

Abstract—Since Android has become a popular software

platform for mobile devices recently, many software repositories
collect and archive Android applications to facilitate the
dissemination of Android applications. As the number of new
Android applications tends to be rapidly increased in the near
future, automatic software categorization will be in great
demand. Although there are many approaches proposed for
automatic software categorization, they do not consider the
challenges specifically for Android applications. In this paper,
we propose an enhancement called LACTA based on LACT to
tackle this problem. LACTA extensively employs Android
domain knowledge in the process and uses LDA to extract
meaningful software topics for classification. We have
conducted empirical experiments with 42 applications. The
experimental results show that LACTA has promising
improvements under the consideration of Android domain
knowledge.

Index Terms—automatic software categorization, latent
Dirichlet allocation, Android, information retrieva l

I. INTRODUCTION

S Android has become a popular software platform for
mobile devices recently, many software repositories for

Android applications like Android Market (market.android.
com) are also populated accordingly. For ease of browsing
and searching for related software, they categorize the
archived Android applications into groups as traditional
software repositories for shareware and open-source software,
such as SourceForge.net, However, the classification is
usually determined manually by users or administrators for
most Android repositories. As the number of new Android
applications tends to be rapidly increased in the near future,
automatic software categorization will be in great demand for
management of Android application archives.

The research on automatic software categorization has
been discussed for many years. However, most past studies
mainly focus on the problem of classifying software
components to facilitate software reuse [1]-[3]. In addition,

Manuscript received December 29, 2011; revised January 17, 2012. This

work was supported in part by the National Science Council, Taiwan under
Grant NSC100-2221-E-155-060.

Cheng-Zen Yang is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan, Taiwan.
(phone:+886-3-4638800 ext 2361; e-mail: czyang@saturn.yzu.edu.tw)

Ming-Hsuan Tu is with the Department of Computer Science and
Engineering, Yuan Ze University, Taoyuan, 32003 Taiwan. (e-mail:
s973350@mail.yzu.edu.tw)

many proposed approaches for automatic software
categorization need text information from associated
documents or comments in the source code [1]-[5]. Although
recently several approaches, such as MUDABlue [6], [7] and
LACT [8], have been proposed to address the issue of
automatically classifying software applications fully based on
their source code, there are still challenges in applying these
approaches to Android applications.

First, most disseminated Android applications are
distributed in the native Android application package (APK)
from. Therefore, the APK files need to be first decompiled to
obtain the Java source code for further classification.
However, many meaningful identifiers in the original Java
source code will be converted to be meaningless in the
decompilation process. Therefore, the mount of available
useful textual information is much less in the decompiled
Android source code than in other open-source software
projects. To the best of our knowledge, no previous work has
considered this difficulty in the classification design.

Second, there are many XML files describing accompanied
resources in Android applications. How to employ these
XML files to enhance the classification performance needs to
be specifically considered for Android applications.

In this paper, we propose an enhancement based on the
LACT approach [8] to improve the automatic software
categorization performance for Android applications. The
enhancement is thus called LACTA (LACT for Android) in
which Latent Dirichlet Allocation (LDA) [9] is employed to
extract meaningful software topics by extensively using
Android domain knowledge. Then the software categories can
be automatically determined from the extract topics.
Thereafter the applications can be classified into the
determined categories based on their identified topics.

To evaluate the effectiveness of LACTA, we collected 42
Android applications from the Internet and conducted
empirical experiments in which LACTA was compared with
the original LACT. With the enhancement of Android domain
knowledge, LACTA outperforms LACT in classification
performance. In addition, LACTA also extract more
meaningful topic words for category generation.

 The rest of the paper is organized as follows. In Section2,
we briefly review precious research work on automatic
software categorization. Section 3 describes the design details
of LACTA. Section 4 presents the experiments and provides
discussion for the experimental results. In Section 5, we
discuss the potential threats to the validity of experimental
results. Finally, Section 6 concludes the paper and describes

LACTA: An Enhanced Automatic Software
Categorization on the Native Code of Android

Applications

Cheng-Zen Yang and Ming-Hsuan Tu

A

our future wok.

II. RELATED WORK

Automatic software categorization obtains notifications
when the information retrieval (IR) techniques are applied to
the software engineering domain. In 1991, a categorization
tool called GURU was proposed to automatically classify
software libraries by analyzing the associated documents and
manuals with IR techniques [1]. In GURU, documents
associated with software libraries, such as manual pages, are
indexed and classified into clusters using basic IR techniques
like removing less significant features and similarity
calculation. However, the classification of GURU relies on
the manually determined categorical hierarchy. In addition,
GURU does not consider the program code in its IR
processing.

In 1995, Merkl addressed the issue of organizing software
components using Self-Organizing Neural Networks [2]. In
this approach, both the ART model and the self-organizing
map (SOM) are used to explore the semantic similarities. As
GURU, this approach extracts keywords of software
components from manuals rather than the program code.
Therefore, this approach has the same shortcomings as
GURU. In addition, it only considers the classification at the
component level, rather than the software level. A similar
approach also using SOM is proposed in [3] by Chan and
Spracklen. Without the assistance of manual information, this
approach analyzes the source code for the classification.
However, it still only considers the component level
classification.

In 2002, a supervised machine learning approached was
proposed to use support vector machine (SVM) classifiers for
automatic software categorization [4], [5]. With the
prominent classification performance of SVM on text
documents, this approach achieves an average accuracy of
43% in software categorization. However, in this approach
text information of comments and README documents
plays an important role. In addition, the categories are fixed
due to the characteristics of supervised learning.

In 2004, MUDABlue was proposed to tackle the software
categorization problem using an unsupervised approach
based on Latent Semantic Analysis (LSA) [10] technique [6],
[7]. With the effectiveness of LSA in extracting latent
semantics from source code, MUDABlue has three major
advantages. First, the classification categories of software
projects can be automatically constructed. Second,
MUDABlue analyzes source code only. It does not require
additional information of software manuals or comments.
Third, a software project may be classified into several
categories rather than a single category as in the traditional
classification work. Using 41 C programs as the dateset,
MUDABlue shows its promising performance [6], [7].
However, a later study shows that some category names are
difficult to interpret in MUDABlue [8].

In 2007, Kuhn, Ducasse, and Girba proposed a technique
called Software Clustering (SC) which also uses LSA to find
software topics [11]. In SC, source code and comments are
analyzed to extract linguistic information. However, it is
mainly designed for software having the original source code.

In addition, it focuses on clustering software applications
according to the vocabulary, rather than classifying them
according to the category meanings.

In 2009, Tian, Revelle, and Poshyvanyk proposed LACT
[8] for software categorization using Latent Dirichlet
Allocation (LDA) which is a more advanced topic extraction
technique [9]. Although LACT can only achieve comparable
performance as MUDABlue, it can handle the divergences of
different programming languages. However, the lack of
extensively employing domain knowledge of software
platforms, its performance is limited for Android applications
as shown in our experiments.

III. LACTA DESIGN

For automatic software categorization on Android
applications, we enhance LACT by extensively including
Android platform domain knowledge in the classification
process. Fig. 1 illustrates the processing flow in LACTA. The
details of each step is elaborated in the rest of this section.

A. Android Application Decompilation

The objective of LACTA is to directly handle native code
of Android applications. Since Android applications are
packed into Android application package (APK) files for
dissemination, LACTA performs decompilation to convert
these APK files into Java source code for the following

Android App
Decompilation

Android
Apps

Android
Apps

Code
Preprocessing

LDA
Computation

Topic
Generation

Software
Clustering

…
…
…

…
…
…

App
Clusters

Android
Domain KB

Fig. 1. The processing flow in LACTA for automatic software categorization
on Android applications.

package ru.gelin.android.weather.notification.skin;
…
import android.app.NotificationManager;
import android.app.PendingIntent;
…
public abstract class WeatherNotificationReceiver extends BroadcastReceiver
{
 public static final String ACTION_WEATHER_UPDATE;
 public static final String EXTRA_ENABLE_NOTIFICATION;
 public static final String EXTRA_WEATHER;
…
 protected static PendingIntent getMainActivityPendingIntent(Context
paramContext)
 {
 Intent localIntent1 = new Intent(paramContext, MainActivity.class);
 Intent localIntent2 = localIntent1.addFlags(536870912);
 return PendingIntent.getActivity(paramContext, 0, localIntent1, 0);
 }
…

 }

Fig. 2. A decompilation results for an application weatherNotification 0.1.2.

processing. For decompilation, LACTA first uses the dex2jar
tool [12] to convert APK files into jar files, and then uses the
JD-GUI Java decompiler [13] to obtain the Java source code.
Fig. 2 is a decompilation example in which we get the Java
source code for an application weatherNotification 0.1.2. In
this step, LACTA also uses android-apktool [14] to get the
XML resource files in the Android applications. From the
figure, we can also find that many local variables, such as
localIntent1, lose their meanings after the decompilation.
Only identifiers declared as “public”, “private”, and
“protected” or declared as class names have their original
meanings.

B. Source Code Preprocessing

In this step, traditional information retrieval (IR)
preprocessing techniques are applied to the decompiled Java
source code. A large amount of Android domain knowledge is
also applied in the preprocessing step to obtain high-quality
features for classification. First, the non-literal characters and
the reserved keywords are removed from the source code,
because these terms have little meaning for software
categorization.

Then the identifiers in the source code are split to extract
terms for the classification work. For example, “gameStart()”
is split into “game” and “start”, and “music_player” is split
into “music” and “player”. The splitting rules used in LACTA
are similar to the rules in [15]. The characters like underscore
and hyphen are used as the delimiters.

There are two main reasons to perform split operations on
identifiers. First, the decompiled Java code does not contain
comment information. Therefore, the split operations can
extract more meaningful terms from identifiers. Second, many
identifiers may contain common terms such as “get” in
“getActiveNetworkInfo()”. These common words appear in
many applications and need to be eliminated to improve the
discriminability of the following classification work.
However, elimination of common terms influences the
classification performance because preserving some common
terms may be contributive to the classification accuracy. For
example, the words “player” and “video” are representative
for multimedia applications. Therefore, a term will be
removed only if it appears in more than one-half of
applications, and does not appear in the local string resource
files, such as Strings.xml.

After term extraction, common IR techniques, such as
stopword removal and stemming, are applied to these words.
Then each Android application is represented by a collection
of preprocessed terms for LDA computation. In addition, the
numbers of the terms appearing in both Java code and the
string resource files are multiplied by a weighting factor α
because these terms may have significant categorical meaning.
This weighting scheme is equivalent to α × tfi, where tfi is the
term frequency of term i.

C. LDA Computation

Latent Dirichlet Allocation (LDA) has been proven to be an
effective mechanism to mine the latent semantic topics from
documents [9]. In this step, we follow the design of LACT [8]
to extract the word-topic distribution matrices and the
topic-software distribution matrices using LDA. Therefore,

each application can have multiple classification topics each
of which consist of a collection of terms. These two kinds of
matrices are used for further topic generation and software
clustering.

Since the number of topics is an adjustable parameter in

LDA, different settings are evaluated in the experiments. Fig.
3 shows an example in which there are four applications and
each application has a topic rank list for four topics extracted
in LDA computations.

D. Topic Generation

To automatically decide the classification categories,
topics of similar semantics will be clustered into a category
from the word-topic matrices. In this step, topic t1 and t2 are
said to be semantically similar if the cosine similarity of them
is large than a predefined threshold ht. The cosine similarity is
computed as follows:

21

21
21),(

tt

tt
ttsimilarity

×
•

= (1)

where topic t1 is represented by the vector of extracted topic
terms in the word-topic matrices and so is t2. If the cosine
similarity is large than ht, these two topics are merged.
Another topic ti will be merged into this cluster only if ti is
similar to all existing topics in the cluster. Then for each
category there is a corresponding topic cluster containing one
or more topics.

Although this simple clustering process is effective in most
cases, a topic drifting problem may exist when a topic cluster
has two topics that are not similar, i.e., one topic is drifted far
away from another topic. To mitigate the topic drifting
problem in our approach, we use ht = 0.9 in topic generation.

E. Software Clustering

In the final step, software applications are classified into
the topic clusters according to a predefined topic-software
threshold hc, which defines how many topic clusters will be
considered for an application. If an application Appj has a
topic tm whose distribution value is large than hc, it will be
classified into the corresponding category.

IV. CLASSIFICATION EVALUATION

To study the classification performance of LACTA, we
collected 42 Android applications from the Internet. Since we
collected the applications from several sites and each site has

App1: view music music music music
music player player player player…

App2: set music music music music …
App3: photo photo photo photo photo

camera camera camera camera …
App4: game game game game game

game game game game game
ball bb…

Java Code Corpus

App1: view music music music music
music player player player player…

App2: set music music music music …
App3: photo photo photo photo photo

camera camera camera camera …
App4: game game game game game

game game game game game
ball bb…

Java Code Corpus

LDA
Computation

Topic-Software distribution

App1:
Topic2 0.5
Topic4 0.4
…
App2:
Topic4 0.5
Topic2 0.4
…

App3:
Topic1 0.99
Topic3 0.00
…
App4:
Topic3 0.99
Topic1 0.00
…

Topic-Software distribution

App1:
Topic2 0.5
Topic4 0.4
…
App2:
Topic4 0.5
Topic2 0.4
…

App3:
Topic1 0.99
Topic3 0.00
…
App4:
Topic3 0.99
Topic1 0.00
…

Word-Topic distribution

Topic1:
photo 0.11
camera 0.09
…
Topic2:
music 0.16
player 0.14
…

Topic3:
game 0.25
score 0.10
…
Topic4:
music 0.26
song 0.17
…

Word-Topic distribution

Topic1:
photo 0.11
camera 0.09
…
Topic2:
music 0.16
player 0.14
…

Topic3:
game 0.25
score 0.10
…
Topic4:
music 0.26
song 0.17
…

Fig. 3. The LDA computations generate the word-topic distribution matrices
and the topic-software distribution matrices.

its own classification, we manually classified the 42
applications into 8 categories. Table 1 describes the
information of the dataset used in the experiments.

In the experiment, we used GibbLDA++ [16] as the LDA
computation engine. The weighting factor α was 5, the
threshold ht was 0.9, and the topic-software threshold hc
ranged from 0.01 to 0.2 to discuss the impact of different
topic-software thresholds.

To evaluate the effectiveness of LACTA, we also
implemented LACT as the baseline. In the experiments,
precision and recall was computed as the performance
metrics for both LACT and LACTA. The classification
correctness is manually decided by inspecting the topic words
and the application contents as in the original LACT work [8].
Therefore, the generated categories are manually mapped to
the categories of Table 1 for performance evaluation. The
precision measure is the fraction of the number of
applications correctly categorized divided by the number of
all applications categorized. The recall measure is the fraction
of the number of applications correctly categorized divided
by the number of applications belonging to that category. In
the table, we also mark the results with the highest F1 measure,
where F1 = (2 × precision × recall)/(precision + recall).

Table 2 shows the precision and recall results for LACTA.
In the table, we can find that the topic-software distribution
threshold hc and the number of topics influence the
performance significantly. When the number of topics is 40
and hc=0.1, LACTA has the best precision and recall.

Table 3 shows the precision and recall results for LACT.
The experimental results show that LACT has the best F1
performance when the topic number is 50 and hc=0.2.
However, LACT cannot outperform LACTA in all cases.
There are two main reasons. First, the original LACT does not
consider the domain knowledge of Android programming.
Therefore, many platform-related topics will be generated in
LACT. For example, “Activity” and “Resource” are two
common words in Android programming, and their

appearances lower the classification performance. Second,
the original design of LACT focuses on open-source software
applications whose source code is accessible. However, only
decompiled source code is available for Android applications.
Therefore, the significance of many ambiguous identifiers
such as “a” and “aa” in the decompiled Java code needs to be
adjusted. In LACTA, we extensively utilize the string
resource files in Android applications to adjust the weights of
the extracted terms.

Using the settings of the highest F1 measure, LACTA
automatically decides 33 categories for these 42 applications.
Compared to the 8 categories defined in Table 1, LACTA can
find more categories with more specific meanings. Table 4

TABLE I
THE COLLECTED 42 ANDROID APPLICATIONS FOR CLASSIFICATION

STUDY.

Category Applications

Battery BatteryBar, BatteryChecker,
One_Touch_Battery_Saver

Camera Camera_360_0, Camera_Fun_Free_2,
Camera_Illusion_1

Communication PhoneQ_Lite_1, ReChat_0, Twitter_2
Finance AndTip_1, Auto_Loan_Calculator_1
Game Air_Control_Lite_1, AirAttack_Lite_3,

Andoku_1, Balance_The_Beer_1,
BallDroppings_Lite_1, Basketball_Shot_1,
BasketBall_v1, City_Jump_1, Jumper0,
Paddle_Bounce_1,
Pro_Basketball_Scores_2, Sand_Blaster_1,
Toss_It_1

Multimedia Adobe_Flash_Player_10, AMPlayer_0,
DAAP_Media_Player_0, Google_music,
Movies_2, Music_Queue_1, MusicCube_1,
SPB_TV_lite_1, Tranquilize_v1,
TV_Listings_2, Video_Player_1,
YouTube_2,

Reader Adobe_reader_2, BeamReader
Weather Animated_Weather_Free_2, CityWeather_1,

Weather_notification_0, Windfinder_1

TABLE II
THE CLASSIFICATION PERFORMANCE OF PRECISION AND RECALL FOR

LACTA.

Threshold hc Topics
0.01 0.02 0.05 0.1 0.2

10 0.38, 0.62 0.42, 0.62 0.46, 0.60 0.47, 0.60 0.48, 0.57
20 0.66, 0.83 0.67, 0.81 0.72, 0.79 0.74, 0.76 0.74, 0.74
30 0.78, 0.86 0.77, 0.83 0.79, 0.83 0.78, 0.83 0.77, 0.81
40 0.84, 0.98 0.84, 0.98 0.85, 0.98 0.89, 0.98 0.91, 0.95
50 0.87, 0.93 0.87, 0.93 0.87, 0.93 0.87, 0.93 0.86, 0.88
60 0.87, 0.93 0.89, 0.93 0.89, 0.93 0.89, 0.93 0.91, 0.93
70 0.85, 0.90 0.87, 0.90 0.86, 0.90 0.86, 0.90 0.86, 0.90
80 0.75, 0.95 0.78, 0.95 0.80, 0.95 0.87, 0.95 0.91, 0.95

TABLE III
THE CLASSIFICATION PERFORMANCE OF PRECISION AND RECALL FOR LACT.

Threshold hc Topics
0.01 0.02 0.05 0.1 0.2

10 0.15, 0.40 0.17, 0.40 0.17, 0.31 0.18, 0.29 0.19, 0.24
20 0.17, 0.45 0.20, 0.40 0.23, 0.36 0.29, 0.33 0.29, 0.33
30 0.22, 0.52 0.22, 0.52 0.22, 0.52 0.22, 0.50 0.23, 0.45
40 0.19, 0.57 0.20, 0.57 0.19, 0.52 0.21, 0.52 0.24, 0.50
50 0.18, 0.64 0.19, 0.64 0.21, 0.64 0.23, 0.64 0.27, 0.57
60 0.20, 0.48 0.19, 0.48 0.21, 0.48 0.21, 0.48 0.20, 0.40
70 0.19, 0.48 0.19, 0.48 0.20, 0.48 0.20, 0.48 0.20, 0.40
80 0.21, 0.55 0.21, 0.55 0.22, 0.55 0.23, 0.55 0.24, 0.48

TABLE IV
SOME AUTOMATICALLY GENERATED SOFTWARE CATEGORIES IN LACTA.

Category
ID

Topic Words Applications

1
file, playlist, prefer, artist,
album, audioformat

AMPlayer_0,
Adobe_Flash_Player_10

2
battery, widget, long, state BatteryChecker ,

One_Touch_Battery_Saver

3
song, player, music, listen,
headset

Music_Queue_1,
musicCube_1

4
plusmo, widget, drop, ball,
new

BallDroppings_Lite_1,
Pro_Basketball_Scores_2

5 game, score, jump City_Jump_1, Jumper0

6

score, pointf, high, ball,
basket

BasketBall_v1,
One_Touch_Battery_Saver*,
Tranquilize_v1*,
Balance_The_Beer_1

7
view, game, flash, paddle Adobe_Flash_Player_10*,

Paddle_Bounce_1

8
call, phone, phoneq, date,
number

Jumper0*, PhoneQ_Lite_1

9
camera, image, preview,
effect, photo

Camera_Fun_Free_2,
Camera_Illusion_1

10
ad, message, air, game,
logisoft

AirAttack_Lite_3,
Air_Control_Lite_1

11
weather, update, city,
locate, temperature, wind,
cloud

Animated_Weather_Free_2,
CityWeather_1 ,
Weather_notification_0

lists some automatically generated software categories that
have more than two software applications. Some applications
in the table are marked with “*” because they are
misclassified. From the table we can find that the extracted
topic words can effectively represent the themes of the
categories. For example, applications in Category 1 and 3 are
all related to multimedia, and applications in Category 4-7
and 10 are related to games. In the categorization of LACTA,
these applications are classified into more specific categories.

V. THREATS TO VALIDITY

Although LACTA shows its improvements in automatic
software categorization for Android applications, there are
some factors that may imperil the validity of the experimental
results of LACTA. For threats of internal validity, one major
concern is that many manual inspections are involved in the
experiments to decide whether the extract topic words belong
to some categories. Therefore, the subjectivity of judgments
may be introduced. Since the development of Android
applications is still emerging and the classifications for
Android applications are very divergent in many software
repositories, this problem cannot be avoided in the current
situation. Another threat of internal validity is that the settings
of thresholds are only studied for the collected applications. A
more comprehensive study needs to be conducted to explore
the generality of the effectiveness of LACTA. In addition, a
threat of internal validity is that the performance of LACTA
heavily relies on the exploration of Android domain
knowledge. How to build a high quality knowledge base will
be a major concern for the future study.

VI. CONCLUSION

Noticing that the number of new Android applications
tends to be rapidly increased in the near future, we find that
automatic software categorization will be in great demand for
management of Android application archives. Although there
have been may approaches proposed to address the automatic
software categorization problem, they cannot be directly
applied to Android applications because most disseminated
Android applications are distributed in the native Android
application package (APK) from. To perform software
categorization on Android applications needs the
decompilation process which in turn complicates the
automatic software categorization problem.

In this paper, we propose an enhancement based on the
LACT approach [8] extensively employs Android domain
knowledge with Latent Dirichlet Allocation (LDA) to
improve the automatic software categorization performance
for Android applications. In LACTA, software categories are
first determined and then Android applications are classified
into these categories accordingly.

Using 42 Android applications collected from the Internet,
we conducted empirical experiments to evaluate the
effectiveness of LACTA. Compared with the original LACT,
LACTA shows its prominent improvements in the
experiments. The promising performance shows the potential
feasibility of LACTA.

There are still several issues which need to be discussed in
the future. First, we plan to collect more Android applications

for a comprehensive study of various application types.
Second, the settings of thresholds used in LACTA play an
important role in classification performance. A mechanism
that can automatically determine these settings will facilitate
automatic software categorization in practice. This
challenging work will be also included in our plan. Finally, we
will investigate the mechanisms to extract more meaningful
features from Android applications. With more informative
features, we are convinced that automatic software
categorization for Android applications will be more feasible
in daily use.

REFERENCES

[1] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An information retrieval
approach for automatically constructing software libraries,” IEEE
Trans. Softw. Eng., vol. 17, no. 8, pp. 800-813, Aug. 1991.

[2] D. Merkl, “Content-based software categorization by
self-organization,” in Proc. of the IEEE International Conf. on Neural
Networks, 1995, pp. 1086–1091.

[3] A. Chan and T. Spracken, “Discovering common features in software
code using self-organizing maps,” in Proc. of the International
Symposium on Computational Intelligence (ISCI 2000), Kosice
Slovakia, Aug. 2000.

[4] S. Ugurel, R. Krovetz, and C. L. Giles, “What's the code? Automatic
classification of source code archives,” in Proc. of the 8th ACM
SIGKDD International Conf. on Knowledge Discovery and Data
Mining (KDD '02), 2002, pp. 632-638.

[5] R. Krovetz, S. Ugurel, and C. L. Giles, “Classification of source code
archives,” in Proc. of the 26th Annual International ACM SIGIR Conf.
on Research and Development in Information Retrieval (SIGIR '03),
2003, pp. 425-426.

[6] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue, “MUDABlue:
An automatic categorization system for open source repositories,” in
Proc. of the 11th Asia-Pacific Software Engineering Conf. (APSEC
2004), 2004, pp. 184–193.

[7] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. “MUDABlue:
an automatic categorization system for open source repositories,” J.
Systems and Software., vol. 79, no. 7, July 2006, pp. 939-953.

[8] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent Dirichlet
allocation for automatic categorization of software,” in Proc. of the 6th
IEEE International Working Conf. on Mining Software Repositories
(MSR 2009), 2009, pp.163-166.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
Journal of Machine Learning Research, vol. 3, 2003, pp. 993-1022.

[10] T. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent
semantic analysis,” Discourse Processes, no. 25, 1998, pp. 259–284.

[11] A. Kuhn, S. Ducasse, and T. Gírba, “Semantic clustering: identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, 2007, pp.230-243.

[12] The dex2jar project. Available: http://code.google.com/p/dex2jar/
[13] The JD-GUI tool. Available: http://java.decompiler.free.fr/?q=jdgui
[14] The android-apktool project. Available:

http://code.google.com/p/android-apktool/
[15] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business topics in

source code using latent Dirichlet allocation,” in Proc. of the First
India Software Engineering Conf., Hyderabad, India, 2008, pp.
113-120.

[16] X.-H. Phan and C.-T. Nguyen, “GibbsLDA++: A C/C++
implementation of latent Dirichlet allocation”. Available:
http://gibbslda.sourceforge.net/

