
Scalable Ensemble Information-Theoretic
Co-clustering for Massive Data

Qizhen Huang, Xiaojun Chen, Joshua Zhexue Huang, Shengzhong Feng, Jianping Fan

Abstract—Co-clustering is effective for simultaneously clus-
tering rows and columns of a data matrix. Yet different co-
clustering models usually produce very distinct results. In this
paper, we propose a scalable algorithm to co-cluster massive,
sparse and high dimensional data and combine individual
clustering results to produce a better final result. Our algorithm
is particularly suitable for distributed computing environment,
which have been revealed in our experiments, and it is imple-
mented on Hadoop platform with MapReduce programming
framework in practice. Experimental results on several real and
synthetic data sets demonstrated that the proposed algorithm
achieved higher accuracy than other clustering algorithms and
scale well.

Index Terms—ensemble learning, co-clustering, MapReduce

I. INTRODUCTION

Co-clustering, also called bi-clustering [1], [2], two-mode
clustering [3], or two-way clustering [4], is a method of
simultaneously clustering rows and columns of a data matrix.
Recently, it has been widely used in numerous practical
applications, including simultaneously clustering documents
and words in text mining [5], [6], genes and experimental
conditions in bioinformatics [2], [7], users and movies in
recommender systems [8]. However, current co-clustering
technologies face two main problems when handling massive
data, such as data with millions of records and thousands
of features. On the one hand, it is impossible to find an
appropriate initial partition from large data so as to achieve
a good clustering result. On the other hand, it is difficult,
if not impossible, to cluster such massive data with serial
algorithms running on single machines.

There exist three types of methods mainly in co-clustering.
Code length method uses the MDL principe to automatically
select the number of row and column clusters [9]. However, it
only handles binary matrix. Mean squared distance-based co-
clustering algorithm is an efficient node-deletion algorithm
which is proposed to find submatrices that have low mean
squared residue scores in gene expression data [2], but it only
produces one co-cluster at a time. Information-theoretic co-
clustering(ITCC) is able to find κ×` (κ, ` are the number of
row and column clusters, respectively) co-clusters simultane-
ously [5]. It can avoid dimension curse problem [10] since
there is no need to compute distances between two objects
but only mutual information.

Manuscript received January 12, 2012; revised January 21, 2012. This
work is supported by Shenzhen Key Laboratory of High Performance Data
Mining (grant no. CXB201005250021A).

X. Chen (corresponding author) is with Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shen-
zhen University Town, Shenzhen, P.R.China (phone: (86)-755-863- 92346;
fax: (86)-755-863-92346; e-mail: xj.chen@siat.ac.cn).

Q. Huang, J. Huang, S. Feng and J. Fan are with Shenzhen Institutes of
Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Av-
enue, Shenzhen University Town, Shenzhen, P.R.China (e-mail: {qz.huang,
zx.huang, sz.feng, jp.fan}@siat.ac.cn).

Recent researches focused on distributed co-clustering for
massive data. Papadimitriou et al. [11] designed a frame-
work for a holistic approach focusing on code length-
based co-clustering algorithm. Zhou et al. [12] implemented
the sum squared distance-based co-clustering in a MPI
environment. A parallel information-theoretic co-clustering
algorithm using a cloud middle ware, FREERIDE, is pro-
posed in [13]. However, there exits redundant computations,
and FREERIDE is not an open platform. MapReduce is a
simple programming model for distributed computing [14],
[15], [16]. It abstracts away many low-level details such as
task scheduling and data management, and conceptualizes a
computational process as a sequence of Map and Reduce
functions. If the data file is large, more data blocks are
created and distributed on more computing nodes. The map
and reduce functions are automatically dispatched to more
computing nodes. Therefore, MapReduce model is scalable
to large data.

In this paper, we present a scalable ensemble information-
theoretic co-clustering(SEITCC) algorithm for massive data.
We first build multiple different co-clusterings using ITCC
algorithm, and then combine them to produce a final co-
clustering with the evidence accumulating mechanism [17].
The reason for using ensemble clustering method is that
it can improve the quality and robustness of clustering
results [18]. To deal with massive data, our algorithm is
designed particularly suitable for distributed computing envi-
ronment. Massive data can be distributed into separate nodes,
and our algorithm can generate multiple co-clusterings on
different nodes in parallel. In practice, we implement our
algorithm using MapReduce programming framework [19].
Multiple co-clusterings are generated with a pipeline of
map and reduce operations. We have conducted experiments
on clusters with 30 nodes installed with Hadoop. The re-
sults have shown that our algorithm outperformed original
ITCC algorithm in clustering accuracy and MapReduce’s
distributed computing ability endows our model good scala-
bility.

The remainder of the paper is organized as follows. Section
2 gives a brief introduction to information-theoretic co-
clustering and the notion of cluster ensembles. Section 3
describes the proposed algorithm in details. In Section 4,
we show the implementation details of our algorithm using
MapReduce. Experimental results on both synthetic data
and real data are presented in Section 5. Finally, we draw
conclusions in Section 6.

II. PRELIMINARY

A. Information-Theoretic Co-clustering

The input data of ITCC is a (normalized) non-negative
contingency table which is treated as a joint probability



distribution between two discrete random variables that take
values over the rows and columns. A pair of maps from
rows to row-clusters and from columns to column-clusters is
defined as a co-clustering, and the optimal co-clustering is the
one that leads to the largest mutual information between the
clustered random variables. Let X and Y be discrete random
variables that take values in the sets {x1, . . . , xm} (rows) and
{y1, . . . , yn} (columns) respectively. Let p(X,Y ) denotes the
joint probability distribution between X and Y . The output
of ITCC with κ row clusters and ` column clusters is two
maps CX and CY defined as:

CX : {x1, . . . , xm} → {x̂1, . . . , x̂κ}

CY : {y1, . . . , yn} → {ŷ1, . . . , ŷ`}

The ITCC algorithm to minimize the loss in mutual
information upon co-clustering is shown as follows:

Algorithm 1 Information-Theoretic Co-clustering
Input: The joint probability distribution p(X,Y ), the de-

sired number of row clusters κ, and the desired number
of column clusters `.

Output: The partition functions C†X and C†Y .
1: t = 0. Start with some initial partition functions C(0)

X

and C(0)
Y . Compute p(X̂, Ŷ )(0).

2: repeat
3: Compute row clusters: For each row x, find its new

cluster index as C(t+1)
X (x)

= argminx̂
∑
y

p(x, y)

p(x)
log

p(x, y)p(x̂)(t)p(ŷ)(t)

p(x̂, ŷ)(t)p(x)p(y)
,

resolving ties arbitrarily. Let C(t+1)
Y = C

(t)
Y .

4: Compute p(X̂, Ŷ )(t+1).
5: Compute column clusters: For each column y, find its

new cluster index as C(t+2)
Y (y)

= argminŷ
∑
x

p(x, y)

p(y)
log

p(x, y)p(x̂)(t+1)p(ŷ)(t+1)

p(x̂, ŷ)(t+1)p(x)p(y)
,

resolving ties arbitrarily. Let C(t+2)
X = C

(t+1)
X .

6: Compute p(X̂, Ŷ )(t+2).
7: t = t+ 2.
8: until the difference of the objective function values

between tow iterations(t and t+2) reaches a threshold.
9: return C†X = C

(t+2)
X and C†Y = C

(t+2)
Y .

In Algorithm 1,

p(x̂, ŷ) =
∑
x∈x̂

∑
y∈ŷ

p(x, y), (1)

p(x̂) =
∑
ŷ

p(x̂, ŷ) and p(ŷ) =
∑
x̂

p(x̂, ŷ).

x ∈ x̂ means CX(x) = x̂ and y ∈ ŷ means CY (y) = ŷ.

B. Clustering Ensemble

Let P represent the set of S partitions of data X (with
m objects), P = {P1, . . . , PS}, where Ps = {Cs1 , . . . , Csks}
is the s-th partition, Csl is the lth cluster in partition Ps,
which has ks clusters and nsl is the cardinality of Csl ,

with
∑ks
l=1 n

s
l = m. The clustering ensemble problem is to

combine the S data partitions in P to find an “optimal” data
partition P ∗.

The first step of clustering ensemble is to generate multiple
different clustering partitions P. Commonly-used methods
includes: (a) employing different clustering algorithms; (b)
using the same algorithm with different algorithmic parame-
ter values or giving distinct initial partitions for each single
clustering; (c) using different similarity measures between
patterns.

The second step is to find an “optimal” data partition
P ∗. Strehl and Ghosh introduced some methods [18]. The
first method is mutual information-based, but it is often
computationally intractable, and tends to result in poor local
optima. The other three methods are hypergraph-based. Data
partitions in P are first transformed into a special type of
hypergraph and a specific hyper graph partitioning algorithm
is used to partition the hypergraph to get the final clustering
result. However, our experimental results have shown that
these methods performed bad when the data set contains
imbalanced clusters, which means that the number of objects
in different clusters are greatly different. Recently, Fred et. al
proposed an evidence accumulation method for combination
of multiple clustering partitions. The key of this method is to
compute a m×m co-association matrix C from data partitions
in P. The new matrix C can be viewed as a new similarity
matrix and then any clustering algorithm can be applied to
find the final data partition.

III. SCALABLE ENSEMBLE INFORMATION-THEORETIC
CO-CLUSTERING

In this section, we present the main design of our algo-
rithm SEITCC. Our cluster algorithm generates multiple co-
clusterings concurrently in a distributed system using ITCC
with different initial partitions. Then we use the evidence
accumulation ensemble learning method to produce the final
cluster result.

A. Data Pre-processing

Information-theoretic co-clustering is suited for clustering
co-occurrence table or two-way frequency table [20]. If its
rows and columns can be interpreted as two co-occurrent
variables, and the attribute values of each instance can be
interpreted as the frequency that the two variables co-occur,
such table may be viewed as a co-occurrence table. Not all
tables that represent a data set might be regarded as a co-
occurrence table. For instance, if there are attribute values
that are less than zero, the table is not a co-occurrence
table. Thus ITCC cannot process all kinds of data. Since
in ITCC, Kullback-Leibler divergence is used to help the
cluster procedure, and its goal is to measure the similarity
of two probability distributions, transforming co-occurrence
table into a probability distribution becomes indispensable in
our method. The table that is not a co-occurrence table can’t
be transformed into a probability distribution. There are two
phases to do the transformation: (a) Calculate the sum of
every attribute value in the original matrix(table); (b) Divide
every attribute value by the sum. An example is illustrated
in Figure 1.



Fig. 1. Data transformation procedure

B. Distributed Co-clustering

When dealing with massive data, one clustering is difficult
to cluster the whole data set. It is beneficial to partition
the integrated data into separate machines in a distributed
system. One clustering can then do the clustering work
over the subsets of the whole data set. In a distributed
environment, the subsets of a data set are processed by one
clustering in parallel in different machines. Specifically for
ITCC, the key step is to update p(X̂, Ŷ ) which is shown in
Algorithm 1. Thus we should compute p(X̂, Ŷ ) for each
subset in parallel. Let a probability distribution p(X,Y )
represent the input matrix of ITCC. Partition p(X,Y ) by
rows into R nodes in a distributed system. The data sets
in different nodes are denoted as D = {D1, D2, . . . , DR}.
We further prove the following theorem, which makes sure
the sum of p(X̂, Ŷ ) computed in the distributed computing
environment are equivalent to that computed in a single
machine environment.
Theorem 1: The sum of pi(X̂, Ŷ ) is equal to p(X̂, Ŷ ), that
is
∑R
i=1 pi(X̂, Ŷ ) = p(X̂, Ŷ ), where pi(X̂, Ŷ ) is computed

by the i-th machine in a distributed system, and y ∈ ŷ is fixed
when assigning rows to new clusters, similarly for column
clustering if we transpose p(X̂, Ŷ ) and fix x ∈ x̂.
Proof:
Because pi(X̂, Ŷ ) =

∑
x∈Di∩x̂

∑
y∈ŷ p(x, y) according to

the data partition D = {D1, D2, . . . , DR} and equation (1)
in II-A, then p1(X̂, Ŷ ) + p2(X̂, Ŷ ) + . . .+ pR(X̂, Ŷ )

=
∑

x∈(D1∪D2∪...∪DR)∩x̂

∑
y∈ŷ

p(x, y)

=
∑

x∈D∩x̂

∑
y∈ŷ

p(x, y)

=
∑
x∈x̂

∑
y∈ŷ

p(x, y),

= p(X̂, Ŷ )

We can then surely cluster data in a distributed environment
using ITCC.

A cluster ensemble consists of multiple clusterings. Each
clustering has its own clustering result over the same input
data set. We obtain multiple cluster results at first. Unlike the
one-way clustering algorithm, co-clustering needs to do row
clustering and column clustering. We transpose the original
probability distribution at first so that the column clustering
job can be done with the transpose matrix using the same
procedure as the row clustering job. The construction of
multiple data partitions in a distributed system consists of
the following key steps.

(1) In node i of a distributed system, assign each instance
(row or column of p(X,Y )) to a new cluster for each
clustering. Thus, we can get the new CsX or CsY , where
the cluster label CsX(x) or CsY (y) is the new cluster
index of x-th row or y-th column in the sub data set i,

and a partial compressed matrix psi (X̂, Ŷ ) for the s-th
clustering.

(2) For each clustering, sum up all the partial compressed
matrices to prepare the new compressed matrix for the
next iteration.

(3) Update the new membership functions CX or CY
and compressed matrix p(X̂, Ŷ ) for each clustering.
Redistribute them to every node.

We summarize the construction of multiple co-clusterings in
the pseudo code in Algorithm 2. After acquiring the multiple
cluster results, we are able to combine them to produce an
optimal result.

Algorithm 2 Scalable Construction of Multiple Clusterings
Input: The joint probability distribution p(X,Y ), the de-

sired number of row clusters κ, the desired number of
column clusters ` , the number of nodes in a distribute
system R, and the number of the cluster models S.

Output: The partition functions{
C1
X , C

2
X , . . . , C

S
X

}
and

{
C1
Y , C

2
Y , . . . , C

S
Y

}
.

1: Transpose p(X,Y ) to t(X,Y ). Compute the marginal
probabilities of every row and column. Obtain p(X) and
p(Y ).

2: Initialize randomly
{
C1
X , C

2
X , . . . , C

S
X

}
and{

C1
Y , C

2
Y , . . . , C

S
Y

}
. Compute the compressed matrices

p1(X̂, Ŷ ), p2(X̂, Ŷ ), . . . , pS(X̂, Ŷ ).
3: Distribute

{
C1
X , C

2
X , . . . , C

S
X

}
and

{
C1
Y , C

2
Y , . . . , C

S
Y

}
,

p1(X̂, Ŷ ), p2(X̂, Ŷ ), . . . , pS(X̂, Ŷ ), and p(X), p(Y )
into R nodes;

4: Partition p(X,Y ) into D = {D1, D2, . . . , DR}, t(X,Y )
into D′ = {D′1, D′2, . . . , D′R}.

5: In each node i :
6: for s = 1 to S do
7: Compute row(column) clusters: For each row x or

column y in p(X,Y ), find its new cluster index as

CX(x) = argminx̂
∑
y

p(x, y)

p(x)
log

p(x, y)p(x̂)p(ŷ)

p(x̂, ŷ)p(x)p(y)
.

Let y ∈ ŷ fixed. Or

CY (y) = argminŷ
∑
x

p(x, y)

p(y)
log

p(x, y)p(x̂)p(ŷ)

p(x̂, ŷ)p(x)p(y)
.

Let x ∈ x̂ fixed. And compute partial compressed
matrix psi (X̂, Ŷ ).

8: end for
9: for s = 1 to S do

10: Sum up psi (X̂, Ŷ ). Obtain ps(X̂, Ŷ )
11: end for
12: Distribute the new partition functions and new com-

pressed matrices to each node.
13: for s = 1 to S do
14: Compute the difference of the objective function val-

ues objs.
15: if objs is “small” (say 10−3) then
16: Add the new CsX and new CsY into outputs.
17: else
18: Go to step 5 and repeat the subsequent operations.
19: end if
20: end for



C. Ensembles

We use the evidence accumulation mechanism to combine
the multiple co-clusterings. A cluster ensemble that has S
clustering results over m objects are denoted as follow:

P = {P1, . . . , PS}.

P is used to compute the m×m co-association matrix. When
treating the co-occurrence frequency of the pattern pairs in
the same cluster as votes for their association, the S cluster
results of m patterns then can be mapped into a m × m
co-association matrix:

C(i, j) = sij
S

where sij is the number of times the pattern pair (i, j) is
assigned to the same cluster among the S cluster results.
Next, we use K-means implemented in a distribute manner
to cluster the new matrix. K-means is a traditional clustering
algorithm, which has been studied for almost a half century
[21]. A distributed K-means was implemented in reference to
Mahout K-means 1 in our experiments. When deciding which
distance measure is suited for the similarity matrix, we did
some experiments and find out that cosine distance measure
performs better than other measurements over the data we
used. For a big m, the distribute evidence accumulation
method, using K-means method for achieving the final cluster
result, is summarized in Algorithm 3.

Algorithm 3 Ensemble Clustering using Evidence Accumu-
lation with K-means
Input: m: number of objects, S: number of clusterings, P =
{P1, . . . , PS}: S data partitions.

Output: P ∗: combined data partitions.
1: Initialization: Set the component values of a m-tuple

vector v to zero. Set every entry of a m × m matrix
C to zero.

2: for each P s ∈ P do
3: for i=0 to m− 1 do
4: for j=0 to m− 1 do
5: if P (i) = P (j) then
6: v(j)+ = 1

S
7: end if
8: end for
9: Record vsi . Reset the component values of v to zero.

10: end for
11: end for
12: for i=0 to m− 1 do
13: for s = 1 to S do
14: C(i)+ = vsi
15: end for
16: end for
17: Cluster the matrix C using K-means. The clustering result

is the final data partition P ∗.

IV. IMPLEMENTATION WITH MAPREDUCE

MapReduce is an advantageous distributed programming
model, and it is suitable to implement the procedure of

1https://cwiki.apache.org/confluence/display/MAHOUT/K-
Means+Clustering

Fig. 2. MapReduce for construction of multiple clusterings

TABLE I
REAL DATA SETS

DataSet number of
instances

number of
features

class

20 news group 11268 5000 20
20 news group 5 2928 5000 5
20 news group 3 1762 5000 3
Amazon Reviews 1500 10000 50
Amazon Reviews 650 650 10000 50
Amazon Reviews 400 400 10000 50
libras 360 90 15
libras 10 270 90 15
libras 8 135 90 15

construction of multiple co-clusterings. We seek map and
reduce functions to perform the alternating updates of row
and column clusters in the Map-Reduce framework.
In map phase: The joint distribute probability p(X,Y )
and its transpose are stored on HDFS [14] as text files. The
input key is the instance index i, along with the vector p(i, Y )
(or t(i, Y )) representing an instance as values. The initial
column partition functions (or row partition functions for
column clustering) and p(X̂, Ŷ ) are globally broadcasted to
all mappers. Given this information, the mapper computes the
locally optimal row label CX(x) for each row x (or column
label CY (y) for each column y), as well as the compressed
matrices for S clustering models. We use model IDs as
the intermediate keys. The intermediate values comprise of
the partial objective function values, the partial compressed
matrices and the membership information.
In reduce phase: The reducer sums up the partial com-
pressed matrices from every mapper, computes the whole
objective function values, and merges group members for
each cluster label. The merging work for one clustering
is arranged to one reducer. Figure 2 shows the procedure
of map and reduce. In this figure, we illustrate only row
clustering with κ row clusters and S clusterings. It is similar
for clustering columns.

V. EXPERIMENTS

In this section, we show the experimental results of
ensemble ITCC on real and synthetic data sets. The results
demonstrated that our algorithm has higher accuracy compar-
ing with the original ITCC algorithms and Mahout K-means
in dealing with sparse data. In addition, the results also show
the scalability of our algorithm in dealing with large scale
data.



TABLE II
SYNTHETIC DATA SETS

Data
Set

number of
instances

number of
features

number of
row clusters

number of col-
umn clusters

D1 2,000,000 1,000 10 10
D2 1,000,000 1,200 5 4
D3 800,000 1,500 10 5
D4 500,000 2,000 10 10

A. Data Sets

Three real data sets which have the information
of true labels are used to evaluate the accuracy of
our method. 20 Newsgroups(NG20) is a collection of
approximately 20,000 newsgroup documents, partitioned
evenly across 20 different newsgroups which is from
http://people.csail.mit.edu/jrennie/20Newsgroups/. Many of
the newsgroups share similar topics and the boundaries
between some groups are fuzzy. So we selected various
subsets from this corpus in our experiments. The second and
third data sets are downloaded from UCI repository. Amazon
Commerce Reviews (“Reviews”) is used for authorship iden-
tification in online writeprint which is a new research field
of pattern recognition [22]. Its attributes include authors’
linguistic style such as usage of digit, punctuation, words and
sentences’ length and usage frequency of words and so on.
Libras is the official Brazilian sign language. It contains 15
classes of 24 instances each, where each class references to a
hand movement type [23]. In each instance of Libras, every
attribute has a non-zero value. But in “Reviews”, there are
considerable zero values. Thus “Reviews” is extraordinary
sparse. NG20 is less sparser than “Reviews”. We selected
subsets from “Reviews” and Libras as NG20. The character-
istics of these real data sets are described in Table I.

We have developed a data generator to generate data of
various sizes. There is one instance per line, and each line
contains feature values of the instance separated by blank
space. Features are represented by feature order number and
feature values. For example, the below data set contains 1
instance and 30 features. Features whose values are zero are
not recorded.
5:0.029 9:0.005 16:0.017 23:0.004 26:0.038
Four data sets produced by this generator are shown in Table
II.

B. Experiment Setup

30 machines were used in the experimental environment,
each having eight 2.13GHz Intel(R) Xeon(R) processors and
25G memory, running CentOS Linux operating system. We
used the latest stable version of Hadoop, hadoop-0.20.2, to
form a MapReduce programming environment.

C. Accuracy

In this part, we evaluate the performance of our algorithm
with accuracy. For the real data sets in Table I, we use
normalized mutual information(NMI) [18] as the evaluation
measure. To show how the instance clustering results change
with the number of feature clusters, we tried different feature
clusters for the three data sets in Table I. Figure 3(a) shows
the NMI curve against the number of feature clusters where
the number of clustering models is fixed. With the increment

TABLE III
ACCURACY COMPARISON

Data Set Ensemble
ITCC

ITCC
(avg.)

K-means
(avg.)

20 news group 0.624 0.501 0.498
20 news group 5 0.708 0.612 0.565
20 news group 3 0.773 0.690 0.570
Amazon Reviews 0.449 0.418 0.376
Amazon Reviews 650 0.497 0.471 0.380
Amazon Reviews 400 0.556 0.503 0.435
libras 0.553 0.456 0.517
libras 10 0.621 0.497 0.618
libras 8 0.788 0.743 0.744

of numbers of feature clusters, the accuracy also increases,
but the accuracy will decrease when the number exceeds
a certain value range. Various subsets of the same data
set reached their peak accuracy with different number of
feature clusters. Figure 3(b) shows the NMI curve against
the number of clustering models where the number of feature
clusters is fixed. We notice that the accuracy increases with
the increment of the number of models, but the accuracy only
changes in a small range when the number of models exceeds
a threshold. Finally, we find some critical points in different
data sets where the accuracy nearly approaches to a limit
value or a small range. Then, we did experiments on that
point repeatedly and took the average of all the experiment
results as our last accuracy of our algorithm. In Table III, we
show the accuracy of our ensemble model, comparing with
single ITCC and the Mahout K-means.

Table III shows that the accuracy of our algorithm gains
a notable increase than the traditional cluster algorithm (K-
means) when dealing with high dimensional and sparse data,
but is similar to that of K-means for non-sparse data. It’s
clear to see that the accuracy of ensemble ITCC is higher
than single ITCC for all the data sets in our experiments.
To sum up, our algorithm has good accuracy in dealing with
high dimensional and sparse data.

D. Scalability

In this part, we have carried out two groups of experiments
to evaluate the performance of scalability. In the first group
of experiments, we fixed the number of clustering models
as 20, then we constructed clustering ensembles for the data
sets in Table II running on different numbers of nodes. We
present the time of our algorithm in dealing with different
sizes of data running on 10 nodes, 20 nodes and 30 nodes
respectively in the left-chart of Figure 4. In the second
group of experiments, we present the time curve of different
numbers of models for different sizes of data running on 30
nodes in the right chart of Figure 4.

Through the left chart shown in Figure 4, we can see that
the running time dropped rapidly as more machines added.
This demonstrates that our method can handle large data by
adding more machines. Through the right chart shown in
Figure 4, we notice that the larger the data set, the more
time it takes to construct cluster ensembles when models are
added. However, the speed of time increase is not fast. This
result demonstrates that SEITCC is scalable to the number
of models.



(a) NMI vs. number of attribute clus-
ters

(b) NMI vs. number of models

Fig. 3. Accuracy results on real data sets

Fig. 4. Scalability results on large synthetic data sets

VI. CONCLUSIONS

In this paper, we have proposed a scalable ensemble
information-theoretic co-clustering, which is focused on
large scale data clustering problems. We constructed multiple
clustering models to produce different data partitions parallel
in a distributed environment. Finally, we took the ensemble
result of multiple data partitions as the final clustering
result. The experimental results demonstrated the superior
performance of our algorithm against distributed K-means
and individual information-theoretic co-clustering both on
synthetic and real data sets.

In the future, we will further investigate the relationship
between the ensemble result accuracy and the number of
attribute clusters and the relationship between the ensemble
result accuracy and the number of clustering models. Since
the qualities of distinct clustering results are different, we
will also investigate new methods to evaluate the weight of
different clustering results and then use weighted information
to combine them.

ACKNOWLEDGEMENTS

The authors would like to thank Baoxun Xu, Bingguo Li,
Shuang Wang and Xianggang Zeng for their suggestions and
feedback to this work.

REFERENCES

[1] J. Hartigan, “Direct clustering of a data matrix,” Journal of the
American Statistical Association, pp. 123–129, 1972.

[2] Y. Cheng and G. Church, “Biclustering of expression data,” in Pro-
ceedings of the eighth international conference on intelligent systems
for molecular biology, vol. 8, 2000, pp. 93–103.

[3] I. Van Mechelen, H. Bock, and P. De Boeck, “Two-mode cluster-
ing methods: astructuredoverview,” Statistical methods in medical
research, vol. 13, no. 5, pp. 363–394, 2004.

[4] G. Getz, E. Levine, and E. Domany, “Coupled two-way clustering anal-
ysis of gene microarray data,” Proceedings of the National Academy
of Sciences, vol. 97, no. 22, p. 12079, 2000.

[5] I. Dhillon, S. Mallela, and D. Modha, “Information-theoretic co-
clustering,” in Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2003,
pp. 89–98.

[6] B. Gao, T. Liu, X. Zheng, Q. Cheng, and W. Ma, “Consistent bipartite
graph co-partitioning for star-structured high-order heterogeneous data
co-clustering,” in Proceedings of the eleventh ACM SIGKDD interna-
tional conference on Knowledge discovery in data mining. ACM,
2005, pp. 41–50.

[7] H. Cho, I. Dhillon, Y. Guan, and S. Sra, “Minimum sum-squared
residue co-clustering of gene expression data,” in Proceedings of the
fourth SIAM international conference on data mining, vol. 114, 2004.

[8] T. George and S. Merugu, “A scalable collaborative filtering framework
based on co-clustering,” in Data Mining, Fifth IEEE International
Conference on. IEEE, 2005, pp. 4–pp.

[9] D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos,
“Fully automatic cross-associations,” in Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2004, pp. 79–88.

[10] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is
nearest neighbor meaningful?” Database TheoryłICDT99, pp. 217–
235, 1999.

[11] S. Papadimitriou and J. Sun, “Disco: Distributed co-clustering with
map-reduce: A case study towards petabyte-scale end-to-end mining,”
in Data Mining, 2008. ICDM’08. Eighth IEEE International Confer-
ence on. IEEE, 2008, pp. 512–521.

[12] J. Zhou and A. Khokhar, “Parrescue: Scalable parallel algorithm
and implementation for biclustering over large distributed datasets,”
in Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE
International Conference on. IEEE, 2006, pp. 21–21.

[13] V. Ramanathan, W. Ma, V. Ravi, T. Liu, and G. Agrawal, “Parallelizing
an information theoretic co-clustering algorithm using a cloud middle-
ware,” in Data Mining Workshops (ICDMW), 2010 IEEE International
Conference on. IEEE, 2010, pp. 186–193.

[14] T. White, Hadoop: The definitive guide. Yahoo Press, 2010.
[15] J. Venner, Pro Hadoop. Springer, 2009.
[16] C. Lam and J. Warren, “Hadoop in action,” 2010.
[17] A. Fred and A. Jain, “Combining multiple clusterings using evi-

dence accumulation,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 27, no. 6, pp. 835–850, 2005.

[18] A. Strehl and J. Ghosh, “Cluster ensembles—a knowledge reuse
framework for combining multiple partitions,” The Journal of Machine
Learning Research, vol. 3, pp. 583–617, 2003.

[19] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[20] R. Fisher, “On the interpretation of χ 2 from contingency tables, and
the calculation of p,” Journal of the Royal Statistical Society, vol. 85,
no. 1, pp. 87–94, 1922.

[21] D. Steinley, “K-means clustering: A half-century synthesis,” British
Journal of Mathematical and Statistical Psychology, vol. 59, no. 1,
pp. 1–34, 2006.

[22] A. Frank and A. Asuncion, “UCI machine learning repository,” 2010.
[Online]. Available: http://archive.ics.uci.edu/ml

[23] A. Asuncion and D. Newman, “UCI ma-
chine learning repository,” 2007. [Online]. Available:
http://www.ics.uci.edu/∼mlearn/MLRepository.html




