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Abstract—The presence of edge-disjoint Hamiltonian cycles
provides an advantage when implementing algorithms that
require a ring structure by allowing message traffic to be
spread evenly across the network. Edge-disjoint Hamiltonian
cycles also provide the edge-fault tolerant Hamiltonicity of an
interconnection network. Two node-disjoint cycles in a network
are called equal if the number of nodes in the two cycles
are the same and every node appears in one cycle exactly
once. The presence of two equal node-disjoint cycles provides
algorithms that require a ring structure to be preformed in
the network simultaneously. The hypercube is one of the most
popular interconnection networks since it has simple structure
and is easy to implement. Then-dimensional twisted cube, an
important variation of the hypercube, possesses some properties
superior to the hypercube. In this paper, we present linear time
algorithms to construct two edge-disjoint Hamiltonian cycles
and two equal node-disjoint cycles in ann-dimensional twisted
cube.

Index Terms—edge-disjoint Hamiltonian cycles, equal node-
disjoint cycles, twisted cubes, parallel computing, inductive
construction

I. INTRODUCTION

PARALLEL computing is important for speeding up
computation. The topology design of an interconnection

network is the first thing to be considered. Many topologies
have been proposed in the literature [4], [6], [8], [9], [10],
[13], [18], and the desirable properties of an interconnection
network include symmetry, relatively small degree, small
diameter, embedding capabilities, scalability, robustness, and
efficient routing. Among those proposed interconnection net-
works, the hypercube is a popular interconnection network
with many attractive properties such as regularity, symmetry,
small diameter, strong connectivity, recursive construction,
partition ability, and relatively low link complexity [24]. The
topology of an interconnection network is usually modeled
by a graph, where nodes represent the processing elements
and edges represent the communication links. In this paper,
we will use graphs and networks interchangeably.

The n-dimensional twisted cube TQn, an important vari-
ation of the hypercube, was first proposed by Hilbers et al.
[13] and possesses some properties superior to the hypercube.
The twisted cube is derived from the hypercube by twisting
some edges. Due to these twisted edges, the diameter, wide
diameter, and fault diameter of TQn are about half of those
of the comparable hypercube [5]. An n-dimensional twisted
cube is (n − 3)-Hamiltonian connected [16] and (n − 2)-
pancyclic [22], whereas the hypercube is not. Moreover, its
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performance is better than that of the hypercube even if it is
asymmetric [1]. Recently, some interesting properties, such
as conditional link faults, of the twisted cube TQn were in-
vestigated. Yang et al. [27] showed that, with ne+nv � n−2,
a faulty TQn still contains a cycle of length l for every
4 � l � |V (TQn)| − nv , where ne and nv are the numbers
of faulty edges and faulty nodes in TQn, respectively, and
|V (TQn)| denotes the number of nodes in TQn. In [12], Fu
showed that TQn can tolerate up to 2n − 5 edge faults,
while retaining a fault-free Hamiltonian cycle. Fan et al.
[11] showed that the twisted cube TQn, with n � 3, is
edge-pancyclic and provided an O(l log l + n2 + nl)-time
algorithm to find a cycle of length l containing a given edge
of the twisted cube. In [11], the author also asked if TQn

is edge-pancyclic with (n − 3) faults for n � 3. Yang [28]
answered the question and showed that TQn is not edge-
pancyclic with only one faulty edge for any n � 3, and that
TQn is node-pancyclic with (�n

2 �−1) faulty edges for every
n � 3. Lai et al. [20] embedded a family of 2-dimensional
meshes into a twisted cube.

A Hamiltonian cycle in a graph is a simple cycle that
passes through every node of the graph exactly once. The
ring structure is important for distributed computing, and
its benefits can be found in [19]. Two Hamiltonian cycles
in a graph are said to be edge-disjoint if there exists no
common edge in them. The edge-disjoint Hamiltonian cycles
can provide an advantage for algorithms that make use of
a ring structure [25]. Consider the problem of all-to-all
broadcasting in which each node sends an identical message
to all other nodes in the network. There is a simple solution
for the problem using an n-node ring that requires n − 1
steps, i.e., at each step, every node receives a new message
from its ring predecessor and passes the previous message to
its ring successor. If the network admits edge-disjoint rings,
then messages can be divided and the parts broadcast along
different rings without any edge (link) contention. If the
network can be decomposed into edge-disjoint Hamiltonian
cycles, then the message traffic will be evenly distributed
across all communication links. Edge-disjoint Hamiltonian
cycles also form the basis of an efficient all-to-all broad-
casting algorithm for networks that employ wormhole or
cut-through routing [21]. Further, edge-disjoint Hamiltonian
cycles also provide the edge-fault tolerant Hamiltonicity of
an interconnected network; that is, when a Hamiltonian cycle
of an interconnected network contains one faulty edge, then
the other edge-disjoint Hamiltonian cycle can be used to
replace it for transmission. The existence of a Hamiltonian
cycle in twisted cubes has been verified [16]. However,
there has been little work reported so far on edge-disjoint



properties in the twisted cubes. In this paper, we show that,
for any odd integer n � 5, there are two edge-disjoint
Hamiltonian cycles in the n-dimensional twisted cube TQn.

Two cycles in a graph are said to be equal and node-
disjoint if they contain the same number of nodes, there
is no common node in them, and every node of the graph
appears in one cycle exactly once. Finding two equal node-
disjoint cycles in an interconnected network is equivalent
to decompose the network into two disjoint sub-networks
with the same number of nodes such that each sub-network
contains a Hamiltonian cycle. Then, algorithms that require
a ring structure can be preformed in the two sub-networks
simultaneously. In this paper, we show that, for any odd
integer n � 3, there exist two equal node-disjoint cycles
in the n-dimensional twisted cube TQn.

Related areas of investigation are summarized as fol-
lows. The edge-disjoint Hamiltonian cycles in k-ary n-
cubes and hypercubes has been constructed in [2]. Barth
et al. [3] showed that the butterfly network contains two
edge-disjoint Hamiltonian cycles. Petrovic et al. [23] char-
acterized the number of edge-disjoint Hamiltonian cycles
in hyper-tournaments. Hsieh et al. [14] constructed edge-
disjoint spanning trees in locally twisted cubes. Hsieh et
al. [15] investigated the edge-fault tolerant Hamiltonicity of
an n-dimensional locally twisted cube. The existence of a
Hamiltonian cycle in locally twisted cubes and twisted cubes
has been shown in [26] and [16], respectively. However,
there has been little work reported so far on edge-disjoint
properties in locally twisted cubes and twisted cubes. In
[17], we presented a linear time algorithm to construct two
edge-disjoint Hamiltonian cycles in locally twisted cubes.
In this paper, we show that there exist two edge-disjoint
Hamiltonian cycles and two equal node-disjoint cycles in an
n-dimensional twisted cube TQn. Note that for any TQn, n
is always an odd integer.

The rest of the paper is organized as follows. In Section
II, the structure of the twisted cube is introduced, and some
definitions and notations used throughout this paper are
given. Section III shows the construction of two edge-disjoint
Hamiltonian cycles in the twisted cube. In Section IV, we
construct two equal node-disjoint cycles in the twisted cube.
Finally, we conclude this paper in Section V.

II. PRELIMINARIES

We usually use a graph to represent the topology of an
interconnection network. A graph G = (V,E) is a pair of
the node set V and the edge set E, where V is a finite set
and E is a subset of {(u, v)|(u, v) is an unordered pair of
V }. We will use V (G) and E(G) to denote the node set and
the edge set of G, respectively. If (u, v) is an edge in a graph
G, we say that u is adjacent to v and u, v are incident to
edge (u, v). A neighbor of a node v in a graph G is any node
that is adjacent to v. Moreover, we use NG(v) to denote the
set of neighbors of v in G. The subscript ‘G’ of NG(v) can
be removed from the notation if it has no ambiguity.

Let G = (V,E) be a graph with node set V and edge set
E. A (simple) path P of length � in G, denoted by v0 →
v1 → · · · → v�−1 → v�, is a sequence (v0, v1, · · · , v�−1, v�)
of nodes such that (vi, vi+1) ∈ E for 0 � i � � − 1. The
first node v0 and the last node v� visited by P are denoted
by start(P ) and end(P ), respectively. Path v� → v�−1 →

· · · → v1 → v0 is called the reversed path, denoted by Prev,
of path P . That is, path Prev visits the nodes of path P from
end(P ) to start(P ) sequentially. In addition, P is a cycle
if |V (P )| � 3 and end(P ) is adjacent to start(P ). A path
P = v0 → v1 → · · · → v�−1 → v� may contain another
subpath Q, denoted as v0 → v1 → · · · → vi−1 → Q →
vj+1 → · · · → v�−1 → v�, where Q = vi → vi+1 →
· · · → vj for 0 � i � j � �. A path (or cycle) in G
is called a Hamiltonian path (or Hamiltonian cycle) if it
contains every node of G exactly once. Two paths (or cycles)
P1 and P2 connecting a node u to a node v are said to be
edge-disjoint if and only if E(P1) ∩ E(P2) = ∅. Two paths
(or cycles) Q1 and Q2 of graph G are called node-disjoint
if and only if V (Q1)∩ V (Q2) = ∅. Two node-disjoint paths
(or cycles) Q1 and Q2 of graph G are said to be equal if and
only if |V (Q1)| = |V (Q2)| and V (Q1) ∪ V (Q2) = V (G).
Two node-disjoint paths Q1 and Q2 can be concatenated
into a path, denoted by Q1 ⇒ Q2, if end(Q1) is adjacent to
start(Q2).

Now, we introduce twisted cubes. The node set of the n-
dimensional twisted cube TQn is the set of all binary strings
of length n. Note that due to the twisted edge property of
a twisted cube, the dimension n of TQn is always defined
as an odd integer. A binary string b of length n is denoted
by bn−1bn−2 · · · b1b0, where bn−1 is the most significant bit.
We denote the complement of bit bi by bi = 1 − bi. To
define TQn, a i-th bit parity function Pi(b) is introduced. Let
b = bn−1bn−2 · · · b1b0 be a binary string. For 0 � i � n−1,
Pi(b) = bi ⊕ bi−1 ⊕ · · · ⊕ b1 ⊕ b0, where ⊕ is the exclusive-
or operation. We then give the recursive definition of the n-
dimensional twisted cube TQn, for any odd integer n � 1,
as follows.

Definition 1. [13], [28] TQ1 is the complete graph with
two nodes labeled by 0 and 1, respectively. For an odd
integer n � 3, TQn consists of four copies of TQn−2. We
use TQij

n−2 to denote an (n − 2)-dimensional twisted cube
which is a subgraph of TQn induced by the nodes labeled
by ijbn−3 · · · b1b0, where i, j ∈ {0, 1}. Edges that connect
these four sub-twisted cubes can be described as follows:
Each node b = bn−1bn−2 · · · b1b0 ∈ V (TQn) is adjacent
to bn−1bn−2 · · · b1b0 and bn−1bn−2 · · · b1b0 if Pn−3(b) =
0; and to bn−1bn−2 · · · b1b0 and bn−1bn−2 · · · b1b0 if
Pn−3(b) = 1.

By the above definition, an n-dimensional twisted cube
TQn is an n-regular graph with 2n nodes and n2n−1 edges,
i.e., each node of TQn is adjacent to n nodes. The dimension
n of TQn is always an odd integer. In addition, TQn can be
decomposed into four sub-twisted cubes TQ00

n−2, TQ10
n−2,

TQ01
n−2, TQ11

n−2, where TQij
n−2 consists of those nodes

b = bn−1bn−2 · · · b1b0 with leading two bits bn−1 = i
and bn−2 = j. For each ij ∈ {00, 10, 01, 11}, TQij

n−2 is
isomorphic to TQn−2. For example, Fig. 1 shows TQ3 and
Fig. 2 depicts TQ5 containing four sub-twisted cubes TQ00

3 ,
TQ10

3 , TQ01
3 , TQ11

3 .

Let b be a binary string bt−1bt−2 · · · b1b0 of length t. We
denote bτ the new binary string obtained by repeating b string
τ times. For instance, (01)3 = 010101 and 04 = 0000.



001 101

000 100

111 011

110 010

Fig. 1. The 3-dimensional twisted cube TQ3
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Fig. 2. The 5-dimensional twisted cube TQ5 containing TQ00
3 , TQ10

3 ,
TQ01

3 , TQ11
3 , where the leading two bits of nodes are underlined

III. TWO EDGE-DISJOINT HAMILTONIAN CYCLES

In this section, we first show the existence of two edge-
disjoint Hamiltonian cycles of an n-dimensional twisted
cube TQn with odd integer n � 5. We then present a
linear time algorithm to construct two such edge-disjoint
Hamiltonian cycles of TQn. Obviously, a 3-dimensional
twisted cube TQ3 contains no two edge-disjoint Hamiltonian
cycles since each node is incident to three edges. Note
that the dimension of TQn is always odd. We will prove
the existence of two edge-disjoint Hamiltonian cycles in
TQn, with n � 5, by induction on n, the dimension
of the twisted cube. For any odd integer n � 5, we
show that there exist two edge-disjoint Hamiltonian paths
P and Q in TQn such that start(P ) = 00(0)n−5000,
end(P ) = 11(0)n−5000, start(Q) = 00(0)n−5100, and
end(Q) = 01(0)n−5100. By the definition of parity function
Pi(·), Pn−3(end(P )) = Pn−3(11(0)n−5000) = 0 and
Pn−3(end(Q)) = Pn−3(01(0)n−5100) = 1. By Definition
1, start(P ) ∈ N(end(P )) and start(Q) ∈ N(end(Q)).
Thus, P and Q are two edge-disjoint Hamiltonian cycles in
TQn for any odd integer n � 5. In the following, we will
show how to construct two such edge-disjoint Hamiltonian
cycles. We first show that TQ5 contains two edge-disjoint
Hamiltonian paths as follows.

Lemma 1. There are two edge-disjoint Hamiltonian paths
P and Q in TQ5 such that start(P ) = 00000, end(P ) =
11000, start(Q) = 00100, and end(Q) = 01100.

Proof: We prove this lemma by constructing two such
paths P and Q. Let
P = 00000 → 00001 → 00101 → 00100 → 10100 → 10101
→ 10001 → 10000 → 10110 → 10010 → 00010 → 00011
→ 10011 → 10111 → 00111 → 00110 → 11110 → 11010

10001
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end P( )

start Q( ) end Q( )

Fig. 3. Two edge-disjoint Hamiltonian paths in TQ5, where solid arrow
lines indicate a Hamiltonian path P , dashed arrow lines indicate the other
edge-disjoint Hamiltonian path Q, and the leading two bits of nodes are
underlined

→ 01010 → 01011 → 11011 → 11111 → 01111 → 01110
→ 01000 → 01001 → 01101 → 01100 → 11100 → 11101
→ 11001 → 11000, and let
Q = 00100 → 00000 → 10000 → 10100 → 10010 → 10011
→ 10001 → 00001 → 00011 → 00111 → 00101 → 10101
→ 10111 → 10110 → 00110 → 00010 → 01010 → 01110
→ 11110 → 11111 → 11101 → 01101 → 01111 → 01011
→ 01001 → 11001 → 11011 → 11010 → 11100 → 11000
→ 01000 → 01100.
Fig. 3 depicts the construction of P and Q. Clearly, P and
Q form two edge-disjoint Hamiltonian paths in TQ5.

Using Lemma 1, we prove the following lemma by induc-
tion.

Lemma 2. For any odd integer n � 5, there are two
edge-disjoint Hamiltonian paths P and Q in TQn such
that start(P ) = 00(0)n−5000, end(P ) = 11(0)n−5000,
start(Q) = 00(0)n−5100, and end(Q) = 01(0)n−5100.

Proof: We prove this lemma by induction on n, the
dimension of the twisted cube. By Lemma 1, the lemma
holds true when n = 5. Assume that the lemma is true
for any odd integer n = k � 5. We will prove that
the lemma holds true for n = k + 2. We first par-
tition TQk+2 into four sub-twisted cubes TQ00

k , TQ10
k ,

TQ01
k , TQ11

k . By the induction hypothesis, there are two
edge-disjoint Hamiltonian paths P ij and Qij in TQij

k for
i, j ∈ {0, 1} such that start(P ij) = ij00(0)k−5000,
end(P ij) = ij11(0)k−5000, start(Qij) = ij00(0)k−5100,
and end(Qij) = ij01(0)k−5100. By the definition of parity
function Pi(·), Pk−1(end(P ij)) = Pk−1(start(P ij)) = 0,
Pk−1(end(Qij)) = 0, and Pk−1(start(Qij)) = 1. By
Definition 1, we have that end(P 00) ∈ N(end(P 10)),
start(P 10) ∈ N(start(P 01)), end(P 01) ∈ N(end(P 11)),
end(Q00) ∈ N(end(Q10)), start(Q10) ∈ N(start(Q11)),
and end(Q11) ∈ N(end(Q01)).

Let P = P 00 ⇒ P 10
rev ⇒ P 01 ⇒ P 11

rev and let Q =
Q00 ⇒ Q10

rev ⇒ Q11 ⇒ Q01
rev, where P 10

rev , P 11
rev , Q10

rev, and
Q01

rev are the reversed paths of P 10, P 11, Q10, and Q01,
respectively. Then, P and Q are two edge-disjoint Hamil-
tonian paths in TQk+2 such that start(P ) = 00(0)k−3000,
end(P ) = 11(0)k−3000, start(Q) = 00(0)k−3100, and
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Fig. 4. The construction of two edge-disjoint Hamiltonian paths in TQk+2,
with odd integer k � 5, where dashed arrow lines indicate the paths, solid
arrow lines indicate concatenated edges, and the leading two bits of nodes
are underlined

end(Q) = 01(0)k−3100. Fig. 4 depicts the construction of
two such edge-disjoint Hamiltonian paths in TQk+2. Thus,
the lemma hods true when n = k + 2. By induction, the
lemma holds true.

Let P and Q be two edge-disjoint Hamiltonian paths
constructed in Lemma 2. By the definition of parity func-
tion, Pn−3(end(P )) = Pn−3(11(0)n−5000) = 0 and
Pn−3(end(Q)) = Pn−3(01(0)n−5100) = 1. By Definition
1, node start(P ) is adjacent to node end(P ), and node
start(Q) is adjacent to node end(Q). In addition, the
two edges (start(P ), end(P )) and (start(Q), end(Q)) are
distinct. Thus the following theorem holds true.

Theorem 3. For any odd integer n � 5, there exist two
edge-disjoint Hamiltonian paths (cycles) in an n-dimensional
twisted cube TQn .

Based on the proofs of Lemmas 1 and 2, we design
a recursive algorithm to construct two edge-disjoint
Hamiltonian paths of an n-dimensional twisted cube.
The algorithm typically follows a divide-and-conquer
approach [7] and is sketched as follows. It is given by an
n-dimensional twisted cube TQn with odd integer n � 5.
If n = 5, then the algorithm constructs two edge-disjoint
Hamiltonian paths according to the proof of Lemma 1.
Suppose that n > 5. It first decomposes TQn into four sub-
twisted cubes TQ00

n−2, TQ10
n−2, TQ01

n−2, and TQ11
n−2, where

TQij
n−2 consists of those nodes b = bn−1bn−2bn−3 · · · b1b0

with leading two bits bn−1 = i and bn−2 = j. For each
ij ∈ {00, 10, 01, 11}, TQij

n−2 is isomorphic to TQn−2.
Then, the algorithm recursively computes two edge-disjoint
Hamiltonian paths of TQij

n−2 for ij ∈ {00, 10, 01, 11}.
Finally, it concatenates these eight paths into two edge-
disjoint Hamiltonian paths of TQn according to the proof
of Lemma 2, and outputs two such concatenated paths. The
algorithm is formally presented as follows.

Algorithm CONSTRUCTING-2EDHP-TQ
Input: TQn, an n-dimensional twisted cube with odd integer
n � 5.
Output: Two edge-disjoint Hamiltonian paths P and Q

in TQn such that start(P ) = 00(0)n−5000, end(P ) =
11(0)n−5000, start(Q) = 00(0)n−5100, and end(Q) =
01(0)n−5100.
Method:

1. if n = 5, then
2. let P = 00000 → 00001 → 00101 → 00100 →

10100 → 10101 → 10001 → 10000 → 10110 →
10010 → 00010 → 00011 → 10011 → 10111 →
00111 → 00110 → 11110 → 11010 → 01010 →
01011 → 11011 → 11111 → 01111 → 01110 →
01000 → 01001 → 01101 → 01100 → 11100 →
11101 → 11001 → 11000;

3. let Q = 00100 → 00000 → 10000 → 10100 →
10010 → 10011 → 10001 → 00001 → 00011 →
00111 → 00101 → 10101 → 10111 → 10110 →
00110 → 00010 → 01010 → 01110 → 11110 →
11111 → 11101 → 01101 → 01111 → 01011 →
01001 → 11001 → 11011 → 11010 → 11100 →
11000 → 01000 → 01100;

4. output “P and Q” as two edge-disjoint Hamiltonian
paths of TQ5;

5. decompose TQn into four sub-twisted cubes TQ00
n−2,

TQ10
n−2, TQ01

n−2, and TQ11
n−2, where TQij

n−2 consists
of those nodes b = bn−1bn−2bn−3 · · · b1b0 with leading
two bits bn−1 = i and bn−2 = j

6. for ij ∈ {00, 10, 01, 11} do
7. call Algorithm CONSTRUCTING-2EDHP-TQ given

TQij
n−2 to compute two edge-disjoint Hamiltonian

paths P ij and Qij of TQij
n−2, where start(P ij) =

ij00(0)n−7000, end(P ij) =ij11(0)n−7000,
start(Qij) = ij00(0)n−7100, and end(Qij) =
ij01(0)n−7100;

8. compute P = P 00 ⇒ P 10
rev ⇒ P 01 ⇒ P 11

rev and Q =
Q00 ⇒ Q10

rev ⇒ Q11 ⇒ Q01
rev, where P 10

rev , P 11
rev , Q10

rev,
and Q01

rev are the reversed paths of P 10, P 11, Q10, and
Q01, respectively;

9. output “P and Q” as two edge-disjoint Hamiltonian
paths of TQn.

The correctness of Algorithm CONSTRUCTING-2EDHP-
TQ follows from Lemmas 1 and 2. Now, we analyze
its time complexity. Let m be the number of nodes in
TQn. Then, m = 2n. Let TQ(m) be the running time of
Algorithm CONSTRUCTING-2EDHP-TQ given TQn. It is
easy to verify from lines 2 and 3 that TQ(m) = O(1)
if n = 5. Suppose that n > 5. By visiting every node
of TQn once, decomposing TQn into TQ00

n−2, TQ10
n−2,

TQ01
n−2 and TQ11

n−2 can be done in O(m) time, where
each node in TQij

n−2, ij ∈ {00, 10, 01, 11}, is labeled with
leading two bits ij. Thus, line 5 of the algorithm runs in
O(m) time. Then, our division of the problem yields four
subproblems, each of which is 1/4 the size of the original.
It takes time TQ(m

4 ) to solve one subproblem, and so it takes
time 4 · TQ(m

4 ) to solve the four subproblems. In addition,
concatenating eight paths into two paths (line 8) can be easily
done in O(m) time. Thus, we get the following recurrence
equation:

TQ(m) =
{

O(1) , if n = 5;
4 · TQ(m

4 ) + O(m) , if n > 5.

The solution of the above recurrence is TQ(m) =



O(m log m) = O(n2n). Thus, the running time of Algorithm
CONSTRUCTING-2EDHP-TQ given TQn is O(n2n). Since
an n-dimensional twisted cube TQn contains 2n nodes and
n2n−1 edges, the algorithm is a linear time algorithm. Let
P and Q be two edge-disjoint Hamiltonian paths output
by Algorithm CONSTRUCTING-2EDHP-TQ given TQn. By
Definition 1, start(P ) ∈ N(end(P )) and start(Q) ∈
N(end(Q)). In addition, the edge connecting start(P ) with
end(P ) is different from the edge connecting start(Q) with
end(Q). Thus, P and Q are two edge-disjoint Hamiltonian
cycles of TQn. We then conclude the following theorem.

Theorem 4. Algorithm CONSTRUCTING-2EDHP-TQ cor-
rectly constructs two edge-disjoint Hamiltonian cycles
(paths) of an n-dimensional twisted cube TQn, with odd
integer n � 5, in O(n2n)-linear time.

IV. TWO EQUAL NODE-DISJOINT CYCLES

In this section, we will construct two equal node-disjoint
cycles P and Q in a n-dimensional twisted cube TQn,
for any odd integer n � 3. Our method for constructing
two equal node-disjoint cycles of TQn is also based on an
inductive construction. For any odd integer n � 3, we will
construct two equal node-disjoint paths P and Q in TQn

such that start(P ) = 00(0)n−31, end(P ) = 01(0)n−31,
start(Q) = 00(0)n−30, and end(Q) = 11(0)n−30. The
basic idea is similar to that of constructing two edge-disjoint
Hamiltonian paths and is described as follows. Initially, we
construct two equal node-disjoint paths P and Q in TQ3

such that start(P ) = 001, end(P ) = 011, start(Q) = 000,
and end(Q) = 110. By Definition 1, P and Q are also node-
disjoint cycles with the same length. Consider that n is an
odd integer with n � 5. We first partition TQn into four
subtwisted cubes TQ00

n−2, TQ10
n−2, TQ01

n−2, TQ11
n−2. Assume

that P ij and Qij are two equal node-disjoint paths in TQij
n−2,

for i, j ∈ {0, 1}, such that start(P ij) = ij00(0)n−51,
end(P ij) = ij01(0)n−51, start(Qij) = ij00(0)n−50, and
end(Qij) = ij11(0)n−50. We then concatenate them into
two equal node-disjoint paths P and Q of TQn such that
start(P ) = 00(0)n−31, end(P ) = 01(0)n−31, start(Q) =
00(0)n−30, and end(Q) = 11(0)n−30. By Definition 1, P
and Q are also two equal node-disjoint cycles of TQn since
start(P ) ∈ N(end(P )) and start(Q) ∈ N(end(Q)). The
concatenating process will be presented in Lemma 6.

For TQ3, let P = 001 → 101 → 111 → 011 and let
Q = 000 → 100 → 010 → 110. Then, P and Q are
two equal node-disjoint paths in TQ3. By Definition 1,
start(P ) ∈ N(end(P )) and start(Q) ∈ N(end(Q)). Thus,
the following lemma holds true.

Lemma 5. There are two equal node-disjoint paths (cycles)
P and Q in TQ3 such that start(P ) = 001, end(P ) = 011,
start(Q) = 000, and end(Q) = 110.

Based on Lemma 5, we prove the following lemma.

Lemma 6. For any odd integer n � 3, there exist two equal
node-disjoint paths P and Q in TQn such that start(P ) =
00(0)n−31, end(P ) = 01(0)n−31, start(Q) = 00(0)n−30,
and end(Q) = 11(0)n−30.

Proof: We prove this lemma by induction on n, the
dimension of TQn. By Lemma 5, the lemma holds true when

P
00 Q

00

TQk
10

end P( )
00

0001(0) 1
k �3

end Q( )
00

0011(0) 0
k �3

P
01 Q

01

end P( )
01

0101(0) 1
k �3

end Q( )
01

0111(0) 0
k �3

revP
10 Q
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start P( )
10

1000(0) 1
k �3

end P( )
10

1001(0) 1
k �3

end Q( )
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1011(0) 0
k �3

P
11 Q

11
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11

1100(0) 1
k � 3

end P( )
11

1101(0) 1
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end Q( )
11

1111(0) 0
k �3

rev
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Fig. 5. The constructions of two equal node-disjoint paths in TQk+2,
with k � 3, where dashed arrow lines indicate the paths and solid arrow
lines indicate concatenated edges

n = 3. Assume that the lemma holds when n = k � 3.
We will prove that the lemma holds true for n = k +
2. We first partition TQk+2 into four subtwisted cubes
TQ00

k , TQ10
k , TQ01

k , TQ11
k . By the induction hypothesis,

there are two equal node-disjoint paths P ij and Qij , for
i, j ∈ {0, 1}, in TQij

k such that start(P ij) = ij00(0)k−31,
end(P ij) = ij01(0)k−31, start(Qij) = ij00(0)k−30, and
end(Qij) = ij11(0)k−30. By the definition of parity func-
tion Pi(·), Pk−1(end(P ij)) = 0, Pk−1(start(P ij)) = 1,
and Pk−1(end(Qij)) = Pk−1(start(Qij)) = 0. According
to Definition 1, we have that end(P 00) ∈ N(end(P 10)),
start(P 10) ∈ N(start(P 11)), end(P 11) ∈ N(end(P 01)),
end(Q00) ∈ N(end(Q10)), start(Q10) ∈ N(start(Q01)),
and end(Q01) ∈ N(end(Q11)).

Let P = P 00 ⇒ P 10
rev ⇒ P 11 ⇒ P 01

rev and let Q = Q00 ⇒
Q10

rev ⇒ Q01 ⇒ Q11
rev, where P 10

rev , P 01
rev , Q10

rev, and Q11
rev are

the reversed paths of P 10, P 01, Q10, and Q11, respectively.
Then, P and Q are two equal node-disjoint paths in TQk+2

such that start(P ) = 00(0)k−11, end(P ) = 01(0)k−11,
start(Q) = 00(0)k−10, and end(Q) = 11(0)k−10. Fig. 5
depicts the constructions of two such equal node-disjoint
paths P and Q in TQk+2. Thus, the lemma hods true when
n = k + 2. By induction, the lemma holds true.

By Definition 1, nodes start(P ) = 00(0)n−31 and
end(P ) = 01(0)n−31 are adjacent, and nodes start(Q) =
00(0)n−30 and end(Q) = 11(0)n−30 are adjacent. It imme-
diately follows from Lemma 6 that the following corollary
holds true.

Corollary 7. For any odd integer n � 3, there exist two
equal node-disjoint cycles in TQn.

By the same arguments and analysis in constructing two
edge-disjoint Hamiltonian cycles of TQn, we can easily
construct two equal node-disjoint cycles of TQn in linear
time. We then conclude the following theorem.

Theorem 8. There exists an algorithm such that it correctly
constructs two equal node-disjoint cycles (paths) of an n-
dimensional twisted cube TQn, with odd integer n � 3, in
O(n2n)-linear time.



V. CONCLUDING REMARKS

In this paper, we construct two edge-disjoint Hamiltonian
cycles (paths) of a n-dimensional twisted cubes TQn, for
any odd integer n � 5. Furthermore, we construct two equal
node-disjoint cycles (paths) of TQn, for any odd integer n �
3. Note that due to the twisted edge property of a twisted
cube, the dimension n of TQn is always an odd integer.
In the construction of two edge-disjoint Hamiltonian cycles
(paths) of TQn, some edges are not used. It is interesting
to see if there are more edge-disjoint Hamiltonian cycles of
TQn with odd dimension n � 7. We would like to post this
as an open problem to interested readers.
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