi-attribute index schemes then provide a suggestion for

applying multi-attribute indexing in Cloud platform.

Figure 1. Index structure for Cloud platform

A Study on Multi-Attribute Database Indexing

on Cloud System1

Yu-Lung Lo and Choon-Yong Tan
2

T

The remaining of this paper is organized as follows: in

section 2, we review the existing multi-attribute indexing

schemes for Cloud platform. After that, we design

experiments to evaluate the existing multi-attribute indexing

structures in section 3. Finally, a conclusion and our

suggestion are given in the last section.

II. RELATED WORK

There are several distributed storage systems to manage

large amounts of data such as Google File System (GFS)

serves Google’s applications with large data volume [8],

BigTable is a distributed storage system for managing

structured data of very large scales [4], and PNUTS proposed

by Yahoo is a hosted and centrally controlled parallel and

distributed database system for Yahoo’s applications [5].

These systems organize data into chunks then disseminate

chunks into numbers of clusters to improve data access

parallelism.

The concept of Cloud computing evolves from internet

search engines’ infrastructure. The differences between Cloud

computing and DBMS are that the Cloud computing does not

adopt order-preserving tree indexes, such as B-tree or hash

table [9]. Aguilera et al. [1] proposed a fault-tolerant and

scalable distributed B-tree for their Cloud systems. Although

B-tree has been widely used as single attribute index in

database systems, it is inefficient in dealing with indices

composed of multi-attributes [23]. To improve the weakness

of Cloud computing, to build a multi-attribute index may

support more types of queries on Cloud computing platforms.

Therefore, Xiangyu Zhang et al. proposed an Efficient

Multi-dimensional Index with Node Cube for Cloud

computing system [23] and Jinbao Wang et al. built the

RT-CAN index in their Cloud database management system

in 2010 [19]. Both these two schemes are based on k-d tree

and R-tree. The brief introductions for these two schemes as

well as k-d tree and R-tree are as follows.

A. Effecent Multi-dimensional Index with Node Cube

In 2009, Xiangyu Zhang et al. [23] proposed an efficient

approach to build multi-dimensional index for Cloud

computing system. In this approach, they build local k-d tree

index for each slave nodes due to k-d tree can efficiently

support point query, partial match query and range query. To

prune irrelevant nodes on query processing, they construct a

node cube for each slave node. A node cube indicates the

range of value on each indexed attribute in this node. After

they build a cube for each slave node, they maintain the cubes

on master nodes with an R-tree. The reason of choosing R-tree

for cube information is that the R-tree was designed for

managing data regions and in their scenario the cubes are

multi-dimensional data regions. They call this index approach

EMINC: Efficient Multi- dimensional Index with Node Cube

as shown in Figure 2.

With the node cube information in EMINC, query

processing can be improved by pruning irrelative nodes in the

nodes locating phase. And in order to keep cube information

available and useful, insertion and deletion on slave nodes

that may change their cubes should inform master nodes for

update of cube.

However, EMINC has some limitations and under some

occasions, the performance could still be poor. The authors

extend EMINC to use multiple node cubes to represent a slave

node in which data records on one slave node will be

represented by multiple node cubes. The shape and amount of

node cubes is dependent on the method used for cutting the

original single node cube.

Figure 2. Framework of EMINC [23]

B. RT-CAN Index

The RT-CAN is a multi-dimensional indexing scheme

proposed by Jinbao Wang et al. in 2010 [19]. RT-CAN

integrates CAN-based routing protocol [17] and the R-tree

based indexing scheme to support efficient multi-dimensional

query processing in a Cloud system.

 CAN (Content Addressable Network) [17] is a scalable,

self-organized structured peer-to-peer overlay network. The

RT-CAN index is built on a shared-nothing cluster, where

application data are partitioned and distributed over different

servers. In this approach, the global index composes of some

R-tree nodes from the local indexes and is distributed over the

cluster. The global index can be considered as a secondary

index on top of the local R-trees. This design splits the

processing of a query into two phases. In the first phase, the

processor looks up the global index by mapping the query to

some CAN nodes. These CAN nodes search their buffered

R-tree nodes and return the entries that satisfy the query. In

the second phase, based on the received index entries, the

query is forwarded to the corresponding storage nodes, which

retrieve the results via the local R-tree. The index structure

and data service of RT-CAN is shown in Figure 3.

C. k-d Tree

The k-d tree (short for k-dimensional tree) was proposed

by Jon Louis Bentley in 1975 [3]. The k-d tree is a

space-partitioning data structure for organizing points in a

k-dimensional space. For example, the definition of a 2-d tree

is a binary tree satisfying the following two conditions: (with

root a level 0)

Figure3. Data Service of RT-CAN Index [19]

1. For node N with level(N) is even, then every node M

under N.llink has the property that M.xval < N.xval, and

every node P under N.rlink has the property that P.xval ≧

N.xval.

2. For node N with level(N) is odd, then every node M under

N.llink has the property that M.yval < N.yval, and every

node P under N.rlink has the property that P.yval ≧

N.yval.

Where xval and yval denote the coordinates of x and y,

respectively; and llink and rlink are the pointers to the left

child node and right child node, respectively. For instance, a

two-dimensional space consists of some data points as shown

in Figure 4. Such that we can create a 2-d tree for these data

points as shown in Figure 5, and the space is partitioned into

Figure 6.

The three and more dimensional k-d trees can be derived

in the similar way. Furthermore, adaptive k-d tree [11] was

proposed by Andreas Henrich et al. in 1989, when the k-d

trees are established, according to the data feature, a specific

data plane of division is selected to make each division into

two equal value subspaces, but this optimization is only useful

for static data. For dynamically updated data, the tree

structure needs to be completely reorganized.

Figure 4. 2-d space with data points

Figure 5. an example of 2-d tree

Figure 6. space partitioned by 2-d tree

D. R-tree

The R-tree was proposed by Antonin Guttman in 1984

[10]. R-tree is a tree data structure used for spatial access

methods. It groups nearby objects and represents them with

their minimum bounding d-dimensional rectangle in the next

higher level of the tree. Each node of the R-tree corresponds

to the minimum bounding d-dimensional rectangle that

bounds its children. Since all objects lie within this bounding

rectangle, a query that does not intersect the bounding

rectangle can also not intersect any of the contained objects.

In another words, R-tree uses the bounding boxes to decide

whether or not to search inside a sub-tree. At the leaf level,

each rectangle describes a single object; at higher levels the

aggregation of an increasing number of objects. R-tree is a

balanced search tree which organizes the data in pages and is

designed for storage on disk.

In an R-tree for two-dimensional space, it has an

associated order k and each non-leaf node contains a set of at

most k rectangles and at least k/2 rectangles. For example,

there are three rectangles regions containing nine objects as

shown in Figure 7. An R-tree for this 2-d space can be created

as in Figure 8.

Furthermore, a 3D R-tree, proposed in [22], considers

time as an extra dimension and represents 2D rectangles with

time intervals as three-dimensional boxes. This tree can be the

original R-tree.

Figure 7. rectangles for 2-d space

Figure 8. R-tree for 2-d space

III. EXPERIMENTAL

Since the most existing multi-attribute index structures for

Cloud platform are based on k-d tree and R-tree, and there is

without study for evaluating both schemes yet, we would like

to examine these two index structures in this section. In our

experiment, we prepared infrastructure including machines

which are connected together to simulate Cloud computing

platforms. Each machine had a Q8400 2.66G (1333MHZ)

CPU with 4M: L2 cache, 2GB*1(DDR3 1066) 4*DIMM

memory, and 500 GB disk. Machines ran on Windows XP

Professional OS. For simplify, we only randomly generated

two dimensional coordinates and three dimensional

coordinates as two-attribute and three-attribute records for

creating 2-d tree and 2D R-tree, respectively, as well as 3-d

tree and 3D R-tree, respectively. Both 2D R-tree and 3D

R-tree have an associated order (or degree) four. To

investigate the scalabilities of k-d tree and R-tree, the total

numbers of record generated in our databases is varied from

100,000 to 500,000. Our experimentation consists of three

parts -- memory cost, time cost for hit data search, and time

cost for no hit data search.

A. Memory Cost

In this section, the memories consumed by creating

two-attribute and three-attribute indices for two and three

dimensional k-d trees and R-trees were investigated. The

experimental results for two-attribute indices and three-

attribute indices are shown in Figure 9 and Figure 10,

respectively. From these two figures, we can find that k-d

trees always outperform R-trees with consuming less memory

in both two-attribute and three-attribute indices. This may be

due to that R-tree always stores data in leaf nodes and needs to

create a number of non-leaf nodes for the minimum bounding

rectangles. R-tree also needs to store more coordinates for

bounding rectangles and needs more branch links to the child

nodes. In contrast, the k-d tree likes the binary search tree in

which data is stored in either leaf nodes or non-leaf nodes and

k-d tree has only two branch links to the child nodes. In

addition, k-d tree need only a two-dimensional or

three-dimensional coordinate for each node and does not need

to store the boundary for rectangle boxing. In this study, if

efficiently using memory is a serious issue for considerations,

k-d tree will be the better choice.

Figure 9. memory cost for two-attribute indices

Figure 10. memory cost for three-attribute indices

B. Time Cost for Hit Data Search

In this section, we evaluate the query search efficiency for

both k-d tree and R-tree. We randomly select 50,000 records

from databases to be as the query examples, then search in k-d

tree and R-tree, which were created in vary database sizes.

Then we accumulated the time needed for all query searches.

The experimental results are presented in Figure 11 and

Figure 12. The Figure 11, demonstrating all the query data

searching hit in two-attribute indices, shows that the searching

time cost needed in k-d tree is far less than in R-tree. Figure 12

which is like in Figure 11 also shows the similar behavior that

k-d tree outperforms R-tree. The reasons could be that all

query examples were selected from databases therefore they

were all hit data searches. In k-d tree, since either leaf nodes

or non-leaf nodes are data nodes, hit data search may benefit

k-d tree for not necessary always searching to the leaf nodes.

However, R-tree only stores data in leaf nodes such that the

queries should always search to the leaf node. Although

R-tree has the advantage that it uses the minimum bounding

boxes to decide whether or not to search inside a sub-tree, this

advantage cannot benefit R-tree in this study due to the query

searches were all hit.

Figure 11. hit data searching in two-attribute indices

Figure 12. hit data searching in three-attribute indices

C. Time Cost for No Hit Data Search

After we study the time consuming for hit data search, we

would like to examine the time cost for no hit data search in

this section. As discussed in last section, R-tree has the

advantage for using the minimum bounding boxes to decide

whether or not to search inside a sub-tree. If a query does not

intersect the bounding rectangle, it will be filtered out quickly

and not necessary searching down to the leaf nodes.

Therefore, no hit data searching might benefit R-tree. In this

experiment, we designed and randomly generated 50,000

query samples which cannot be found in our database to

insure searching with no hit. These queries are also searched

in k-d trees and R-trees which represent two-attribute indices

and three-attribute indices. Again, we accumulated the time

needed for all query searches. Our experimental results are

demonstrated in Figure 13 and Figure 14. Obviously, we can

find that searching in the k-d tree has the lower time cost and

still outperforms R-tree in either two-attribute indices or

three-attribute indices. It can be explained in the way that

searching in k-d tree only needs to compare one of the

attributes in each node travelled. However, searching in

R-tree has to examine the bounding rectangle and to compare

every lower bound and upper bound for every attribute (or

every dimension) in each node. Therefore, there are more

comparisons has to perform in each travelled node of R-tree.

Although the curves of R-tree in Figure 13 and Figure 14 are

slight lower than in Figure 11 and Figure 12, respectively, the

advantage of filtering out no hit query for R-tree is not

obvious.

In the research of [16] by Michela and et al. have proved

that R-tree is based on minimum bounding rectangles and the

three dimensional extension consists of minimum bounding

boxes and techniques are often low in efficiency, as sibling

nodes might overlap.

Figure 13. no hit data searching in two-attribute indices

Figure 14. no hit data searching in three-attribute indices

IV. CONCLUSION

In the Cloud platform, providing scalable database

services is an essential requirement. There were few research

reports proposed multi-attribute indexing schemes for Cloud

platform to manage the huge and variety data to address the

complex queries efficiently. These existing and few schemes

for Cloud platform were either build local k-d tree index for

each slave nodes and maintain an R-tree on global master

nodes in [23] or use R-trees for both local slave nodes and

global master nodes [19]. In this paper, we examined the

performances of k-d tree and R-tree for two- and

three-attribute index structures. Our experimental results are

shown that k-d tree always outperforms R-tree in either

memory consuming and time cost of query searching. It may

suggest that applying k-d tree for multi-attribute index

structure in both local slave nodes and global master nodes for

Cloud platform would be the better choice due to its

efficiency and scalability.

There has an assumption that the data on Cloud platform is

distributed into slave nodes by range distribution. Such that a

sequence of value intervals of attributes in a slave node can be

denoted as a node cube. These node cubes are maintained in

the global index of master nodes for pruning irrelevant slave

nodes. However, range distributed data may cause load

imbalanced in slave nodes due to data may massed in some

small range by the property of normal distribution. To address

this problem, hash distribution is usually applied but it may

lead to poor performance of these proposed index schemes. In

the future work, we would like to investigate the load balance

issue and also develop a new multi-attribute index structure

for Cloud platform to manage the huge and variety data.

REFERENCES

[1] M.K. Aguilera, W. Golab and M.A. Shah, “A Practical Scalable

Distributed B-Tree,” in Proc. of the VLDB Endowment, Vol. 1, Issue 1,

August 2008.

[2] J.L. Bentley, “Multidimensional binary search in database applications”,

in IEEE Trans. Software Eng, Vol. SE-5, Issue 4, pp. 333-340, 1979.

[3] J.L. Bentley, “Multidimensional binary search trees used for associative

searching”, in Communications of the ACM , Vol. 18, Issue 9, pp.

509-517, September 1975.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.

Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: a

distributed storage system for structured data,” in proc. of the 7th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI), pages 15–15, Berkeley, CA, USA, 2006.

[5] B.F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.

Bohannon, H.A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “Pnuts:

Yahoo!'s hosted data serving platform,” in proc. of Conference on Very

Large Data Bases, pp. 1277-1288, Auckland, New Zealand, August

2008.

[6] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on

large clusters,” in Communications of the ACM , Vol. 51, Issue 1,

January. 2008.

[7] H. Garcia-Molina, J. D. Ullman, and J. Widon, Database System

Implementation, Prentice Hall, Inc., Upper Saddle River, NJ, USA,

1999.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in

proc. of the 19th ACM Symposium on Operating Systems Principles

(SOSP), pages 29–43, October 2003.

[9] C. Gong, J. Liu, Q. Zhang, H. Chen and Z. Gong, “The characteristics of

Cloud computing,” in proc. of the 39th International Conference on

Parallel Processing Workshops (ICPPW), pp.275-279, 2010.

[10] A. Guttman, “R-trees a dynamic index structure for spatial searching,”

in proc. of the ACM SIGMOD, June 1984.

[11] A. Henrich., H. W. Six, and P. Widmayer, “The LSD tree: Spatial

access to multidimensional point and non-point objects,” in proc. of

Conference on Very Large Data Bases, pp. 45-53, 1989.

[12] IBM., “Ibm introduces ready-to-use Cloud computing,” [Online]

Available: http://www-03.ibm.com/press/us/en/pressrelease/22613.ws.

[13] X. L. Liang, J. X. Zhang, H. T. Li and Y. Ping., “Laser radar feature

data,” remote sensing information, 3:71-75, 2005.

[14] M. Lynch, “The Cloud Wars: $100+ billion at stake,” Cloud Computing

Expro, May 2008.

[15] M. Lynch, “Amazon elastic compute Cloud (amazon ec2),” [Online]

Available: http://aws.amazon.com/ec2/.

[16] B. Michela, B. schoen, D.F. Laefer and M. Sean “Storage, manipulation,

and visualization of LiDAR data,” in proc. of the 3rd ISPRS

International Workshop on 3D Virtual Reconstruction and

Visualization of Complex Architectures (3D-ARCH), Trento, Italy,

25-28 February 2009.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A

scalable content-addressable network,” in proc. of conference of the

ACM Special Interest Group on Data Communication (SIGCOMM),

San Diego, CA, USA, 2001.

[18] L.M. Vaquero, L.R. Merino, J. Caceres, and M. Lindner, “A break in

The Clouds: towards a Cloud definition,” in SIGCOMM Computer

Communication Review, Vol. 39, Issue 1, pp. 50-55, January 2009.

[19] J. Wang, S. Wu, H. Gao, J. Z. Li and B. C. Ooi, “Indexing Multi-

dimensional Data in a Cloud system”, in proc. of the international

conference on Management of data (SIGMOD’10), pp.591-602,

Indianapolis, Indiana, June 2010

[20] S. Wu and K. L. Wu, “An Indexing Framework for Efficient Retrieval on

the Cloud,” IEEE Bulletin of the Technical Committee on Data

Engineering, Vol. 32, No. 1, pp. 75-82, March 2009.

[21] Shufen Zhang, Shuai Zhang, X. Chen and S. Wu, “Analysis and

research of Cloud computing system instance,” in proc. of the second

international conference on Future Networks, pp. 88-92, Sanya,

Hainan, January 22-24, 2010.

[22] Y. Theodoridis, M. Vazirgiannis and T. Sellis, “Spatio-temporal

Indexing for Large Multimedia Applications,” in proc. of the 3rd IEEE

ICMCS Conference, pp.441-448, Hiroshima, Japan, 1996.

[23] X. Zhang, J. Ai, Z. Y. Wang, J. H. Lu and X. F. Meng, “An Efficient

Multi-Dimensional Index for Cloud Data Management,” in proc. of the

first international workshop on Cloud data management, pp. 17-24,

Hong Kong, November 2009.

