
 

 
Abstract— Compressed sensing (CS) is a powerful tool for sig-
nal measurement and processing, so it has caught much atten-
tion in many fields such as medical imaging and image restora-
tion. In CS, we assume the latent signals, such as voices and 
images, are sparse; i.e. they have many zero components. On 
this assumption, we search the sparsest signal sufficing the 
linear measurement equalities. Usually instead of minimizing 
the number of nonzero components of signal, we minimize the l1 
norm of the solution vector to satisfy the convex condition. 
Linear programming such as simplex method is often used for 
this l1 norm minimization. This paper proposes a fast algorithm 
for lp (0p2) norm minimization using auxiliary function. We 
derivate the algorithm and show that the smaller p is, the faster 
it works. We emphasize the l0.95 norm minimization is 6.47 times 
faster than l1 simplex method. 
 

Index Terms— auxiliary function, compressed sensing (CS), 
fast algorithm, lp norm, optimization 
 

I. INTRODUCTION 

ompressed sensing (CS) has recently emerged as a new 
aspect replacing classical sampling technology [1],[2], 

[3]. Usually analogue band-limited signals such as images, 
music and voices are at first sampled with sampling rate 
twice larger than their bandwidth frequencies and then com-
pressed for transmission or storage. The compression ratios 
are around 1 to 20, so almost all information is discarded, 
which is waste resource usage. CS is a technique to acquire 
compressed version at input stage.  

In the framework of CS, we assume the signals around us 
are sparse, which means they are expressed as a few nonzero 
components in their inherent space and observe linearly in-
dependent measurements of the signal. We take advantage of 
the source signal sparsity to solve the sparsest solution to the 
underdetermined linear simultaneous equations,  
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where xCN is the latent signal, yCM is its observation, 
WCMN (M N ) is the corresponding observation matrix, 
and || x ||0

0 denotes the l0 norm defined as the support size of x, 
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The above l0 norm minimization is, however, NP-hard be-
cause it results in combinatory problem. Then (1) is relaxed 
to the following l1 norm minimization, 
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Even by this relaxation the solution to (3) is almost identical 
to that of (1). Moreover the solution to (3) is easily obtained 
by the linear programming like simplex method [4]. Owing to 
this discovery, CS has been applied to many fields, such as 
medical imaging and signal processing. 

Chartland [5] has recently published that the lp norm mi-
nimization  

, tosubject||||min
C

yWxx
x




p
pN      

 (5) 

is more effective than the traditional l1 norm minimization of  
(3) and shown a CT reconstruction of 256256 Shepp-Logan 
phantom is possible by only 9 projections.  

This paper proposes a fast searching algorithm to solve (5) 
by introducing auxiliary function [6]. In this method, for a 
given objective function L(x), auxiliary variables a are in-
troduced to lead a new objective function L(x, a) and itera-
tively alternating minimizations of x and a are performed like 
expectation-maximization (EM) algorithm [7]. If L(x, a) is 
quadratic in respect to x and the optimum a, with x given, are 
uniquely predicted by analytical formulae, the algorithm 
becomes very efficient. This is a generalization of iterative 
reweighted least squares for l1 norm minimization to lp norm 
proposed by Gorodnitsky and Rao [8]. We derive the aux-
iliary function for lp norm minimization and show the algo-
rithm.  

Following Chartland [5], lp (p1) norm minimization can 
achieve perfect reconstruction even by smaller number of 
observations comparing to l1 norm minimization. So in this 
paper, by simulation we examine this property and lp  norm 
minimization with p 0.95 can exhibit perfect reconstruction 
by 68 % measurements of l1 norm minimization. Also 
processing times of our method are respectively 16 % and 6.5 
% of those of l1 norm simplex method when the number of 
measurements M is 50 and 40 for synthesized signals with 
sparsity K=16 and signal dimension N=64. 
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In II we describe observation effectiveness of lp (p1) 
norm minimization, and in III we derive the algorithm using 
auxiliary function and describe its speed effectiveness. In IV 
the simulation results are exhibited. Lastly in V we conclude 
this paper. Without any description we use lower case italic 
bold-face letters for vectors and upper ones for matrices. 

 

II. LP MINIMIZATION IN COMPRESSED SENSING 

The condition that (5) has a unique solution and exhibits 
perfect reconstruction for K-sparse signal strongly depends 
on the property of observation matrix W. Restricted isotropy 
(RI) is the most important property. 

Definition 1.  Let WCMN be an observation matrix. For 
x{sCN ; | supp(s) |S}, if there exists the minimum 
0 S1 satisfying the following inequalities; 

,||||)1(||||||||)1( 2
2

2
2

2
2 xxWx SS      (6) 

then S  is called restricted isotropy (RI) constant of W. 

Candes and Tao [3] derived the perfect reconstruction con-
dition of RI constant for l1 norm minimization (3). After then, 
Chartland [5] generalized this condition to lp norm minimi-
zation (5).  

Theorem 2.  Let WCMN be an observation matrix.  Let 
xCN and let K||x ||0

0 be the size of the support of x.  
Moreover, let p(0, 1], and s1.  If the RI constant of W 
satisfies 

 s Ks ( 2p)/ps1) K   s ( 2p)/p –1,      (7) 

then the unique solution of (5) is exactly x. 

In (7), if p is very positive-small, then s ( 2p)/p  becomes 
very large and  (7) restricts s1) K  only. So, this condition is 
less restrictive when p is small.  

Fig.1 illustrates the searching performance of l1 norm mi-
nimization (3) and lp norm minimization (5) in the case of 
M2 and N3. In the figure, we suppose the observation 
space Wxy1 intersects at the angle   with the x3 axis, and let 
[0,0 ,c ]T be the intersection point. In this case, the sparsest 
solution is xsparse[0 ,0,c ]T. Nevertheless, when  /4, the 
result of l1 norm minimization is always the point x1-2, at 
which the observation space Wxy  crosses the x1-x2 plane, as 
shown in part (a). The shown octahedron is the eqi-norm 
surface ||x ||1 ||x1-2||1. On the contrary, if we select p small 
enough, lp norm minimization can find the sparsest point 
xsparse, as shown in part (b). The shown concave-octahedron is 
the eqi-norm surface ||x ||p ||xsparse||p.  

In the minimization method which will be described in the 
succeeding section, we initialize the algorithm by the easily 
obtained point satisfying the constraint equations Wxy . 
This initial point is selected as l2 norm solution to (3) with 
p2. However, l2 norm solution reaches more near to the 
 

1 Since M2 and N3, two observation constraints correspond to two 
planes in 3-dimensional space. Therefore, observation space is an intersec-
tion of those two planes, i.e. a right line. 

point x1-2 in the last performance example, as   becomes 
small. So, the convergent point x̂opt  is also the false  point x1-2. 
Therefore, the admissible p for stable convergence must be 
carefully selected. 

 
   Lastly, in some cases observation matrix WCMN must be 
designed. Relevant matrices are obtained as follows. 
1. Gaussian Matrices:  The entries of W are chosen as inde-
pendent-identically distributed Gaussian random variables 
with expectation 0 and variance 1/M.  
2. Bernoulli Matrices:  The entries of Bernoulli matrices are 
independent realizations of ±1/√M Bernoulli random va-
riables. 
 

III. AUXILIARY FUNCTION METHOD 

For a given objective function, auxiliary function (AF) 
method [6] iteratively decreases an appropriately designed 
objective function.  AF method does not always apply to any 
optimization problem, but it produces an effective optimiza-
tion algorithm if we design auxiliary functions satisfying a 
condition. In the following we outline a discipline of AF 
method and derive a condition satisfied by the auxiliary 
function. 

For a objective function L(s), if the relation 
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is true, we call L(s , a) the auxiliary function of L(s) and a 
the corresponding auxiliary variables. The next theorem 
yields the discipline for AF method.  

Theorem 3.  The objective function L(s) monotonically de-
creases by the iteratively alternating minimization of the 
auxiliary function L(s ,a ), satisfying (8), in respect to a 
followed by that in respect to s. 

When L(s , a) is quadratic in s and the optimum a is ana-
lytically computable, the above iterative optimization be-
comes very efficient. 
 

A. Auxiliary function for L(x) |x | p 

In order to design the auxiliary function for lp minimization 
of CS, let us consider the case of one variable objective 

Fig. 1.  Illustration for performance difference of l1 norm minimization 
(3) and lp minimization (5) in the case of M2 and N3.  When Wxy 
intersects at [0,0,c]T with x3 axis, the sparsest solution is x̂sparse [0,0,c]T. 
lp norm minimization can find x̂sparse but l1 minimization fails as re-
spectively shown in part (b) and (a). 

(a) l1 minimization (b) lp minimization (p1)
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function L(x) |x | p (0p2). We at first find quadratic 
functions L+(x, a)x2/(2a)b(a) not smaller than L(x) |x | p 
and tangent to L(x)  as shown in Fig. 2.  Such quadratic 
functions are given as 
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To certify that (9) satisfies the condition given by (8), take the 
derivative of L+(x,a ) with respect to a.  
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Thus, L+(x, a)  takes the minimum value with respect to a at 
ax| 2 p⁄p . The minimum value is 
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Therefore, we see L+(x,a)  given by (9) is the auxiliary func-
tion of L(x) |x | p. 

 

 

B. Auxiliary function for L(x) ||x || p
p
 

In the multivariate case, the objective function is lp norm of 
x, i.e. L(x)= ||x || p

p
= n |xn |

p
. To the variable xn (n1,⋯ ,N) we 

can respectively introduce an auxiliary variable an to write 
down its auxiliary function as 
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More simply, we have in vector notation, 
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2

1
),( T1T axaxax 1 L

       

     (13) 

where diag(a) is the NN diagonal matrix whose diagonal 
components are [a1,a2,⋯,aN ], shows the matrix inversion, 
and 
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In (12), when a is constant vector, L(x, a) is quadratic for x 
and thus the optimum x is uniquely determined. On the other 
hand, when x is constant the first term decreases and the 
second one increases as an increases, and thus the optimum a 
are uniquely determined depending on initial values of x. 
Therefore, iterative minimization uniquely determines the 
optimum x near to the given initial vector x. 

The constraint lp norm minimization, Eq.(5), can be re-
written using auxiliary function as 
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Using the Lagrange multiplies, the above problem can be 
translated to 
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where  is the M1 Lagrange multiplier vector. When 
1p2, the above lp norm minimization problem is convex 
but when 0p1, it is not. Therefore the local optimum 
solution is obtained. By putting the partial derivatives of J by 
x, a and  to zeros, each of which respectively leads to 
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It is noted that |  | 2 p is a component-wise operator. Substi-
tuting (16a) to (16c) and rearranging the order, we lastly have 

,])(diag[ T yWaW         (17a) 

,)(diag TWax         (17b) 

and        .
1 2 p

p
 |x|a         (17c) 

  The minimization is performed iteratively as follows. At 
first, we initialize a1, which corresponds to the l2 norm 
minimization in (5) with p2. Then we solve  to the si-
multaneous equations (17a) and substitute it for (17b) to get 
the corresponding vector x. From this x, we update coeffi-
cient vector a by (17c). This cycle is repeated until the root 
mean square differences of x’s between succeeding stages 
becomes less than .  

x

L

Fig. 2. Illustration for the auxiliary function L( x ,a ) of objective 
function L(x) |x | p. The auxiliary variable a is determined so that the 
quadratic auxiliary function L( x ,a ) is tangent to  the original objective 
function L(x). 
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In (13) diag1(a) describes the weighs of x’s components, 
so if the n-th component of x in some iteration stage were 
very small compared to other components, the evaluation 
weigh, diag1(an)p/|xn | 2p,  to this component will come to 
front and xn will be much smaller in the succeeding iterations. 
In this way, the sparse positions (zero components) are ex-
plored. The smaller p, the greater the relative difference of 
weights is. Therefore we can conclude the convergence of the 
above iteration algorithm will be faster as p becomes smaller. 

 

IV. SIMULATIONS 

We executed simulations of the above-mentioned lp norm 
reconstruction. The simulations are done for various values 
of p and compared them to the l1 simplex method. We sup-
posed the dimension of latent signals is N128, and observed 
them by M linear observations. The latent sparse signals x are 
randomly generated 1000,000 times with sparsity K=32. The 
measurement matrices W are generated by arrangement of 
i.i.d. Gaussian random numbers with zero mean and unit 
variance. The convergence decision constant was chosen 
=10.  We measured the success rates of perfect recon-
structions as we change M from 64 to 128. 

Fig. 3 shows the relation of success rate of perfect recon-
struction to the number of measurements. This shows the

 

perfect reconstruction is occurred even by the smaller num-
ber of measurements when p0.9 than when p1.0. The 
more precise simulations exhibited the least measurement 
number M69 (50% success rate) occurs when p0.95. 
Comparing with M94 of p1.00, about 68 % of measure-
ments will ensure perfect reconstruction in the l0.95 norm 
minimization. 

     Table 1 shows the comparison of processing time and 
success rate of perfect reconstruction between the proposed 
algorithm of l0.95 norm minimization and simplex method of 
l1 norm minimization. The comparison was done for mea-
surements of 50 random signals of length N=64. We com-
pared the cases of (K ,M)(16,50), (16,40) and (8,15), and 
the experiments were performed 50 times with different 
random signals and obtained the average processing time of 
perfect reconstruction. The programs were written in C  
language (compiler: gcc) and executed on CPU Core i7 
(2.8GHz) with 4.00GB main memory. 

   From Table 1, it is concluded in our method the perfect 
reconstruction ratio 100 % but in l1 simplex method the rates 
are not full mark. Therefore l0.95 norm minimization is robust 

to the number of measurements. In addition, processing times 
of our method are respectively 16 % and 6.5 % of those of l1 
simplex method when M is 50 and 40. But when both K and 
M are very small, l1 norm simplex method is a little faster. 

 

V. CONCLUSIONS 

This paper proposes a fast lp norm minimization method 
for compressed sensing. This method is based on auxiliary 
function method and the optimization is performed in itera-
tive reweighted least squares. We showed the unique solution 
is obtained depending on initial values by our method. For 
very small p, l2 norm solution may not be a suitable initial 
vector.  Simulation showed l0.95 norm minimization method is 
almost always faster than l1 norm simplex method.  

 Future work will be to explain the reason why the ro-
bustness decreases for small K like 0.1. Also, we want to 
apply our algorithm to X-ray CT reconstruction. 

 

REFERENCES 
[1] H.Tanaka, “Mathematics of compressed sensing (in Japanese),” IEICE 

Fundamentals Review, vol.4, no.1, pp.39-47, 2010. 

[2] D.L.Donho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.52, 
no.4, pp.1289-1306, 2006. 

[3]  E.J.Candes and T.Tao, “The restricted isometry property and its 
implications for compressed sensing,” C.R.Acad.Sci.I, Math., vol.346, 
nos.9-10, pp.589-592, 2008. 

[4] E.J.Candes and T.Tao, “Decoding by liner programing,” IEEE Trans. 
Inf. Theory, vol.51, no.12, pp.4203-4215, 2005. 

[5] R.Chartrand and V.Stqneva, “Restricted isometry properties and 
nonconvex compressed sensing,” Inverse Problems, vol.24, 
no.035020, pp.1-14, 2008. 

[6] H.Kameoka, Y.Kamamoto, N.Harada and K. Moritani, “A linear 
predictive coding algorithm minimizing the Golomb-Rice code length 
of the residual signal (in Japanese),” IEICE Trans. Fundamentals, 
vol.J91-A, no.11, pp.1017-1025, 2008. 

[7] R.Hogg, J.McKean and A.Craig, “ Introduction to Mathematical 
Statistics,” Pearson Prentice Hall, 2005.  

[8] Gorodnitsky and B. Rao, “Sparse signal reconstruction from limited 
data using FOCUSS: a re-weighted minimum norm algorithm. ,”  IEEE 
Trans. Signal Process., vol.45, no.3, pp.600–616, 1997. 
 

0

20

40

60

80

100

120

64 74 84 94 104 114 124

S
uc

ce
ss

 r
at

e 
%

# of meqsurements M

N=128, K=32

P=1.0
P=0.9
P=0.7
P=0.5
P=0.3
P=0.1

Fig.3. Success rate v.s. the number of measurements. Success rate of 
perfect reconstruction increases as the number of measurements in-
creases. The curve of p0.9 seems to have good performance ; perfect 
reconstruction occurs even with the least number of measurement. 

Table 1 Comparison of average processing time between 
l0.95 norm minimization and simplex method of l1 norm 
minimization (N=64 and 50 times repetition). 

Condition Comparison 
item 

l0.95 mini-
mization 

l1 simplex 
method K M 

16 50 
time (msec) 26 163 
PR rate (%) 100 96 

16 40 
time (msec) 35 538 
PR rate (%) 100 88 

8 15 
time (msec) 38 18 
PR rate (%) 100 86 

 




