
 
 

 

  
Abstract—In recent years, clustering is still a popular 

analysis tool for data statistics. The data structure identifying 
from the large-scale data has become a very important issue in 
the data mining problem. In this paper, an improved particle 
swarm optimization based on Gauss chaotic map for clustering 
is proposed. Gauss chaotic map adopts a random sequence with 
a random starting point as a parameter, and relies on this 
parameter to update the positions and velocities of the particles. 
It provides the significant chaos distribution to balance the 
exploration and exploitation capability for search process. This 
easy and fast function generates a random seed processes, and 
further improve the performance of PSO due to their 
unpredictability. In the experiments, the eight different 
clustering algorithms were extensively compared on six test 
data. The results indicate that the performance of our proposed 
method is significantly better than the performance of other 
algorithms for data clustering problem. 
 

Index Terms—Data Clustering, Particle Swarm 
Optimization.  
 

I. INTRODUCTION 
lustering technique is the process of grouping from a set 
of objects. The objects within a cluster are similar to 

each other, but they are dissimilar to objects in other clusters. 
The property of clustering helps to identify some inherent 
structures that presents in the objects. Clustering reflects the 
statistical structure of the overall collection of input patterns 
in the data because the subset of patterns and its particular 
problem have certain meanings [1]. The pattern can be 
represented mathematically a vector in the multi-dimensional 
space.  

K-means algorithm is a popular clustering technique and it 
was successfully applied to many of practical clustering 
problems [2]. However, the K-means is not convex and it 
may contain many local minima since it suffers from several 
drawbacks due to its choice of initializations. Recent 
advancements in clustering algorithm introduce the 
evolutionary computing such as genetic algorithms [3] and 
particle swarm optimization [4, 5]. Genetic algorithms 
typically start with some candidate solutions to the 
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optimization problem and these candidates evolve towards a 
better solution through selection, crossover and mutation. 
The concept of PSO was designed to simulate social behavior 
which major property is information exchange and in 
practical applications. Many studies used PSO to cluster data 
within multi-dimensional space and obtained the outstanding 
results. However, the rate of convergence is insufficient 
when it searches global optima. Fan et al., [6] proposed to 
combine Nelder–Mead simplex search method with PSO, the 
rationale behind it being that such a hybrid approach will 
enjoy the merits of both PSO and Nelder–Mead simplex 
search method. Kao et al., explore the applicability of the 
hybrid K-means algorithm, Nelder-Mead simplex search 
method, and particle swarm optimization (K–NM–PSO) to 
clustering data vectors  [7].  

PSO adopts a random sequence with a random starting 
point as a parameter, and relies on this parameter to update 
the positions and velocities of the particles. However, PSO 
often leads to premature convergence, especially in complex 
multi-peak search problems such clustering of 
high-dimensional. We combined the Gauss chaotic Map and 
particle swarm optimization, named GaussPSO. Results of 
the conducted experimental trials on a variety of data sets 
taken from several real-life situations demonstrate that 
proposed GaussPSO is superior to the K-means, PSO, 
NM-PSO, K-PSO, and K-NM-PSO algorithms [7]. 

II. METHOD 
A. Particle Swarm Optimization (PSO) 
 The original PSO method [8] is a population-based 
optimization technique, where a population is called a swarm. 
Every particle in swarm is analogous to an individual “fish” 
in a school, and it can be seemed a swarm consists of N 
particles moving around a D-dimensional search space. 
Every particle makes use of its own memory and knowledge 
gained by the swarm as a whole to find the best solution. The 
pbesti is introduced as the best previously visited position of 
the ith particle; it is denoted as pi = (pi1, pi2, …, piD). The gbest 
is the global best position of the all individual pbesti values; it 
is denoted as the g = (g1, g2, …, gD). The position of the ith 
particle is represented by xi = (xi1, xi2, …, xiD), x∈ (Xmin, 
Xmax)D and its velocity is represented as vi = (vi1, vi2, …, viD) , 
v∈ [Vmin, Vmax]D. The position and velocity of the ith particle 
are updated by pbesti and gbest in the each generation. The 
update equations can be formulated as: 
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 where r1 and r2 are random numbers between (0, 1); c1 and c2 
control how far a particle will move in once generation; new

idv  
and old

idv  denote respectively the velocities of the new and old 
particle; old

idx  is the current particle position; new
idx  is a updated 

particle position. The inertia weight w controls the impact of 
the previous velocity of a particle on its current one; w is 
designed to replace Vmax and adjust the influence of previous 
particle velocities on the optimization process. For 
high-performance problem, a suitable tradeoff between 
exploration and exploitation is essential. One of the most 
important considerations in PSO is how to effectively 
balance the global and local search abilities of the swarm, 
because the proper balance of global and local search over 
the entire run is critical to the success of PSO [9]. In general, 
the inertia weight decreases linearly from 0.9 to 0.4 
throughout the search process [10]. The respective equation 
can be written as: 
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where wmax is 0.9, wmin is 0.4 and Iterationmax is the maximum 
number of allowed iterations. 
 
B. Gauss chaotic Map Particle Swarm Optimization 
(GaussPSO) 

Gauss chaotic map is similar to the quadratic 
transformation in the sense that it allows a complete analysis 
of its qualitative and quantitative properties of chaos. It 
provides the continued fraction expansion of numbers, which 
is an analogy to the shift transformation corresponding to the 
quadratic iterator. This shift transformation can be satisfied 
the properties of chaos ─ dense periodic points, mixing and 
sensitivity [11]. We used these characteristics on Gauss 
chaotic map and adaptive action to avoid entrapment of the 
PSO in a local optimum. 

In PSO, the parameters w, r1 and r2 are the key factors 
affecting the convergence behavior of the PSO. The r1 and r2 
control the balance between the global exploration and the 
local search ability. An inertia weight w that linearly decrease 
from 0.9 to 0.4 throughout the search process is usually 
adopted [10]. Additionally, Gauss chaotic map is frequently 
used chaotic behavior maps and chaotic sequences can be 
quickly generated and easily stored, it is no need for storage 
of long sequences. In Gauss chaotic map PSO (GaussPSO), 
sequences generated by the Gauss chaotic map substitute the 
random parameters r1 and r2 in PSO. The parameters r1 and r2 
are modified based on the following equation.  
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The velocity update equation for GaussPSO can thus be 
formulated as: 
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where Gr is a function based on the results of the Gauss 
chaotic map with values between 0.0 and 1.0. The 
pseudo-code of the GaussPSO is shown below. 

 
GaussPSO Pseudo-Code 
01: Begin 
02:  Initial particle swarm 
03:  While (number of iterations, or the stopping criterion is not met)
04:    Evaluate fitness of particle swarm 
05:    For n = 1 to number of particles 
06:      Find pbest 
07:      Find gbest 
08:      For d = 1 to number of dimension of particle 
09:        Update the position of particles by equations 5 and 2 
10:      Next d 
11:    Next n 
12:    Update the inertia weight value by equation 3 
13:    Update the value of Gr by equation 4 
14:  Next generation until stopping criterion 
15: End 

 
C. The application of the PSO algorithm 
a) Initial particle swarm 

The 3×N particles are randomly generated with an 
individual position and velocity in the solution space. The 
generated position for the ith particle is defined as xi (xi∈{xi1, 
xi2, …, xin}) and the velocity is defined as vi (vi ∈{vi1, vi2, …, 
vin}), where n is the number of particle. Every particle is 
composed of K center positions for each cluster, where K is 
the anticipated number of clusters. N is computed as follow: 

 

N =K×d (6) 

 
where d is the data set dimension. For example, a possible 
encoding of a particle for a two-dimensional problem with 
three clusters is illustrated in Fig. 1. The three cluster centers 
in this particle Xi are randomly generated as X1= (2.5, 2.7, 4.5, 
5, 1.2, 2.2) and the particle dimension is N = 6, i.e., K=3, d=2 
and the population size is 18.  
 

 
Fig. 1. Encoding of particles in PSO 

 

 



 
 

 

b) Grouping the data vectors for every particle 
The all data set are grouped into K clusters according to the 

data vectors on the basis of the Euclidean distance as the 
similar measurement. A matrix xi = (C1, C2, …, Cj, .., CK), 
where Cj represents the jth cluster centroid vector and K is the 
number of clusters, is calculated the distance as the length 
between the data vector and the centroid vector of the 
respective cluster in every particle, the calculation is 
described in equation 7. For each data vector, it is assigned to 
the cluster with the shortest distance. 
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c) Fitness evaluation of each particle 
The fitness value of each particle is computed by the 

following fitness function. The fitness value is the sum of the 
intra-cluster distances of all clusters. This sum of distance has 
a profound impact on the error rate. 
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where K and n are the numbers of clusters and data sets, 
respectively. Zi is the cluster center i and Xj is the data point j. 

 

d) Update pbest and gbest 
In each of the iteration, each particle will compare its 

current fitness value with the fitness value of its own pbest 
solution and the fitness value of the population’s gbest 
solution. The pbest and gbest values are updated if the new 
values are better than the old ones. If the fitness value of each 
particle Xi in the current generation is better than the previous 
pbest fitness value, then both of the position and fitness value 
of pbest will be updated as Xi. Similarly, if the fitness value 
of pbest in the current generation is better than previous gbest 
fitness value, then both of the position and fitness value of 
gbest will be updated as Xi. 

  

III. RESULT AND DISCUSSION 

A. Parameter settings 
In an experiments, the iteration was set to 1000 and the 

population size was set to 50. The acceleration parameters 
were for PSO were set to c1=c2=2. Vmax was equal to (Xmax – 
Xmin) and Vmin was equal to – (Xmax – Xmin) [8]. The results are 
the averages of 50 simulation runs. For each run, 10 × N 
iterations were carried out for each of the six data sets in 
every algorithm when solving an N-dimensional problem. 
The criterion 10 × N was adopted in many previous 
experiments with a great success in terms of its effectiveness 
[7]. 

 

B.  Data sets 
Six experimental data sets, i.e., Vowel, Iris, Crude oil, 

CMC, Cancer, and Wine are used to test the qualities of the 
respective clustering methods. These data sets represent 
examples of data with low, medium and high dimensions. All 
data sets are available at 
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/. 
Table I summarizes the characteristics of these data sets. 
Given is a data set with three features that are grouped into 
two clusters. The number of parameters are optimized in 
order to find the two optimal cluster center vectors that are 
equal to the product of the number of clusters and the number 
of features as N = k × d = 2 × 3 = 6. The six real-life data sets 
are described below:  
(1) The Vowel data set (n = 871, d = 3, k = 6) consists of 871 

Indian Telugu vowel sounds. It includes the three features 
corresponding to the first, second and third vowel 
frequencies, and six overlapping classes {d (72 objects), a 
(89 objects), i (172 objects), u (151 objects), e(207 
objects), o (180 objects)}. 

(2) Fisher’s iris data set (n = 150, d = 4, k = 3) consists of the 
three different species of iris flowers: iris setosa, iris 
virginica and iris versicolour. For each species, 50 
samples were collected from the four features that are 
sepal length, sepal width, petal length and petal width. 

(3) The Crude oil data set (n = 56, d = 5, k = 3) consists of 56 
objects are characterized by five features: vanadium, iron, 
beryllium, saturated hydrocarbons, and aromatic 
hydrocarbons. Three crude-oil samples were collected 
from the three zones of sandstone (Wilhelm has 7 objects, 
Sub-Mulnia has 11 objects, and Upper has 38 objects). 

(4) The Contraceptive Method Choice (denoted CMC with n 
= 1473, d = 9, k = 3) consists of a subset of the 1987 
National Indonesia Contraceptive Prevalence Survey. 
The samples consist of the married women who were 
either not pregnant or not sure of their pregnancy at the 
time the interviews were conducted. It predicts the choice 
of the current contraceptive method (no contraception has 
629 objects, long-term methods have 334 objects, and 
short-term methods have 510 objects) of a woman based 
on her demographic and socioeconomic characteristics. 

(5) The Wisconsin breast cancer data set (n = 683, d = 9, k = 2) 
consists of 683 objects characterized by nine features: 
clump thickness, cell size uniformity, cell shape 
uniformity, marginal adhesion, single epithelial cell size, 
bare nuclei, bland chromatin, normal nucleoli and mitoses. 
There are two categories in the data; malignant tumors 
(444 objects) and benign tumors (239 objects). 

(6) The Wine data set (n = 178, d = 13, k = 3) consists of 178 
objects characterized by 13 features: alcohol content, 
malic acid content, ash content, alkalinity of ash, 
concentration of magnesium, total phenols, flavanoids, 
nonflavanoid phenols, and proanthocyanins, and color 
intensity, hue and OD280/OD315 of diluted wines and 
pralines. These features were obtained by chemical 
analysis of wines that are produced in the same region in 
Italy but derived from three different cultivars. The 
quantities of objects in the three categories of the data sets 
are: class 1 (59 objects), class 2 (71 objects), and class 3 
(48 objects). 



 
 

 

 
Table I 

SUMMARY OF THE CHARACTERISTICS OF THE CONSIDERED DATA SETS 

Name of 
data set 

Number of 
classes 

Number of 
features 

Size of data set  
(size of classes in 
parentheses) 

Vowel 6 3 871 (72, 89, 172, 
151, 207, 180) 

Iris 3 4 150 (50, 50, 50) 
Crude Oil 3 5 56 (7, 11, 38) 

CMC 3 9 1473 (629, 334, 
510) 

Cancer 2 9 683 (444, 239) 
Wine 3 13 178 (59, 71, 48) 
 

C. Test for statistical significance 
Results from GaussPSO was compared with the other 

methods, i.e., K-means, GA, KGA, PSO, NM-PSO, K-PSO, 
and K-NM-PSO, to demonstrate the capability of data 
clustering. The quality of the respective clustering was 
measured by the following four criteria: 
(1) The sum of the intra-cluster distances: The distances 
between data vectors within a cluster and the centroid of the 
cluster are defined in equation 7, and a higher quality of 
clustering represents that the sum is relatively small. 
(2) Error rate: The numbers of misplaced points are divided 
by the total number of points, as shown in equation 10: 
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where n denotes the total number of points. Ai and Bi denote 
the data sets of which the ith point is a member before and 
after of clustering. In Table II an example is shown by the 
two data points (2.5, 4.5) and (7.5, 5.5) are out of clusters, 1 
and 2 are misplaced and the error rate is 2/5, i.e., 40%. 
    

Table II 
ERROR RATE CALCULATIONS 

i Data point Ai Bi Non-misplaced (0) / 
misplaced (1) 

1 (4.0, 5.0)  2 2 0 
2 (2.5, 4.5)  1 2 1 
3 (4.5, 3.5) 2 2 0 
4 (7.5, 5.5) 1 2 1 
5 (5.0, 6.0) 2 2 0 

 

D. Experimental Results and Discussion 
In this section, the performances of GaussPSO, and other 

proposed methods from 20 runs simulations are compared by 
means of the best fitness values and the standard deviation 
among six data sets. Table III summarizes the intra-cluster 
distances and error rates obtained from the eight clustering 
algorithms from the six data sets.  

The test results are clearly shown that the PSO 
outperforms the GA method, independent of whether the 
average intra-cluster distance or best intra-cluster distance is 

measured. For K-PSO compare with KGA, K-PSO still leads 
KGA, however, PSO offers better optimized solutions than 
GA with or without integration of the K-means method. For 
the all data sets, the averages and standard deviation of the 
GaussPSO is better than the ones for K-PSO and K-NM-PSO, 
in which K-PSO is a hybrid of the K-means and PSO 
algorithm, and K-NM-PSO is a hybrid of the K-means, 
Nelder–Mead simplex search [12] and PSO. Please note that 
in terms of the best distance, PSO, NM-PSO, K-PSO and 
K-NM-PSO all have a larger standard deviation than 
GaussPSO, even though they may achieve a global optimum. 
This means that PSO, NM-PSO, K-PSO, K-NM-PSO are 
weaker search tools for global optima than GaussPSO if all 
algorithms are executed just once. It follows that GaussPSO 
are more efficient in finding the global optimum solution 
than the other four PSO methods. For the error rates, standard 
deviations of the error rates and the best solution of the error 
rates from the 20 simulation runs. Table IV lists the number 
of objective function evaluations required by the seven 
methods after 10 × N iterations. K-means algorithm has 
fewest function evaluations on all data sets, but its results are 
less than satisfactory, as seen in Table III. GaussPSO is the 
same function evaluations, and they are fewer than PSO, 
NM-PSO, K-PSO and K-NM-PSO in terms of an average.  
 

E. Advantage of the Gauss chaotic map algorithm 
The Gauss chaotic map is a very powerful tool for 

avoiding entrapment in local optima, besides it does not 
increase the complexity. The computational complexity for 
GaussPSO and PSO can be derived as O(PG), where P is the 
population size and G is the number of generations. In 
equation 5, we can observe that the chaotic map is only used 
to amend the PSO updating equation. 

The standard PSO, together with each individual and the 
whole population, evolves towards best fitness, in which the 
fitness function is evaluated with the objective function. 
Although this scheme has the property to increase the 
convergence capability, i.e., to evolve the population toward 
better fitness, but the convergence speed is too fast, the 
population may get stuck in a local optimum, since the 
swarms diversity rapidly decreases. On the other hand, it 
cannot be searched arbitrarily slowly if we want PSO to be 
effective.  

Gauss chaotic map is a non-linear system with ergodicity, 
stochastic and regularity properties, and is very sensitive to 
its initial conditions and parameters. Consequently, the 
efficiency of GaussPSO is better than the standard PSO 
because of the chaotic property, i.e., small variation in an 
initial variable will result in huge difference in the solutions 
after some iteration. Since chaotic maps are frequently used 
chaotic behavior maps and the chaotic sequences can be 
quickly generated and easily stored, there is no need for 
storage of long sequences [11, 13]. 

Summary all the evidence gathered in the simulations 
illustrates that GaussPSO converges to global optima with 
fewer function evaluations and a smaller error rate than the 
other algorithms, which naturally leads to the conclusion that 
GaussPSO is a viable and robust technique for data 
clustering. 



 
 

 

IV. CONCLUSION 
The novel method GaussPSO is introduced to solve the 

data clustering problems. This study used the six public 
recognizable UCI data sets to investigate the performance 
through our experiments. We uses minimum intra-cluster 
distances as a metric to search robustly data cluster centers in 
N-dimensional Euclidean space. The experimental results 
demonstrate that our proposed clustering algorithm reaches a 
minimal error rate and are possessed of the fastest 
convergence and the highest stabilities of results.  
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TABLE III 
COMPARISON OF INTRA-CLUSTER DISTANCES AND ERROR RATES FOR GAUSSPSO, K-MEANS, GA, KGA, PSO, NM-PSO, K-PSO, AND K-NM-PSO

Data set Criteria Method 
K-means GA KGA PSO NM-PSO K-PSO K-NM-PSO GaussPSO

Vowel 

Average 
Std 
Best 

159242.87 
916 

149422.26 

390088.24 
N/A 

383484.15 

149368.45
N/A 

149356.01

168477.00
3715.73 

163882.00

151983.91
4386.43 

149240.02

149375.70 
155.56 

149206.10 

149141.40 
120.38 

149005.00 

149015.50
120.67 

148967.20
Error 

rates (%) 
Std 
Best 

44.26 
2.15 
42.02 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

44.65 
2.55 

41.45 

41.96 
0.98 

40.07 

42.24 
0.95 

40.64 

41.94 
0.95 
40.64 

42.10 
1.59 
39.84 

Iris 

Average 
Std 
Best 

106.05 
14.11 
97.33 

135.40 
N/A 

124.13 

97.10 
N/A 

97.10 

103.51 
9.69 

96.66 

100.72 
5.82 

96.66 

96.76 
0.07 

96.66 

96.67 
0.008 
96.66 

96.66 
6.551E-4 

96.66 
Error 

rates (%) 
Std 
Best 

17.80 
10.72 
10.67 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

12.53 
5.38 

10.00 

11.13 
3.02 
8.00 

10.20 
0.32 

10.00 

10.07 
0.21 
10.00 

10.00 
0.00 
10.00 

Crude 
Oil 

Average 
Std 
Best 

287.36 
25.41 

279.20 

308.16 
N/A 

297.05 

278.97 
N/A 

278.97 

285.51 
10.31 
279.07 

277.59 
0.37 

277.19 

277.77 
0.33 

277.45 

277.29 
0.095 

277.15 

277.23 
3.465E-2 
277.21 

Error 
rates (%) 

Std 
Best 

24.46 
1.21 
23.21 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

24.64 
1.73 

23.21 

24.29 
0.75 

23.21 

24.29 
0.92 

23.21 

23.93 
0.72 
23.21 

26.43 
0.71 
25 

CMC 

Average 
Std 
Best 

5693.60 
473.14 
5542.20 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

5734.20 
289.00 

5538.50 

5563.40 
30.27 

5537.30 

5532.90 
0.09 

5532.88 

5532.70 
0.23 

5532.40 

5532.18 
4.055E-5 
5532.18 

Error 
rates (%) 

Std 
Best 

54.49 
0.04 
54.45 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

54.41 
0.13 

54.24 

54.47 
0.06 

54.38 

54.38 
0.00 

54.38 

54.38 
0.054 
54.31 

54.38 
0.00 
54.38 

Cancer 

Average 
Std 
Best 

2988.30 
0.46 
2987 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

3334.60 
357.66 

2976.30 

2977.70 
13.73 

2965.59 

2965.80 
1.63 

2964.50 

2964.70 
0.15 

2964.50 

2964.39 
8.21E-6 
2964.39 

Error 
rates (%) 

Std 
Best 

4.08 
0.46 
3.95 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

5.11 
1.32 
3.66 

4.28 
1.10 
3.66 

3.66 
0.00 
3.66 

3.66 
0.00 
3.66 

3.51 
0.00 
3.51 

Wine 

Average 
Std 
Best 

18061.00 
793.21 

16555.68 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

16311.00 
22.98 

16294.00 

16303.00 
4.28 

16292.00 

16294.00 
1.70 

16292.00 

16293.00 
0.46 

16292.00 

16292.68 
0.66 

16292.18 
Error 

rates (%) 
Std 
Best 

31.12 
0.71 
29.78 

N/A 
N/A 
N/A 

N/A 
N/A 
N/A 

28.71 
0.27 

28.09 

28.48 
0.27 

28.09 

28.48 
0.40 

28.09 

28.37 
0.27 
28.09 

28.31 
0.28 
28.09 

The results of K-means, GA, KGA, PSO, NM-PSO, K-PSO, K-NM-PSO can be found in [7]. 

TABLE IV 　 
NUMBER OF FUNCTION EVALUATIONS OF EACH CLUSTERING ALGORITHM

Data set Method 
K-means PSO NM-PSO K-PSO K-NM-PSO GaussPSO 

Vowel 180 16,290 10,501 15,133 9,291 9,774 
Iris 120 7,260 4,836 6,906 4,556 4,356 

Crude Oil 150 11,325 7,394 10,807 7,057 6,795 
CMC 270 36,585 23,027 34,843 21,597 21,951 

Cancer 180 16,290 10,485 15,756 10,149 9,774 
Wine 390 73,245 47,309 74,305 46,459 45,747 

Average 215 26,833 17,259 26,292 16,519 16,400 
The results of K-means, PSO, NM-PSO, K-PSO, K-NM-PSO can be found in [7]. 

 




