


Abstract— The use of general purpose modeling languages

(GPMLs) in specifying software applications has given way to
the use of domain-specific modeling languages (DSMLs).
DSMLs offer a vocabulary of terms and concepts that are
fundamental to the problem and solution domains, whereas
GPMLs constructs are usually too generic to be directly
applied in some domains. Many DSMLs are high-level textual
programming languages, which offered little support for
modeling at the analysis, and design phases of application
development. The objective of this work is to develop semi-
formal graphical DSMLs, which are to be used at the analysis
and design stages of application development. The benefits
derived from such DSML are reuse of domain artifacts;
reduction in delivering completed products; rigorous analysis
of domain applications; and more maintainable applications.

Index Terms— Domain modeling language, meta-model,
domain analysis.

I. INTRODUCTION

HE use of general purpose modeling language
(GPMLs) in specifying software applications has given

way to the use of domain-specific modeling language
(DSMLs). This is evident from the many DSMLs being
developed and used (examples are [1, 2, 3]). DSMLs offer
a vocabulary of terms and concepts that are fundamental to
the problem and solution domains, whereas GPMLs
constructs are usually too generic to be directly applied in a
solution for some problem domains. Review of some
DSML show that they: (1) are based on textual notations;
(2) lack a clear definition of the underlying syntax and
semantics; and (3) are designed for use at the
implementation phase of software development.

These observations demonstrate the limited use of such
DSML. In domains where graphical notations are
extensively used, textual notations add ambiguities. In
others, analysis and design models are required as key
products of the software development process. While in
some, rigorous analysis of application models is required.

The availability of standardized modeling notations for
object-oriented (OO) development (the Unified Modeling
Language (UML) [4]) and a mechanisms to tailor such
modeling notation, (the UML extension mechanism (EM)),
make it possible to define graphical-based domain-specific
modeling language (DSML) that have a well-defined syntax

Manuscript received December 08, 2011; revised January 31, 2012.
Emanuel S. Grant is an Associate Professor with the Department of

Computer Science, University of North Dakota, Grand Forks, North
Dakota, USA. Phone 701.777.4133, Fax 701.777.3330,
grante@aero.und.edu.

and semi-formal semantics. Such DSML are made more
practical by having artifacts from domain analysis (DA)
(e.g. commonality analysis [5]), and the capability to
integrate formal specification techniques (FST) [6] with the
informal modeling notations.

The UML [4] is a set of graphical and textual notations
for modeling various views of software systems, using OO
concepts. The UML’s EM is used to tailor the standard
UML concepts to specific requirements. Such mechanisms
offer support, for the UML to be structured around a core
set of constructs. This core UML will then form the base
for the derivation of other UML concepts and constructs [7].

The application of a coherent set of UML EMs that is
driven by the requirement of specific application domains
results in a UML profile. A UML profile is a package that
contains stereotyped (and non-stereotyped) model elements
that have been assembled to satisfy a set of modeling
requirements for a particular domain.

The definition of semi-formal graphical modeling
language components that are specific to particular domains
is the goal of this work. In this report, DSML will be
represented as UML profiles. The intention is to use the
features of the UML: meta-model elements, EMs, and
profiles to define DSMLs as a tool for application engineers.

DSMLs provide domain-specific modeling constructs to
create application models that can be analyzed before being
translated to code. In such environments, application
engineers will develop models using constructs that directly
reflect domain concepts, and these models will incorporate
expert experiences related to development decisions. A
high-level architectural description of such a development
environment, which is termed Rigorous Domain-Specific
Software Engineering (RDSSE) in this work, is illustrated in
Figure 1. Only the Domain Language Engineering activity
of Figure 1 is considered in this report.

This paper is organized as follows: Section 2 introduces
and defines the concept of domain-specific modeling
languages, as presented in this report; Section 3 illustrates
the components that constitute a DSML on an example
application domain; and Section 4 concludes with a look at
some related works and the benefits of using DSML.

II. DOMAIN-SPECIFIC MODELING LANGUAGE

There is a large amount of work on DSML (see [1, 2, 3]),
which holds promise for improving the quality of software
products. Notwithstanding the successful application of
DSML technologies, it has been realized that many DSMLs
are chiefly high level programming languages. Work with
UML profile has added another dimension to the application

A Meta-Model Approach to Defining UML-
Based Domain-Specific Modeling Language

Emanuel S. Grant

T

of domain-specific technology.

Fig 1.Rigorous Domain-Specific Software Engineering (RDSSE)

A. Requirements for DSML

In order for DSML technology to be exploited in any
domain, there are a number of requirements that must be
met for the technology to be successfully applied.

The first requirement is that the domain of concern must
be one that is mature, well defined, and is comprised of a
useful set of current and required applications [8]. This
requirement is based on the necessity that the DSML must
have some long-term intended use.

A second requirement is that the DSML must encompass
all known and relevant terms of the domain. Such terms are
the names of all domain-specific concepts, objects,
relationships, operations, functions, etc. that may appear in
any domain application specification at the analysis, and
design phases of software development. This requirement is
based on the necessity for the vocabulary, syntax, and
semantics of DSL terms to remain as stable as possible.

A third requirement for DSML is that it provides
abstraction for the domain concepts at the analysis and
design stages. Domain abstraction is chiefly concerned with
the mapping of various external views of the domain
applications to a set of functional representations [3].

A fourth requirement for DSML is that it should be
evolvable. With the passage of time, there will be new
requirements or the domain may be widened to include
features and concepts that were not a part of the initial set of
requirements, features, and concepts. The DSML for such
domains must be extended to accommodate these new
requirements, features and concepts.

B. DSML Syntax

The syntax for DSMLs is obtained from the UML
syntactic base. The syntactic base of a DSML is defined by:
(1) a syntactic domain, (2) a mapping from the syntactic

domain to a set of domain constructs (icons, picture, etc.),
and (3) a mapping from the domain constructs to the
concepts of the domain. The syntactic domain defines the
visual representation for the language, i.e. the language
notation.

The UML’s syntactic domain is a sub-set of constructs
from the 2-dimensional space of geometric figures, and
alphanumeric characters. The sub-set of figures include,
lines, points, and arrows that are used to represent the model
elements of the UML abstract syntax, and models that are
derived from the abstract syntax. The notation of a visual
language is the set of iconic elements (concrete syntax) that
are mapped to concepts of the language. Figure 3 gives
examples of the concept to concrete syntax mapping for the
UML.

The syntactic domain for a DSML may be identical to the
UML’s, a sub-set of the UML’s, or taken from a different
domain. Similarly, the iconic elements used to define the
abstract syntax of the DSML may be identical to the
UML’s, a sub-set of the UML’s, or from a different set of
icons. The use of a syntactic domain, and syntactic
elements that are different from the UML’s are permitted in
UML. This is achieved via the EM attribute icon that is of
the type Geometry and is defined as a “. . . geometric
description for an icon to be used to present an image of a
model element branded by the stereotype.” [4].

C. DSML Semantics

A semantic domain for the UML is not explicitly given in
the UML specification [4], but this can be deduced, for each
model element, from the semantic definition. The semantic
definition for a Class states that a “class is a description of a
set of objects…” [4] and an association is defined as “a
semantic relationship between classifiers.” [5], where the

application
requirements

Domain
Language

Engineering

Application
Engineering

Domain
Requirement
Engineering

Domain
Analysis and

Design

application
models

precise domain
requirement

specifications

domain
models

domain-specific
development rules

domain-specific
modeling language

informal and
formal notations

current, future, and legacy,
requirements

feedback feedback feedback

domain engineering

executable
code

feedback

domain-specific
architectural language

Legend

Input/output indicator Artifact

Methodology Information feedback

“instances of an association are a set of tuples relating
instances of the classifiers” [and each] “tuple value may
appear at most once” [5]. These semantic definitions imply
that UML class may be semantically mapped to the
mathematical concept of sets, and association to the
mathematical concept of relationship [9].

The approach taken in France et al. [9] and adapted in this
work, is to map the domain concept to a mathematical
concept, with similarities. Examples of this mapping from a
domain (the UML) concept to a well-known and understood
domain (mathematical) concept is illustrated in Figure 3,
where the UML Concept is mapped to a Semantic Domain
concept that is mathematical.

In defining the semantics of DSML a mapping from the
DSML concept to a formal (mathematical) domain concept
that exhibit similar properties to that of the domain concept
will be attempted. This is the approach outlined in the
following works [10, 11]. In the case where it is not
possible, to map a domain concept to a mathematical
concept the semantics of the domain concept will be
presented in the form of concise textual descriptions. This
approach explains the classification of the DSMLs of this
work as semi−formal. The semantics of the DSML is
expressed a mixture of formal statements and concise
textual statements.

III. DSML COMPONENTS

A DSML is presented as a set of components: domain
meta-models and domain rules that constitute the syntax and
semantics of the DSML. The structure for DSML is
represented as a profile (DSML) of packaged profiles
(DSML Stereotypes, Class Diagram meta-models, etc.).
The DSML profile package contains meta-models of the
domain models that are created during the domain analysis
and design activity (illustrated in Figure 1). The meta-
models are centered round the class diagram (CD) meta-
model, as a complete domain CD contains information from
multiple views of a software system. A complete domain
CD is one in which all classes, attributes, operation
signatures, and associations that are relevant to the domain
problem under consideration are included. The un-ended
lines of Figure 4 indicate there may be other sub-packages
and relationships, (i.e. additional meta-model profiles) that
are not shown in this particular description.

Stereotypes

<<profile>>

<<profile>> <<profile>>

<<profile>>

<<profile>>

<<access>>

<<access>>

<<access>>

Collaboration

meta−model
Activity Diagram

Use Case
meta−model

Class Diagram
meta−model

DSML

<<access>><<access>>

<<access>>

<<access>>

meta−model
Diagram

DSML <<profile>>

 Fig. 2. DSML Architecture

A. Domain Meta-models

In RDSSE, a meta-model is created for each of the
domain UML models developed. These meta-models are
specifically developed for the Language Engineering
process, and are not intended to be explicitly used in
Application Engineering. The meta-models are to be used
by tool and language developers. Language developers will
use the meta-models in defining the syntax of the language.
Tool developers will use the meta-models in interpreting the
syntax of the DSML, and facilitate automatic generation of
application model components within the tool environment.

The meta-models are composed of graphical
representations of the domain stereotypes, the associations
between the stereotypes, and the multiplicities on the
associations. The components of the meta-models must
fully comply with the syntactic and semantic definitions of
the UML, for the respective models and model elements
used. The multiplicities in a meta-model stipulate the
number of model elements that may appear in an associated
application model. This is because the instances of the
meta-model elements (stereotypes) are the stereotype-base
class model elements. This is consistent with the principle
that the instances of the meta-model (instances of the
stereotype) resides at the model level (MOF2 level M1) and
the meta-model elements (stereotypes) reside at the meta-
model level (MOF level M2) [4]. The UML Meta-Object
Facility meta-model hierarchy is represented in Table 1.

TABLE I UML META-MODEL

Meta-model level Example
M3 meta meta-model MOF meta-class (description of the meta-model)
M2 meta-model UML meta-model class (description of the model)
M1 model UML attribute (description of the instance)
M0 instance <rental_cost, 4.50>

B. Meta-model Example

Examples of a CD and its corresponding meta-model are
illustrated in Figure 3 and Figure 4 respectively. The CD of
Figure 3 was developed from the analysis of an example
domain, namely Checkin-Checkout [12]. This domain
relates to a family of applications that are characterized by
the following features:

• An administrator of the system (e.g. librarian in a
library system);

• A set of users who will be associated with the
functions of checking in and checking out (e.g.
customer in a car rental system);

• A set of items, with unique identifiers, that will be
checked in and/or checked out (e.g. videos in a
video rental system);

• A description of the items (e.g. book title
information in a library system);

• A set of policies associated with the administrator,
items, users, and transactions (e.g. age limit of
customers in a car rental system);

• A set of transaction information (e.g. record of a
rental receipt in the video rental system);

• A set of categories for users, items, and transactions
(e.g. fiction or non-fiction categories);

Fig. 3. Class Diagram of Checkin-Checkout Domain

A. The Domain Rules

During software development, the developers usually
(implicitly and explicitly) apply rules in defining the models
of the application. Some of these rules are from the
requirements and others are from the experience gained
during previous software development projects. In the
Domain Language Engineering activity of Figure 1, the
Domain-Specific Development Rules are used to define and
constrain the syntax and semantics of the DSML. The rules
are applied to the concepts (static and dynamic) of the
domain. The rules are expressed as OCL constraints (when
possible) in stereotypes of UML model elements. Within
RDSSE Domain Language Engineering, three types of rules
are specified:

Adaptation Rule - determines which UML model element
a domain concept is to be mapped to, and how the inherited
syntax and semantics are to be constrained. Adaptation
rules also specify what denotation mappings [13] are to be
applied to the concepts to refine its semantics.

Composition Rule - determines which domain concepts
must be included in an application model of the domain.

Execution of the composition rules leads to the definition

of models that capture patterns of the domain. These rules
result in the definition of composite domain concepts from
elementary domain concepts (UML model element).

Refinement Rule - determines which domain model
elements may be optionally included in domain application
models. The refinement rules are applied after the
composite rules have been executed. The refinement rules
result in further definition of composite domain concepts
from elementary and composed domain concepts. The
refinement rules facilitate the identification of optional
UML model elements and variations in the domain patterns.

The DSML Stereotypes sub-package of Figure 2 contains
the domain-specific semantics as defined by the Domain-
Specific Development Rule of Figure 1. The semantics is in
the form of stereotype constraints, denotation mappings, and
concise textual statements. These constraints also specify
how models may be instantiated from the DSML meta-
models and meta-model elements (e.g. an instantiation of an
application CD from the DSML CD meta-model, or an
instantiation of an application model element from a
stereotyped model element), by identifying the mandatory
(common) elements for the application models. The
stereotypes demonstrate how the UML meta-model

desc_info: STRING

User CategoryItem Category Policy

poly_type: STRING

User Administrator

Person

id_code: STRING
name: STRING
phone: STRING
entry_date: DATE

Transaction

trans_date: DATE
trans_time: DATE

return_date: DATE

Checkout Trans

return_time: DATE
late: BOOLEAN

Checkin Trans

charge: FLOAT

Change Trans

change_type: STRING start_date: DATE
end_date: DATE

Reserve Trans

notify_date: DATE

Transaction Category

lead_to

item_desc
item_tran

user_item

user_cat

0..*
0..*

0..*

0..*
0..*

1..1

0..*

0..*

0..*
1..1

item_cat

0..* ucat_policy

0..*0..*

admin_policy

0..*

0..*

0..*

icat_policy

0..*

0..*

user_tran

1..1

0..*

assist

0..* 0..*
Item

item_code: STRING

0..* 0..*

tran_cat

relate_toresult_in

1..1 0..1 0..* 1..1

0..1
0..1

tcat_policy

Description

elements are transformed into domain-specific elements by
application of the EMs (constraint, stereotype, and tag
definition) to define the semantics of the DSML.

B. Stereotype Example

An example of a stereotype for the item class of the
example domain Checkin − Checkout is presented in Table
II. The meta-attributes of the stereotyped model elements
are explicitly assigned values that aid in the specialization of
the model element semantic definition. The meta-attribute
mandatory of the stereotype ≪item≫ has been introduced
as a tag definition, which is now available to be applied to
any defined stereotype of the DSML. The tag definition is
illustrated in Table III.

The semantics of the stereotype (≪item≫) is defined by
the inherited semantics of its (1) Base Class, (2) uniqueness
(self → isUnique(self.item_code)), and (3) the semantics of
the associated operations (request_checkin, update_item,
create_item, and verify_item). Stereotypes for the
operations are also defined. The textual stereotypes may be
represented in a graphical format. The graphical format
presents the stereotypes as realized specializations of the
UML model element base classes.

TABLE II META-CLASS STEREOTYPE

Stereotype item
Base Class Class
Parent N/A
Tag mandatory
Constraint context ≪item≫ inv:

self.isAbstract = false and
self.isLeaf = true and
self.isRoot = true and
self.mandatory = true and
self→isUnique(self.item_code) and
self.≪user≫→size() = 1) and
self.≪description≫→size() = 1 and
self.≪transaction≫→size() ≥ 0) and
self.≪item_category≫→size() > 0 and
self.≪item_code≫.multiplicity = 1 and
self.≪item_code≫.changeability = frozen and
self.≪item_code≫.visibility = public and
self.operation→includesAll(request_checkin,
update_item, create_item, verify_item)

The DSML syntactic (meta-models) and semantic

(stereotypes) basis are presented as the foundation for
DSML definition, with the inputs to the definition process
for DSML being the domain models and rules. The output
of the domain language engineering process is a set of meta-
models that defines the syntax of the DSML, and the
stereotypes that define the semantics.

TABLE III: TAG DEFINITION MANDATORY

Tag mandatory
Stereotype item, user, description, etc.
Type UML::Datatype::Boolean
Multiplicity 1

C. Related Works

Desmond D’Souza et al. [14] argued that the introduction
of the profile concept in the UML was redundant, as the
specified mechanism for profiles could be achieved by using
the UML concepts of (1) package, and package-

import/generalization, (2) frameworks, and (3) OCL. This
assertion was debatable, but it is a moot point today as the
profile concept has been incorporated into the UML
specification. The current profile concept is not a new
concept, as it is defined from existing UML concepts of
package and stereotype. The UML list a set of predefined
package stereotypes that includes ≪profile≫. This
approach incorporates some aspect of D’Souza’s et al. view
in [14], and the original profile definition in the UML.

The approach taken by Steve Cook et al. in Defining
UML Family Members Using Prefaces [15] is a very high-
level description of their interpretation, of what, the UML
family of languages should contain and its semantics. They
conceded that:

“. . . the intent of the OMG’s activity on profiles is very
similar to the intent [of prefaces] and over time it may prove
appropriate to unify the concepts profile and preface” [15].

The key aspects of their definition of a preface are the
intended contents, which include:

• meta-level definitions of concepts, relationships
between concepts, features of concepts, and well-
formedness rules of the concepts,

• specializations and extensions of meta-models, abstract
syntax, semantics, and allowed transformations and
generations of the preceding, and the semantics of the
models, which they suggest should be defined in the form of
inference and axiomatic rules.

It is expected that prefaces will be very large because of
the wide range of subjects that are contained, thus Cook et
al. propose that prefaces will be organized into packages.
This idea is also fundamental in D’Souza et al. [14], and is
exploited in the work of this report.

IV. CONCLUSION

In this report, the UML profile is used to define
semiformal domain-specific modeling language express the
syntax and semantics of the DSML. The benefits derived
from using DSML profiles are:

• They are graphical modeling languages used by
application developers that reduce the time to deliver a
complete system;

• They are extensible and easily maintained,
• They captures analysis and design decisions and

facilitates extensive reuse of domain artifacts; and
• The models can be rigorously analyzed.
The UML profile was selected as the format for the

DSML because the UML has evolved into the de facto
modeling notation for object-oriented system development,
and the profile concept requirements, as set out in the
OMG’s Requirements for Profiles are congruent with the
requirements for a DSML, as defined in this work. The
DSML profile extensibility is achieved by the separate
packaging of the domain-specific semantics and abstract
syntax meta-models, as illustrated in Figure 2. Some
decisions a domain expert makes in developing models
within the domain are captured in the meta-models and
semantics of the DSML.

1..1

<<user_cat>>

<<user>>

generalization generalization generalization generalization

<<result_in>>

<<lead_to>>

<<relate_to>>

<<user_policy>>

<<tran_item>>

<<item_cat>><<item_desc>>

<<icat_policy>>

<<admin_policy>>

<<Administrator>>

<<user_tran>>
<<assist>>

generalization

generalization

<<Item>>

<<poly_type>>

<<id_code>>

<<start_date>>

<<end_date>>

<<notify_date>>

<<late_checkin>>
<<return_date>>

<<return_time>>

<<item category>> <<user category>>

<<transaction>>

<<checkout trans>> <<checkin trans>> <<change trans>>

<<policy>>

<<person>>

<<reserve trans>>

<<description>>

<<tran_cat>><<transaction category>>

<<desc_info>>

<<item_code>> <<trans_date>>

<<trans_time>>

1..1

0,1

0,1

1..1

1..1

1..1

1..1

childchild child child

1..* 1..*

0,1 0,10,10,1

0,1

0,10,1

0,1 0,1

0,1 0,1

0,10,10,1

0,1

1..1

1..1

0,1

0,1

1..1

1..1

1..1

1..1

1..1
<<user_item>>

1..1

1..1

1..1

1..*1..*

1..1

1..1

1..1

1..*

0,1 1..11..1 0,1 1..1

1..1

1..1

0..*

0..*

1..1

1..1

1..1 1..1

0,1

0,1

1..1

0,11..1

0,1

1..1

1..10,1

child

parent 1..1

parent 1..1

0,1

0,1

1..*1..*

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

parent 1..1

1..1 parent
parent 1..1

1..1 1..1

1..1 parent

1..1

1..1 child

1..11..1
1..1

0..1 1..1

1..1

1..1

1..*

1..1

1..*

1..1

1..1

Fig. 4. Meta-Model of Checkin-Checkout Domain Class Diagram

Finally, the DSML structure of Figure 2 allows the

language developer to include only the meta-models that are
pertinent for the domain under consideration, thus
eliminating unneeded models from the language.

REFERENCES
[1] Christian Hahn. A domain specific modeling language for multiagent

systems. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 233–240. ACM,
International Foundation for Autonomous Agents and Multiagent
Systems, May 2008.

[2] Bow-Yaw Wang. Modeling and analyzing applications with domain-
specific languages by reflective rewriting: A case study. In
Proceedings of the 2006 ACM symposium on Applied computing,
pages 1773–1778. ACM SIGAPP, ACM, April 2006.

[3] Scott Thibault, Renaud Marlet, and Charles Consel. A domain
specific language for video device drivers: From design to
implementation. IEEE Transactions on Software Engineering, 25(3),
May/June 1999.

[4] ISO/IEC 19501, Information Technology - Open Distributed
Processing,: Unified Modeling Language (UML) Version 1.4.2
(2005).

[5] David Weiss. Commonality analysis: A systematic process for
defining families. In Proceedings of the 2nd International Workshop
on Development and Evolution of Software Architecture for Product
Families, 1998.

[6] Ben Potter, Jane Sinclair, and David Till. An introduction to formal
specification and Z, 2nd Ed. Prentice Hall, International Series in
Computer Science, 1996.

[7] Tony Clark, Andy Evans, Stuart Kent, Steve Brodsky, and Steve
Cook. A feasibility study in rearchitecturing UML as a family of
languages using a precise OO meta-modeling approach. Technical
Report version 1.0, pUML Group, Sep 2000.

[8] Arie van Deursen and Paul Klint. Little languages: Little
maintenance? In Fourth International Conference on Foundations of
Object-Oriented Languages. Paris, France, 1997.

[9] Robert B. France, Emanuel S. Grant, and Jean-Michel Bruel.
UMLtranZ: An UML-based rigorous requirements modeling
technique. Technical report, Colorado State University, Ft. Collins,
Colorado, January 2000.

[10] Tony Clark, Andy Evans, and Stuart Kent. Using profiles to re-
architect the UML. In Third International Conference on the Unified
Modeling Languages (UML2000). York, England, October, 2000.

[11] Tony Clark, Andy Evans, Stuart Kent, and Paul Sammut. The MMF
approach to engineering object-oriented design languages. In
Workshop on Language Description, Tools and Application.
Dipartimento di Informatica e Scienze dell’Informazione (DISI)
Universit`a di Genova, April 2001.

[12] Emanuel S. Grant, Ph.D. Dissertation: Defining domain-specific
object-oriented modeling languages as UML profiles, Colorado State
University, Ft. Collins, Colorado, December 2002

[13] David A. Schmidt. Denotational Semantics: A Methodology for
Language Development. Allyn and Bacon, Inc., Newton,
Massachusetts, USA, 1986

[14] Desmond F. D’Souza, Aamod Sane, and Alan Birchenough. First
class extensibility for UML - Packaging of profiles, stereotypes,
patterns. Second International Conference on the Unified Modeling
Language ≪ UML ≫’99, Lecture Notes in Computer Science, pages
265–277, Ft. Collins, Colorado, USA, October 1999. Springer-Verlag.

[15] Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos
Warner, and Alan Cameron Wills. Defining UML family members
using prefaces. In Mingins C and Meyer B, editors, Technology of
Object-Oriented Languages & Systems. IEEE, 1999. Gonsalves and
K. Itoh, “Multi-Objective Optimization for Software Development
Projects,” in Lecture Notes in Engineering and Computer Science:
International Multiconference of Engineers and Computer Scientist
2010, pp. 1–6.

