

Abstract— The Real-Time Framework (RTF) is a novel

development and execution platform for emerging Internet

infrastructures and applications with real-time requirements,

such as distance learning and multi-player online computer

games. In this paper, we describe RTF as part of the

edutain@grid service architecture and explain the role

distribution between the application developer and the

framework. We study in detail the use of RTF for two

application use cases: 1) multi-player online games running on

multiple servers, and 2) distance learning with frequent

interactions over a wide-area network. Then, we report

experimental results on the performance and scalability of

RTF-based infrastructures and applications. Finally, we

formulate the advantages of RTF and the edutain@grid

architecture that go beyond the state of the art in the area.


Index Terms— Infrastructures, Distance Learning, Multi-

player online games, RTF (Real-Time Framework), Scalability.

I. INTRODUCTION

HIS paper addresses a challenging class of emerging

applications for Internet infrastructures – so called Real-

Time Online Interactive Applications (ROIA). Popular

examples of ROIA are Massively Multiplayer Online Games

(MMOG) and high-performance systems for simulation-

based e-learning and training. Because of the very high

interactivity and the real-time requirements of ROIA, the

main difficulty in their development is how to make them

scalable, i.e. to maintain the real-time constraints and

responsiveness by adding resources (server machines) when

the number of users increases. This can be achieved by,

firstly, distributing and parallelizing computations in the

application design and, secondly, by efficiently supporting

computations and communication across the infrastructure.

Internet infrastructures are increasingly used for the

socially important subclass of ROIA applications called

edutainment (education + entertainment) including computer

gaming and distance learning, with high growth rates

worldwide. For example, the market of MMOG grew from

only 10 thousand subscribers in 1997 to 6.7 million in 2003

and to an estimated 60 million people by 2011.

In the paper, we describe the Real-Time Framework

(RTF) that enables the high-level development and efficient

execution of ROIA for Internet infrastructures. The paper is

organized as follows. We describe the challenges of ROIA

and then outline the hierarchical infrastructure developed in

the European edutain@grid project and comment on its

innovative features. We focus on two use cases for RTF: 1)

Sergei Gorlatch (corresponding author), Frank Glinka, and Alexander

Ploss are with the University of Muenster, Einsteinstr. 62, 48149 Germany

(phone: +49 251 8332740; fax: +49 251 8332742; e-mail: gorlatch@uni-

muenster.de).
Chris Rawlings is with the BMT Cordah Ltd., UK

Mike Surridge is with the IT Innovation Centre, Southampton, UK

multi-player online computer games, and 2) infrastructures

for online distance learning. Finally, we present our

experimental results on scalability and performance of

infrastructures and applications developed using RTF.

II. RTF AS PART OF EDUTAIN@GRID

The execution model employed for ROIA is client/server

[1], with hosting companies providing an infrastructure with

multiple servers that simulate a distributed ROIA world. The

clients dynamically connect to a joint application session

and execute a so-called real-time loop (Figure 1); they

interact with each other by issuing application-specific

actions such as movements, shootings, operations on

objects, or chat commands.

At each loop iteration (also called tick), the three steps

shown in Figure 1 are performed: (1) processing the events

coming from the clients, (2) calculating the state of the

active entities, and (3) exchanging state updates between

servers. This process must be highly responsive for the user:

it takes usually only a few milliseconds between sending the

inputs and receiving a new state. Depending on the game,

typical response times to ensure fluent play must be below

100 ms in online FPS (First-Person Shooters) and 1-2 sec

for role-playing MMOGs which are called MMORPG [3].

A typical ROIA application consists of a client

application and a ROIA process. Users employ the client

application to connect to the ROIA process and send their

inputs which directly influence the application state. The

application state is updated and then received by each client

connected to the ROIA process.

The Real-Time Framework (RTF) is part of the European

edutain@grid architecture for the development, business

management and hosting of interactive distributed

infrastructures and applications. This comprehensive service

architecture built within the European project edutain@grid

[1] provides: a) a high-level development API for ROIA,

and b) a complete runtime support for their scalable multi-

server execution. With this architecture, Internet

Developing Infrastructures for Online Games

and Distance Learning using RTF
Sergei Gorlatch, Frank Glinka, Alexander Ploss, Chris Rawlings, and Mike Surridge

T

Figure 1: The real-time loop model.

mailto:gorlatch@uni-muenster.de
mailto:gorlatch@uni-muenster.de

infrastructures and applications can use on-demand hosting:

there is no need to possess and manage an own

infrastructure. The maximum possible number of users

using a ROIA can be negotiated with the hoster (resource

provider), which will be responsible for the needed

computing performance and communication bandwidth at

the time contracted. These services are enabled by the

Business and Management layers of edutain@grid. The

ROIA themselves are executed on the assigned resources in

the Real-Time layer implemented by RTF [2].

The high-level development approach of RTF provides a

developer’s interface that also supports a smooth transition

from single-server to multi-server infrastructures [8]. RTF is

integrated into the edutain@grid security architecture and

allows clients to benefit from authentification, encrypted

communication and authorization support, without bothering

the application developer or user with details.

Figure 2 shows that the edutain@grid service-oriented

architecture comprises four layers: client, business,

management, and real-time layers, explained in the

following.

 The client layer is where the customer’s access to the

edutain@grid infrastructure is performed. The coordinator is

an organisation that makes a ROIA instance accessible to its

consumers, and coordinates the actors in the lower layers to

deliver the required ROIA. The customers ask the

coordinator for connection, get information, launch or join,

display, and globally interact with the running ROIAs. The

underlying infrastructure and its technical functionalities are

thus completely hidden from this layer.

The business layer is where the different business

interactions between the actors of the infrastructure are

supported. These include the registration of customers with

the Coordinator, the establishment of Service-Level

Agreements (SLA) with hosters who provide the required

resources, the licensing of application components and

multimedia content, and accounting and billing. This layer is

implemented using Web Service technologies, and provides

services for each actor to support its business interactions

with other actors. The advanced SLA technology ensures

realistic and viable Quality of Service (QoS) metrics.

The management layer is where resource management

methods are used to map the requirements of users

(expressed through their business-level demands to the

coordinator) onto available infrastructure resources, all

subject to the terms of SLA negotiated in the business layer.

The management layer handles the deployment of ROIA

software and content to individual hosts, the management of

a security policy to enable users and hosters to access each

other’s data, as well as the scheduling, monitoring, and

steering of ROIA onto the hoster resources to ensure that

they meet the terms of their SLA. This layer is implemented

using Web Services technologies, though not all services are

exposed to the other actors.

The real-time layer is where applications are actually

executed using infrastructure resources (CPU, file storage,

and network bandwidth) and security credentials assigned to

them by the management layer. Customers contact a

coordinator within the client-layer and use the obtained

information to connect to one of the running ROIA

processes at a participating hoster. The real-time layer

provides scalability w.r.t. the potentially increasing numbers

of online customers, as well as fast communication links

between application components and users.

The Real-Time Framework (RTF) provides a high-level

communication and computation middleware for ROIA.

RTF supports both the server-side and client-side processing

on the infrastructure. The role distribution between the

framework and the application developer is as follows. RTF

deals with the entity and event handling in the real-time

client loop and with the continuous state processing in the

real-time server loop, as well as with the distribution of the

state processing across multiple servers. The developer

implements the application-specific real-time loop on client

and server, as well as the application logic, using RTF to

automatically exchange information between the processes.

RTF is implemented as a C++ library, because C++ is

nowadays the language of choice in performance-critical

applications. RTF supports in-application monitoring and

controlling, streaming, and integrated persistency for the

application state. The communication of events and state

updates is performed in a bandwidth- and latency-optimized

manner. The high-level development approach of RTF

provides a developer’s interface that also supports a smooth

transition from single-server to multi-server

infrastructures [8]. RTF is integrated into the edutain@grid

security architecture and allows clients to benefit from

authentification, encrypted communication and

authorization support, without bothering the application

developer or user with details.

III. USE CASE: ONLINE GAMES

The majority of today's online games simulate a spatial

virtual world which is conceptually separated into a static

part and a dynamic part. The static part covers, e.g.,

environmental properties like the landscape, buildings and

other non-changeable objects. The dynamic part covers

entities like avatars, non-playing characters (NPC)

controlled by the computer, items that can be collected by

players or, generally, objects that can change their state.

Both parts, together, build the game state which represents

the game world at a certain point of time.

When designing the real-time loop (Figure 1) for a

particular game application, the developer has to deal with

several tasks. In steps 1 and 3 of the loop, the developer

organizes the network transfer of the data structures that

Figure 2: The four layers of the edutain@grid architecture.

realize user actions and entities. If the game is distributed on

the infrastructure between multiple servers, then step 2 also

requires the developer to organize the distributed state

computation and necessary communications for its update

across different servers.

There are three major parts comprising an online game:

- Game logic, including entities, events (implemented

as data structures), and processing rules for the

virtual environment;

- Game engine, which continuously processes user

actions and events in the real-time loop to compute a

new game state, according to the game logic;

- Game distribution, including partitioning the game

world on multiple servers and dynamic management

of distributed computation and communication in the

infrastructure.

These three aspects are treated differently, depending on

the requirements and properties of a particular game genre.

For example, fast-paced action games strongly rely on an

efficient communication and high-performance engine

implementation while using a relatively simple game logic.

The most widely employed infrastructure model for

online games is the multi-client and multi-server version of

the client/server architecture [4,5]: it consists of a set of

servers that are concurrently accessed by a number of users

that dynamically and actively interact with each other within

a game session. Clients connect directly to the servers and

issue their play actions such as movements, shootings,

collection of items, or chat commands. Based on the actions

submitted by the players, the servers compute the global

state of the game world represented by the position and

interactions of the entities, store it into a persistent database,

and send to the players appropriate real-time responses

containing the new state information, typically in a high-

speed data stream.

Typically, the load of one server increases with the rising

number and density of the involved players and their

interaction within the simulated world. Today, a single

computer is limited to support around 500 simultaneous and

persistent network connections, and databases can manage

the update of around 500 objects per second [6]. To support

potentially millions of active concurrent players and even

many more other game entities, hosters need to install and

operate a large dedicated multi-server infrastructure [7],

with hundreds to thousands of computers hosting the load of

each game [4,8]. However, due to the dynamic character of

games, both in short and long term, the resource providers

often have to over-provision their infrastructure, which leads

to an inefficient resource utilisation, such that new providers

find it difficult to join the market. For example, the

operating infrastructure of World of Warcraft employs over

10,000 compute servers. To cope with an increasing demand

in the number of players in popular games, techniques for

parallelizing and distributing the load across multiple

resources have been extensively studied [5,9].

To ensure scalability and real-time response, a game

session is distributed in RTF over multiple servers using

three different techniques (see Figure 3): zoning, replication,

and instancing.

Spatial scaling of a game session is achieved through a

parallelization technique called zoning [2] that partitions the

game world into disjoint areas to be handled by separate

machines. Zones are not necessarily of the same shape and

size, but preferably have an even load distribution.

Our novel distribution technique called replication targets

games with a large density of players as, e.g., fast-paced

FPS action games in which players typically gather in

certain hot-spot areas; thus, the servers become overloaded

and are no longer able to deliver state updates at the required

rate. To address this problem, we replicate the same zone on

several servers. Then, each server computes the state for a

subset of entities called its active entities, while for the

remaining shadow entities, the state is obtained from the

servers where these entities are active, i.e. a synchronization

between servers takes place. We demonstrated in previous

research that the overhead of synchronizing shadow entities

is usually significantly lower than the overhead of

computing the load produced by active entities [8].

The third distribution technique called instancing is a

simplification of replication: it distributes the session load

by starting multiple parallel instances of the highly

populated zones. The instances are completely independent

of each other, i.e. two avatars from different instances will

not see each other, which is a restriction for some games.

IV. USE CASE: DISTANCE LEARNING

The work described in this section was conducted in

cooperation with BMT Cordah Ltd. (BMT) [10] - a

commercial company offering consultancy and software.

We consider a particular use case of distance learning for

the Search and Rescue Information System (SARIS) [11] of

BMT. Figure 4 shows a screenshot of SARIS as used by

coastguards, navies and port authorities. It allows these

organizations to manage incidents, for example, when a

sailor has fallen overboard. To react to such an incident, it is

important to estimate where the target (e.g., the sailor) is

located, which is done by SARIS based on environmental

data. The operation of SARIS has to be taught in courses in

order to use it properly.

Distance learning using the Internet infrastructure reduces

Figure 3: Zoning and Replication.

the overall costs of training: Instructors and course attendees

will use the software at their workplace. It enables users to

interact with other users in the same way as they would do

in an ordinary course. It is possible to interact with the

instructor or other attendees, watch the simulation of

incidents, and hold and mark examinations. The data that

has to be exchanged between attendees and instructors is

transmitted via the Internet.

The people interacting with the system are depicted in an

actor hierarchy (see Figure 6). Administrators create

customer accounts and grant access to courses or tests. An

instructor creates lessons and starts them. During a lesson,

he is also able to communicate with customers over several

channels such as text communication and to modify the

lesson scenario as needed (e.g. trigger additional incidents).

Employees of the customers can join ordered lessons and

communicate with other students or the instructor.

Moreover, they can take a test. Managers of the customer's

company can fetch test results to rate the abilities of the

employees. All users are subtypes of the actor User, i.e., are

able to interact with the system. The subactors of User are

Administrator, Course Attendee and Attendee's Supervisor.

The Administrator is responsible for management tasks and

is able to enforce business contracts, signed with customers,

in the system. A Course Attendee is the user who mainly

interacts with the system. Basically, he is an employee of

the customer's organization who takes part in e-learning

sessions. A special subtype of the Course Attendee is the

Instructor who is responsible for administrative intervention

in e-learning sessions. Furthermore, he has the same

opportunities as a customer's employee and is therefore an

extended subactor of the Course Attendee.

Most applications in the field of distance learning rely on

a client-server infrastructure. Usually, a learning ‘session’ is

being conducted at an instructor organisation, with session

attendees all connecting to a single point source. It is evident

that no matter the speed of connection and bandwidth

available to the client attendee, the participants are throttled

back to the connection available to the instructor

organization (typically about 2 Mbit in the figure).

It is preferable to have a situation where the learning

session ‘process’ can be independently deployed to a partner

organisation that is competent in providing and hosting

high-performance resources (for both networking and

computation). This partner is called hoster; a significantly

improved networking performance is expected in an

infrastructure with hoster as demonstrated in Figure 5: the

lesson session is no longer hosted at the instructor location.

The relative connection bandwidth for instructor and clients

remains unchanged, but the hoster in the figure has a

100Mbit connection which clearly meets the requirements of

learning sessions.

The instructor organisation keeps control over the

business-relevant topics of access control, billing and

service level agreements (SLA) while the service instances

(lessons) are hosted on foreign resources. Connecting clients

are authenticated by RTF against the business identities

(single-sign-on), credentials for participation are checked

and encrypted communication channels are established as

illustrated in Figure 5. RTF furthermore allows using more

than one hoster in the infrastructure for a single lesson

session, e.g., one in Europe and one in US in order to

minimise global distribution bandwidth by

replicating/sharing load between cross-Atlantic processes.

The Edutain Virtual Classroom (EVC) application is

utilising the functionality offered by RTF. The

communication subsystem of the infrastructure is based on

RTF, and ROIA applications are created on both client and

server sides. The applications provide entry points, via the

integration of RTF and the GRIA business collaboration

infrastructure, where the student can search for lessons using

a directory service and student numbers and associated

Figure 5: Client-Server infrastructure with hoster for distance learning.

Instructor

Administrator
Course Attendee

Attendee's Supervisor

User

Abstract

Figure 6: Hierarchy of actors in a distance learning infrastructure.

Figure 4: SARIS screenshot (provided as a courtesy of BMT Cordah Ltd).

pricing can be controlled by SLA respectively. Control of

permissions for students (entering a lesson and activities

during lesson time) is provided by the RTF security plugin.

The different aspects of the instructor’s application screen

are as follows, see Figure 7:

1 – is a Webcam view of the instructor, streamed to all of

the connected students.

2 – is the current client list, showing IP address and port

number used for communication. The instructor allocates

and removes permissions through context menu selection as

to whether the student can take control of the demonstrated

application seen in area 3.

3 - is the main demonstration window showing an

application being explained, taught or demonstrated. The

application itself is reparented into the EVC workspace; the

students see a facsimile view that the instructor sees. In the

example above, a VMWare server running Ubuntu 9.10 is

being demonstrated via the EVC. If the instructor permits

the student to take control, the mouse movements and key

presses within area 3 will be transmitted to the instructor.

4 - is the text chat area: messages are sent between all

participants – i.e. from the instructor to everybody or from a

single student to every other student.

V. PERFORMANCE EXPERIMENTS FOR RTF

This section reports our performance experiments that

were conducted using the multi-player online game

RTFDemo which was designed and implemented following

the RTF development methodology. In this test application,

users (clients) control their robot avatars which can move,

shoot at each other, etc. The virtual world can be operated in

different ways, e.g., being zoned or replicated on several

ROIA processes for parallel and distributed operation.

Using the RTFDemo application suite, several

performance experiments have been conducted in a local

area network infrastructure. We tested the maximum

number of players that is supported by one single server for

this test application. We also tested the scalability of the

zoning approach within RTF for an infrastructure with

multiple servers. This test checks the maximum number of

users still able to play while maintaining the application's

real-time requirements for an increasing number of zones.

The screenshot in Figure 8 shows a scene from the

performance test. The avatar of the client application that

was used for making the screenshot is marked by the green

ellipse and all the other robots in the figure are computer-

controlled clients. Four different scalability tests were run,

and Figure 9 shows the measured CPU load for the 1, 2, 4

and 8 ROIA process setup and various client numbers. The

clients were distributed equally between the servers of the

infrastructure and could migrate between the available

zones. The results show that the usage of additional servers

significantly increases the number of possible users. For the

fast-paced RTFDemo, the scalability is nearly linear,

allowing up to 1200 clients when using eight zones.

Our experimental results show that:

1. The overhead of the current RTF implementation is

quite low, allowing the client numbers even on a single

ROIA process (170 clients for RTFDemo) to favorably

compare to those of fast-paced commercial action

games (usually up to 64 players, e.g., in Battlefield 2).

2. The multi-server version using the zoning approach

enables a significant increase in the number of

participating clients. RTF supports a smooth and

seamless migration of clients between adjacent zones,

i.e. yielding a single seamless virtual world to users.

VI. RELATED WORK AND CONCLUSION

In this paper, we describe the novel approach of the

European edutain@grid project to developing and executing

real-time virtual environments using Internet infrastructures

in a scalable manner, as the number of users is increasing

and can be supported by multiple compute servers.

The four-layer architecture of edutain@grid facilitates

Figure 7: EVC View as seen by the instructor.

Figure 8: RTFDemo screen.

Figure 9: Average CPU load for different setups and client.

both the high-level development and the efficient runtime

execution of Real-Time Interactive Applications (ROIA).

Our performance experiments demonstrated good scalability

characteristics under hard conditions for a multi-player

gaming environment.

The Edutain@Grid architecture is based on well-

established software technologies and experience from the

business [12], resource management [13] and scalability

area [14] that were extended, optimized and integrated for

the specific requirements of ROIA.

Compared to middleware systems for Grid infrastructures,

such as Globus [15], gLite [16] and UNICORE [17], which

enable high throughput by sharing computational and

storage resources among individual and institutional users,

edutain@grid delivers a novel platform for secured, multi-

hosted ROIA applications, allowing them to scale beyond

the limits of one arbitrary hoster, as well as to take into

account such important in-application characteristics of

ROIA like zones, instances and replications during service

provision and resource management.

RTF frees the application developer from complicated

low-level programming, e.g., network transmission via

sockets. The RTF is implemented as an object-oriented C++

library with a comfortable user API.

The main contributions of RTF beyond the state of the art

in developing performance-critical Internet applications in

the areas of gaming and distance learning are as follows:

 Compared to existing approaches in the field of

basic communication middleware like Net-Z,

RakNet or HawkNL, a higher level of abstraction is

provided including automatic serialization and

hiding the details of the network communication.

 Compared to reusable game engines like Quake or

Unreal, RTF is significantly more flexible because

it is not bound to a specific graphics engine and

leaves the real-time loop implementation to the

developer, who is now supported by the high-level

mechanisms of RTF for entity and event handling.

 The multi-server capability of RTF allows the

application developer to easily incorporate three

different parallelization and distribution approaches

and their combinations and is open for extension in

future game designs. This flexible support of

different parallelization concepts and their

combinations allows RTF to be usable for a

broader range of multi-player game concepts than

existing multi-server middleware products like

BigWorld, HeroEngine or Virtiverse, which are

limited to zoning and instancing.

 RTF is integrated with the resource management

and business aspects of the ROIA service

provisioning within the edutain@grid system. It

provides automatic ROIA monitoring and

controlling facilities which enable the management

layer to use new prediction techniques for the QoS-

aware resource management and load balancing.

Furthermore, edutain@grid provides a

comprehensive security concept with authorization

support across all layers [12].

In this paper, we show how a novel e-learning system –

the Edutain Virtual Classrom (EVC) - is developed using the

RTF. We demonstrate how RTF facilitates a comfortable

and efficient development of new e-learning products acting

in a distributed Internet-based infrastructure.

ACKNOWLEDGEMENT

This work was partially supported by the European

Commission (the research project edutain@grid and the

Network of Excellence S-Cube).

Bibliography

[1] edutain@grid project. Available: http://www.edutain.eu

[2] F. Glinka, et al., "RTF: A Real-Time Framework for
Developing Scalable Multiplayer Online Games," in NetGames

2007: Proceedings of 6th Annual Workshop on Network and

System Support for Games, Melbourne, 2007, pp. 81-86.
[3] M. Claypool and K. Claypool, "Latency and player actions in

online games," Communications of the ACM, vol. 49, pp. 40-45,

2006.
[4] R. Bartle, Designing Virtual Worlds: New Riders Games, 2003.

[5] W. Cai, et al., "A Scalable Architecture for Supporting

Interactive Games on the Internet," in Proceedings of the 16th
Workshop on Parallel and Distributed Simulation, ed.

Washington, D.C., 2002, pp. 60-67.

[6] W. White, et al., "Database research opportunities in computer
games," SIGMOD Rec., vol. 36, pp. 7-13, 2007.

[7] A. Shaikh, et al., "On demand platform for online games," IBM

Syst. J., vol. 45, pp. 7-19, 2006.
[8] J. Müller and S. Gorlatch, "Rokkatan: scaling an RTS game

design to the massively multiplayer realm," ACM Computers in

Entertainment, vol. 4, p. 11, 2006.
[9] A. Bharambe, et al., "Colyseus: a distributed architecture for

online multiplayer games," in NSDI'06: Proceedings of the 3rd

conference on 3rd Symposium on Networked Systems Design &
Implementation, ed. San Jose, CA: USENIX Association, 2006,

pp. 155-168.

[10] BMT Cordah Limited. Available: http://www.bmtcordah.com
[11] Search and Rescue Information System. Available:

http://media.bmt.org

[12] M. Surridge, et al., "Experiences with GRIA - industrial
applications on a web services grid.," e-Science 2005, pp. 98-

105, 2008.

[13] T. Fahringer, et al., "ASKALON: A Development and Grid

Computing Environment for Scientific Workflows, Workflows

for e-Science," I. J. Taylor, et al., Eds., ed: Springer London,

2007, pp. 450-471.
[14] J. Müller, et al., "Rokkatan: Scaling an RTS Game Design to the

Massively Multiplayer Realm," in ACM SIGHCHI International

Conference on Advances in Computer Entertainment
Technology (ACE 05), ed. Valencia, Spain: ACM, 2005, pp.

125-132.

[15] I. Foster and C. Kesselmann, "Globus: A metacomputing
infrastructure toolkit.," Int. J. of Supercomputer Applications,

vol. 11, pp. 115-128, 1996.

[16] Karl Czajkowski. (2004). The WS-resource framework. .
Available: http://www.globus.org/wsrf/specs/ws-wsrf.pdf

[17] D. Breuer, et al., Eds., Scientific computing with UNICORE

(NIC Symposium. 2004, pp. 429-440.

http://www.edutain.eu/
http://www.bmtcordah.com/
http://media.bmt.org/
http://www.globus.org/wsrf/specs/ws-wsrf.pdf

