
  
Abstract—Since Android has become a popular software 

platform for mobile devices recently, many software repositories 
collect and archive Android applications to facilitate the 
dissemination of Android applications. As the number of new 
Android applications tends to be rapidly increased in the near 
future, automatic software categorization will be in great 
demand. Although there are many approaches proposed for 
automatic software categorization, they do not consider the 
challenges specifically for Android applications. In this paper, 
we propose an enhancement called LACTA based on LACT to 
tackle this problem. LACTA extensively employs Android 
domain knowledge in the process and uses LDA to extract 
meaningful software topics for classification. We have 
conducted empirical experiments with 42 applications. The 
experimental results show that LACTA has promising 
improvements under the consideration of Android domain 
knowledge.  
 

Index Terms—automatic software categorization, latent 
Dirichlet allocation, Android, information retrieva l 
 

I. INTRODUCTION 

S Android has become a popular software platform for 
mobile devices recently,  many software repositories for 

Android applications like Android Market (market.android. 
com) are also populated accordingly. For ease of browsing 
and searching for related software, they categorize the 
archived Android applications into groups as traditional 
software repositories for shareware and open-source software, 
such as SourceForge.net, However, the classification is 
usually determined manually by users or administrators for 
most Android repositories. As the number of new Android 
applications tends to be rapidly increased in the near future, 
automatic software categorization will be in great demand for 
management of Android application archives. 

The research on automatic software categorization has 
been discussed for many years. However, most past studies 
mainly focus on the problem of classifying software 
components to facilitate software reuse [1]-[3]. In addition, 
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many proposed approaches for automatic software 
categorization need text information from associated 
documents or comments in the source code [1]-[5]. Although 
recently several approaches, such as MUDABlue [6], [7] and 
LACT [8], have been proposed to address the issue of 
automatically classifying software applications fully based on 
their source code, there are still challenges in applying these 
approaches to Android applications.  

First, most disseminated Android applications are 
distributed in the native Android application package (APK) 
from. Therefore, the APK files need to be first decompiled to 
obtain the Java source code for further classification. 
However, many meaningful identifiers in the original Java 
source code will be converted to be meaningless in the 
decompilation process. Therefore, the mount of available 
useful textual information is much less in the decompiled 
Android source code than in other open-source software 
projects. To the best of our knowledge, no previous work has 
considered this difficulty in the classification design. 

Second, there are many XML files describing accompanied 
resources in Android applications. How to employ these 
XML files to enhance the classification performance needs to 
be specifically considered for Android applications. 

In this paper, we propose an enhancement based on the 
LACT approach [8] to improve the automatic software 
categorization performance for Android applications. The 
enhancement is thus called LACTA (LACT for Android) in 
which Latent Dirichlet Allocation (LDA) [9] is employed to 
extract meaningful software topics by extensively using 
Android domain knowledge. Then the software categories can 
be automatically determined from the extract topics. 
Thereafter the applications can be classified into the 
determined categories based on their identified topics. 

To evaluate the effectiveness of LACTA, we collected 42 
Android applications from the Internet and conducted 
empirical experiments in which LACTA was compared with 
the original LACT. With the enhancement of Android domain 
knowledge, LACTA outperforms LACT in classification 
performance. In addition, LACTA also extract more 
meaningful topic words for category generation. 

 The rest of the paper is organized as follows. In Section2, 
we briefly review precious research work on automatic 
software categorization. Section 3 describes the design details 
of LACTA. Section 4 presents the experiments and provides 
discussion for the experimental results. In Section 5, we 
discuss the potential threats to the validity of experimental 
results. Finally, Section 6 concludes the paper and describes 
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our future wok. 

II.  RELATED WORK 

Automatic software categorization obtains notifications 
when the information retrieval (IR) techniques are applied to 
the software engineering domain. In 1991, a categorization 
tool called GURU was proposed to automatically classify 
software libraries by analyzing the associated documents and 
manuals with IR techniques [1]. In GURU, documents 
associated with software libraries, such as manual pages, are 
indexed and classified into clusters using basic IR techniques 
like removing less significant features and similarity 
calculation. However, the classification of GURU relies on 
the manually determined categorical hierarchy. In addition, 
GURU does not consider the program code in its IR 
processing.  

In 1995, Merkl addressed the issue of organizing software 
components using Self-Organizing Neural Networks [2]. In 
this approach, both the ART model and the self-organizing 
map (SOM) are used to explore the semantic similarities. As 
GURU, this approach extracts keywords of software 
components from manuals rather than the program code. 
Therefore, this approach has the same shortcomings as 
GURU. In addition, it only considers the classification at the 
component level, rather than the software level. A similar 
approach also using SOM is proposed in [3] by Chan and 
Spracklen. Without the assistance of manual information, this 
approach analyzes the source code for the classification. 
However, it still only considers the component level 
classification. 

In 2002, a supervised machine learning approached was 
proposed to use support vector machine (SVM) classifiers for 
automatic software categorization [4], [5]. With the 
prominent classification performance of SVM on text 
documents, this approach achieves an average accuracy of 
43% in software categorization. However, in this approach 
text information of comments and README documents 
plays an important role. In addition, the categories are fixed 
due to the characteristics of supervised learning.  

In 2004, MUDABlue was proposed to tackle the software 
categorization problem using an unsupervised approach 
based on Latent Semantic Analysis (LSA) [10] technique [6], 
[7]. With the effectiveness of LSA in extracting latent 
semantics from source code, MUDABlue has three major 
advantages. First, the classification categories of software 
projects can be automatically constructed. Second, 
MUDABlue analyzes source code only. It does not require 
additional information of software manuals or comments. 
Third, a software project may be classified into several 
categories rather than a single category as in the traditional 
classification work. Using 41 C programs as the dateset, 
MUDABlue shows its promising performance [6], [7]. 
However, a later study shows that some category names are 
difficult to interpret in MUDABlue [8].  

In 2007, Kuhn, Ducasse, and Girba proposed a technique 
called Software Clustering (SC) which also uses LSA to find 
software topics [11]. In SC, source code and comments are 
analyzed to extract linguistic information. However, it is 
mainly designed for software having the original source code. 

In addition, it focuses on clustering software applications 
according to the vocabulary, rather than classifying them 
according to the category meanings.           

In 2009, Tian, Revelle, and Poshyvanyk proposed LACT 
[8] for software categorization using Latent Dirichlet 
Allocation (LDA) which is a more advanced topic extraction 
technique [9].  Although LACT can only achieve comparable 
performance as MUDABlue, it can handle the divergences of 
different programming languages. However, the lack of 
extensively employing domain knowledge of software 
platforms, its performance is limited for Android applications 
as shown in our experiments.  

III.  LACTA  DESIGN 

For automatic software categorization on Android 
applications, we enhance LACT by extensively including 
Android platform domain knowledge in the classification 
process. Fig. 1 illustrates the processing flow in LACTA. The 
details of each step is elaborated in the rest of this section. 

A. Android Application Decompilation 

The objective of LACTA is to directly handle native code 
of Android applications. Since Android applications are 
packed into Android application package (APK) files for 
dissemination, LACTA performs decompilation to convert 
these APK files into Java source code for the following 
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Fig. 1.  The processing flow in LACTA for automatic software categorization 
on Android applications.  

package ru.gelin.android.weather.notification.skin; 
… 
import android.app.NotificationManager; 
import android.app.PendingIntent; 
… 
public abstract class WeatherNotificationReceiver extends BroadcastReceiver 
{ 
  public static final String ACTION_WEATHER_UPDATE; 
  public static final String EXTRA_ENABLE_NOTIFICATION; 
  public static final String EXTRA_WEATHER; 
… 
 protected static PendingIntent getMainActivityPendingIntent(Context 
paramContext) 
  { 
    Intent localIntent1 = new Intent(paramContext, MainActivity.class); 
    Intent localIntent2 = localIntent1.addFlags(536870912); 
    return PendingIntent.getActivity(paramContext, 0, localIntent1, 0); 
  } 
… 

 } 
 

Fig. 2.  A decompilation results for an application weatherNotification 0.1.2.  



processing. For decompilation, LACTA first uses the dex2jar 
tool [12] to convert APK files into jar files, and then uses the 
JD-GUI Java decompiler [13] to obtain the Java source code. 
Fig. 2 is a decompilation example in which we get the Java 
source code for an application weatherNotification 0.1.2. In 
this step, LACTA also uses android-apktool [14] to get the 
XML resource files in the Android applications. From the 
figure, we can also find that many local variables, such as 
localIntent1, lose their meanings after the decompilation. 
Only identifiers declared as “public”, “private”, and 
“protected” or declared as class names have their original 
meanings.  

B. Source Code Preprocessing 

In this step, traditional information retrieval (IR) 
preprocessing techniques are applied to the decompiled Java 
source code. A large amount of Android domain knowledge is 
also applied in the preprocessing step to obtain high-quality 
features for classification. First, the non-literal characters and 
the reserved keywords are removed from the source code, 
because these terms have little meaning for software 
categorization.  

Then the identifiers in the source code are split to extract 
terms for the classification work. For example, “gameStart()” 
is split into “game” and “start”, and “music_player” is split 
into “music” and “player”. The splitting rules used in LACTA 
are similar to the rules in [15]. The characters like underscore 
and hyphen are used as the delimiters. 

There are two main reasons to perform split operations on 
identifiers. First, the decompiled Java code does not contain 
comment information. Therefore, the split operations can 
extract more meaningful terms from identifiers. Second, many 
identifiers may contain common terms such as “get” in 
“getActiveNetworkInfo()”. These common words appear in 
many applications and need to be eliminated to improve the 
discriminability of the following classification work. 
However, elimination of common terms influences the 
classification performance because preserving some common 
terms may be contributive to the classification accuracy. For 
example, the words “player” and “video” are representative 
for multimedia applications. Therefore, a term will be 
removed only if it appears in more than one-half of 
applications, and does not appear in the local string resource 
files, such as Strings.xml.  

After term extraction, common IR techniques, such as 
stopword removal and stemming, are applied to these words. 
Then each Android application is represented by a collection 
of preprocessed terms for LDA computation. In addition, the 
numbers of the terms appearing in both Java code and the 
string resource files are multiplied by a weighting factor α 
because these terms may have significant categorical meaning. 
This weighting scheme is equivalent to α × tfi, where tfi is the 
term frequency of term i. 

C. LDA Computation 

Latent Dirichlet Allocation (LDA) has been proven to be an 
effective mechanism to mine the latent semantic topics from 
documents [9]. In this step, we follow the design of LACT [8] 
to extract the word-topic distribution matrices and the 
topic-software distribution matrices using LDA. Therefore, 

each application can have multiple classification topics each 
of which consist of a collection of terms. These two kinds of 
matrices are used for further topic generation and software 
clustering. 

Since the number of topics is an adjustable parameter in 

LDA, different settings are evaluated in the experiments. Fig. 
3 shows an example in which there are four applications and 
each application has a topic rank list for four topics extracted 
in LDA computations. 

D. Topic Generation 

To automatically decide the classification categories, 
topics of similar semantics will be clustered into a category 
from the word-topic matrices. In this step, topic t1 and t2 are 
said to be semantically similar if the cosine similarity of them 
is large than a predefined threshold ht. The cosine similarity is 
computed as follows: 
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where topic t1 is represented by the vector of extracted topic 
terms in the word-topic matrices and so is t2. If the cosine 
similarity is large than ht, these two topics are merged. 
Another topic ti will be merged into this cluster only if ti is 
similar to all existing topics in the cluster. Then for each 
category there is a corresponding topic cluster containing one 
or more topics. 

Although this simple clustering process is effective in most 
cases, a topic drifting problem may exist when a topic cluster 
has two topics that are not similar, i.e., one topic is drifted far 
away from another topic. To mitigate the topic drifting 
problem in our approach, we use ht = 0.9 in topic generation. 

E. Software Clustering 

In the final step, software applications are classified into 
the topic clusters according to a predefined topic-software 
threshold hc, which defines how many topic clusters will be 
considered for an application. If an application Appj has a 
topic tm whose distribution value is large than hc, it will be 
classified into the corresponding category.   

 

IV.  CLASSIFICATION EVALUATION  

To study the classification performance of LACTA, we 
collected 42 Android applications from the Internet. Since we 
collected the applications from several sites and each site has 
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Fig. 3.  The LDA computations generate the word-topic distribution matrices 
and the topic-software distribution matrices.  



its own classification, we manually classified the 42 
applications into 8 categories. Table 1 describes the 
information of the dataset used in the experiments. 

In the experiment, we used GibbLDA++ [16] as the LDA 
computation engine. The weighting factor α was 5, the 
threshold ht was 0.9, and the topic-software threshold hc 
ranged from 0.01 to 0.2 to discuss the impact of different 
topic-software thresholds.  

To evaluate the effectiveness of LACTA, we also 
implemented LACT as the baseline. In the experiments, 
precision and recall was computed as the performance 
metrics for both LACT and LACTA. The classification 
correctness is manually decided by inspecting the topic words 
and the application contents as in the original LACT work [8]. 
Therefore, the generated categories are manually mapped to 
the categories of Table 1 for performance evaluation. The 
precision measure is the fraction of the number of 
applications correctly categorized divided by the number of 
all applications categorized. The recall measure is the fraction 
of the number of applications correctly categorized divided 
by the number of applications belonging to that category. In 
the table, we also mark the results with the highest F1 measure, 
where F1 = (2 × precision × recall)/(precision + recall). 

Table 2 shows the precision and recall results for LACTA. 
In the table, we can find that the topic-software distribution 
threshold hc and the number of topics influence the 
performance significantly. When the number of topics is 40 
and hc=0.1, LACTA has the best precision and recall. 

Table 3 shows the precision and recall results for LACT. 
The experimental results show that LACT has the best F1 
performance when the topic number is 50 and hc=0.2. 
However, LACT cannot outperform LACTA in all cases. 
There are two main reasons. First, the original LACT does not 
consider the domain knowledge of Android programming. 
Therefore, many platform-related topics will be generated in 
LACT. For example, “Activity” and “Resource” are two 
common words in Android programming, and their 

appearances lower the classification performance. Second, 
the original design of LACT focuses on open-source software 
applications whose source code is accessible. However, only 
decompiled source code is available for Android applications. 
Therefore, the significance of many ambiguous identifiers 
such as “a” and “aa” in the decompiled Java code needs to be 
adjusted. In LACTA, we extensively utilize the string 
resource files in Android applications to adjust the weights of 
the extracted terms.  

Using the settings of the highest F1 measure, LACTA 
automatically decides 33 categories for these 42 applications. 
Compared to the 8 categories defined in Table 1, LACTA can 
find more categories with more specific meanings. Table 4 

TABLE I 
THE COLLECTED 42 ANDROID APPLICATIONS FOR CLASSIFICATION 

STUDY. 

Category Applications  

Battery  BatteryBar, BatteryChecker, 
One_Touch_Battery_Saver  

Camera Camera_360_0, Camera_Fun_Free_2, 
Camera_Illusion_1 

Communication PhoneQ_Lite_1, ReChat_0, Twitter_2 
Finance AndTip_1, Auto_Loan_Calculator_1 
Game  Air_Control_Lite_1, AirAttack_Lite_3, 

Andoku_1, Balance_The_Beer_1, 
BallDroppings_Lite_1, Basketball_Shot_1, 
BasketBall_v1,  City_Jump_1, Jumper0,  
Paddle_Bounce_1, 
Pro_Basketball_Scores_2, Sand_Blaster_1, 
Toss_It_1 

Multimedia  Adobe_Flash_Player_10, AMPlayer_0, 
DAAP_Media_Player_0, Google_music, 
Movies_2, Music_Queue_1, MusicCube_1, 
SPB_TV_lite_1, Tranquilize_v1,  
TV_Listings_2, Video_Player_1, 
YouTube_2,  

Reader Adobe_reader_2, BeamReader  
Weather  Animated_Weather_Free_2, CityWeather_1, 

Weather_notification_0, Windfinder_1 

 

TABLE II 
THE CLASSIFICATION PERFORMANCE OF PRECISION AND RECALL FOR 

LACTA. 

Threshold hc Topics 
0.01 0.02 0.05 0.1 0.2 

10 0.38, 0.62 0.42, 0.62 0.46, 0.60 0.47, 0.60 0.48, 0.57 
20 0.66, 0.83 0.67, 0.81 0.72, 0.79 0.74, 0.76 0.74, 0.74 
30 0.78, 0.86 0.77, 0.83 0.79, 0.83 0.78, 0.83 0.77, 0.81 
40 0.84, 0.98 0.84, 0.98 0.85, 0.98 0.89, 0.98 0.91, 0.95 
50 0.87, 0.93 0.87, 0.93 0.87, 0.93 0.87, 0.93 0.86, 0.88 
60 0.87, 0.93 0.89, 0.93 0.89, 0.93 0.89, 0.93 0.91, 0.93 
70 0.85, 0.90 0.87, 0.90 0.86, 0.90 0.86, 0.90 0.86, 0.90 
80 0.75, 0.95 0.78, 0.95 0.80, 0.95 0.87, 0.95 0.91, 0.95 

 

TABLE III 
THE CLASSIFICATION PERFORMANCE OF PRECISION AND RECALL FOR LACT. 

Threshold hc Topics 
0.01 0.02 0.05 0.1 0.2 

10 0.15, 0.40 0.17, 0.40 0.17, 0.31 0.18, 0.29 0.19, 0.24 
20 0.17, 0.45 0.20, 0.40 0.23, 0.36 0.29, 0.33 0.29, 0.33 
30 0.22, 0.52 0.22, 0.52 0.22, 0.52 0.22, 0.50 0.23, 0.45 
40 0.19, 0.57 0.20, 0.57 0.19, 0.52 0.21, 0.52 0.24, 0.50 
50 0.18, 0.64 0.19, 0.64 0.21, 0.64 0.23, 0.64 0.27, 0.57 
60 0.20, 0.48 0.19, 0.48 0.21, 0.48 0.21, 0.48 0.20, 0.40 
70 0.19, 0.48 0.19, 0.48 0.20, 0.48 0.20, 0.48 0.20, 0.40 
80 0.21, 0.55 0.21, 0.55 0.22, 0.55 0.23, 0.55 0.24, 0.48 

 

 

TABLE IV 
SOME AUTOMATICALLY GENERATED SOFTWARE CATEGORIES IN LACTA. 

Category 
ID 

Topic Words Applications 

1 
file, playlist, prefer, artist, 
album, audioformat  

AMPlayer_0, 
Adobe_Flash_Player_10 

2 
battery, widget, long, state BatteryChecker , 

One_Touch_Battery_Saver 

3 
song, player, music, listen, 
headset 

Music_Queue_1, 
musicCube_1 

4 
plusmo, widget, drop, ball, 
new 

BallDroppings_Lite_1,  
Pro_Basketball_Scores_2 

5 game, score, jump City_Jump_1, Jumper0 

6 

score, pointf, high, ball, 
basket 

BasketBall_v1, 
One_Touch_Battery_Saver*, 
Tranquilize_v1*, 
Balance_The_Beer_1 

7 
view, game, flash, paddle Adobe_Flash_Player_10*, 

Paddle_Bounce_1 

8 
call, phone, phoneq, date, 
number 

Jumper0*, PhoneQ_Lite_1 

9 
camera, image, preview, 
effect, photo 

Camera_Fun_Free_2, 
Camera_Illusion_1 

10 
ad, message, air, game, 
logisoft 

AirAttack_Lite_3, 
Air_Control_Lite_1 

11 
weather, update, city, 
locate, temperature, wind, 
cloud 

Animated_Weather_Free_2,  
CityWeather_1 , 
Weather_notification_0 

 



lists some automatically generated software categories that 
have more than two software applications. Some applications 
in the table are marked with “*” because they are 
misclassified. From the table we can find that the extracted 
topic words can effectively represent the themes of the 
categories. For example, applications in Category 1 and 3 are 
all related to multimedia, and applications in Category 4-7 
and 10 are related to games. In the categorization of LACTA, 
these applications are classified into more specific categories. 

V. THREATS TO VALIDITY  

Although LACTA shows its improvements in automatic 
software categorization for Android applications, there are 
some factors that may imperil the validity of the experimental 
results of LACTA. For threats of internal validity, one major 
concern is that many manual inspections are involved in the 
experiments to decide whether the extract topic words belong 
to some categories. Therefore, the subjectivity of judgments 
may be introduced. Since the development of Android 
applications is still emerging and the classifications for 
Android applications are very divergent in many software 
repositories, this problem cannot be avoided in the current 
situation. Another threat of internal validity is that the settings 
of thresholds are only studied for the collected applications. A 
more comprehensive study needs to be conducted to explore 
the generality of the effectiveness of LACTA. In addition, a 
threat of internal validity is that the performance of LACTA 
heavily relies on the exploration of Android domain 
knowledge. How to build a high quality knowledge base will 
be a major concern for the future study. 

VI.  CONCLUSION 

Noticing that the number of new Android applications 
tends to be rapidly increased in the near future, we find that 
automatic software categorization will be in great demand for 
management of Android application archives. Although there 
have been may approaches proposed to address the automatic 
software categorization problem, they cannot be directly 
applied to Android applications because most disseminated 
Android applications are distributed in the native Android 
application package (APK) from. To perform software 
categorization on Android applications needs the 
decompilation process which in turn complicates the 
automatic software categorization problem. 

In this paper, we propose an enhancement based on the 
LACT approach [8] extensively employs Android domain 
knowledge with Latent Dirichlet Allocation (LDA) to 
improve the automatic software categorization performance 
for Android applications. In LACTA, software categories are 
first determined and then Android applications are classified 
into these categories accordingly. 

Using 42 Android applications collected from the Internet, 
we conducted empirical experiments to evaluate the 
effectiveness of LACTA. Compared with the original LACT, 
LACTA shows its prominent improvements in the 
experiments. The promising performance shows the potential 
feasibility of LACTA. 

There are still several issues which need to be discussed in 
the future. First, we plan to collect more Android applications 

for a comprehensive study of various application types. 
Second, the settings of thresholds used in LACTA play an 
important role in classification performance. A mechanism 
that can automatically determine these settings will facilitate 
automatic software categorization in practice. This 
challenging work will be also included in our plan. Finally, we 
will investigate the mechanisms to extract more meaningful 
features from Android applications. With more informative 
features, we are convinced that automatic software 
categorization for Android applications will be more feasible 
in daily use. 
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