Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

A Model Transformation Environment
for Embedded Control Software Design
with Simulink Models and UML Models

Masayoshi Tamura, Tatsuya Kamiyama, Takahiro Soeda, Myungryun Yoo and Takanori Yokoyama

Abstract—The paper presents a model transformation en- design. Software modeling languages such as UML should
vironment to transform a Simulink model to a UML model. pe used for software design.

The embedded control software development process consists A control system consists of various software modules

of the control logic design phase and the software design

phase. MATLAB/Simulink is widely used to build a controller Simulink models are suitable to represent control logics such
model in the control logic design phase. On the other hand, s feedback control and feedforward control. On the other
UML is widely used in the software design phase. To shift hand, UML is suitable for some software modules such as
from the control logic design phase to the software design application modules with procedural algorithms, input and
phase smoothly, we have developed a model transformation output modules and network communication modules. To
tool to transform a Simulink model to a UML model. The .) .)
UML model generated by the transformation tool consists of integrate those models, Slmullnk_models_ should be trans-
classes that encapsulate data and calculation methods of theformed to UML models before the integration because UML
data. To improve the reusability of the classes, the Simulink is suitable for software design. UML provides a number of
model should be well-layered. We have also developed a layeringkinds of diagrams, which are useful for not only functional
support tool for efficient layering of the Simulink model. design but also nonfunctional design.

We have applieq the model transformation environment to a Ramos-Hernandez et al. have presented a tool that trans-
number of Simulink models and found it useful for embedded e : P
control software design. forms a Simulink model to a UML model[3][4]. The
tool generates classes corresponding to each blocks of the
Simulink model. A dependency is generated corresponding
to a line that connects blocks. iMer-Glaser et al. have
presented a method to transform a Simulink model to a UML
. INTRODUCTION model, in which each object of the generated UML model
The embedded control software development process canresponds each element of the Simulink model[5][6].
be divided into the control logic design phase and the sofocks, lines and junctions are represented as objects in
ware design phase. In the control logic design phase, conttitd UML model. Spstedt et al. have presented a tool that
engineers design control logic, just considering functiontdfansforms a Simulink model to a UML model[7]. The tool
properties. In the software design phase, software enginegeserates composite structure diagrams as structural models
design the software structure and behavior to implement taed activity diagrams as behavior models. However, classes
control logic, considering not only functional properties butf UML models generated by those tools may not be reusable
also nonfunctional properties. because each class represents just an element of the original
Model-based design has become popular in embeddgidnulink models. To improve the reusability of the software,
control software design, especially in the automotive contral UML model should be structured based on the object-
domain. In model-based design, a CAD/CAE tool such asiented concept.
MATLAB/Simulink[1] is used to design control logic. A The goal of the research is to develop a model trans-
controller model is designed with block diagrams and verifiddrmation environment, which transforms a Simulink model
by simulation, and source code can be generated frdma reusable UML model. To achieve the goal, we define
the controller model. However, such CAD/CAE tools areules to transform a Simulink model to a UML model based
not sufficient for software design. Sangiovanni-Vincentelthn the design method for the time-triggered object-oriented
and Di Natale pointed out the shortcomings of the toolsoftware[8][9][10]. A control systems designed by the design
lack of separation between the functional and architectumgethod consists of objects that represent reasonable physical
model, lack of support for defining the task and resourapiantities in the control logic, for example, input values,
model, lack of modeling for analysis and backannotatioputput values, observed values, estimated values and desired
of scheduling-related delays and lack of sufficient semantiealues. We develop a model transformation tool based on
preservation[2]. CAD/CAE tools such as MATLAB/Simulinkthe defined rules. The tool generates UML structural models
should be used for just control logic design, not for softwam@nd behavioral models: class diagrams, object diagrams and
Manuscript received December 14, 2011; revised January 10, 2012. sequence diagrams. Each class O.f the gengra?ed UMI.' quel
M. Tamura, T. Kamiyama and T. Soeda are with Graduate School of Eq:,orresponds to a reasonable physical quantity in the Simulink
gineering, Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokymodel. The method of the class corresponds to the subsystem

158-8557 Japan (e-maifg1181524, g1081516, g098131@tcu.ac.jp). pjlock in the layered Simulink model. So a subsystem block
M. Yoo and T. Yokoyama are with Department of Computer Science,

Tokyo City University, 1-28-1, Tamazutsumi, Setagaya-ku, Tokyo 158-85§7a|CU|ating a phVSica_-I quantity can be reus.e.d asa Class' We
Japan (e-mail{yoo, yokoyamd@cs.tcu.ac.jp). also develop a layering support tool for efficient layering of

Index Terms—embedded software, model-based design, soft-
ware tools, control systems, real-time systems.

ISBN: 978-988-19251-1-4 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

? ValueObject
cons
Control Logic Design e ——
X AR O >
(MATLAB/Simulink) &?;tﬂﬂ:ir“wo%d;; I: + update()
v ST + get()
Functional Design il \ﬁ
Transformation Tool 71 Functional Mode ; i
Software () L (UML) Fig. 3. Base Abstract Class of Value Object
Design Nonfunctional Designfit I —
(UML E/I(:)ItioerI/Weaver) > Implementation Model
3 L R UML model. We call the UML model the functional model
Programming e ——— because thg mo_d_el represents implementation-_independent
(Hand Coding / Code Generator) | control functionalities. A functional model may be integrated
% with other models built in UML. The details of functional
design are described in Section 1I-B. In nonfunctional de-
Fig. 1. Development Flow of Embedded Control Software sign, we build an |mplementat|on 'mOdel taklng.account.of
nonfunctional properties. The details of nonfunctional design
Throttle Control are described in Section II-C.
Finally, in the programming phase, we write source pro-
gEngine nt gram to implement the implementation model. The source
n2 g;'::i'fg —» program may be automatically generated from the software
Engine In1 In3 uint16 oo model[11] or the controller model[10].
Torquer 16 Throttle
In2 Opening
Accelerator Torque Calculation
Opening Calculation

B. Functional Design

Fig. 2. Example Simulink Model We transform a Simulink model into a functional model

represented in UML with a model transformation environ-
a Simulink model ment, details of which are described in Section Ill. Our model

The rest of the paper is organized as follows. Section Il dggnsfo_rmatlon m_ethod IS based on the design method of the
scribes the control software development process with mo&l&]e-trlggergd object-onented_ software[8][9][1Q]. A contr_ol
transformation. Section Il describes details of the modalStem desgngd bydthe .desr']ganetlI]%q conS|st_|s_hof ng?CtS
transformation environment and shows model transformatigift correspond to data in the block diagram. The design

examples. Section IV describes the experiments of the mo ‘?thOd. identifies object; referring to'the daFa flow of the
transformation environment. Finally, Section V concludes t ock diagram representing control logic. The important data
paper ’ representing reasonable physical quantities, such as input

values, output values, observed values, estimated values and
desired values, are candidates for objects, because those

values are rarely deleted or added even if the detailed control
A. Software Development Flow logic is modified[10].

Figure 1 shows the embedded control software develop-The object representing data is called the value object. The
ment flow, which consists of the control logic design phasealue object encapsulates the data and the calculation method
the software design phase and the programming phase. of the value of the data. Figure 3 shows the base abstract

In the control logic design phase, we build a Simulinklass named/alueObject The class has methashdatethat
model that represents a control system. A Simulink mode#lculates its own value and stores the value in an attribute
of a control system usually consists of a plant model aref the class. If values stored in other objects are required to
a controller model. The controller model represents contreglculate its own value, the required values are obtained by
logic. Figure 2 shows an example Simulink model, whichalling methodgyet of the relevant objects. Concrete classes
is a throttle control part of an automotive control systen®f value objects are subclasses of the base abstract class.
The Simulink model inputs engine revolution, engine status Figure 4 shows the class diagram of the functional model
and accelerator opening, and outputs throttle opening. Té@rresponding to the Simulink model shown by Figure 2.
model consists of three inport blocks for engine revolutioffhe class diagram consists of six clasdesgine revolution
engine status and accelerator opening, two subsystem bloEkgineStatusAcceleratorOpeningTorque ThrottleOpening
to calculate torque and throttle opening, and an outport bloakdThrottleControl ThrottleControlis a whole object, which
for throttle opening. Figure 2 shows the higher layer modebrresponds to the whole Simulink model shown by Figure 2.
of the layered Simulink model. The details of the calculatiofhe association nametbnsmeans that the following class
of torque and throttle opening are described in the lowebnsumes the value of the preceding class. For example,
layer models. The calculations are periodically executed imethodupdateof classTorquegets the value oEngineStatus
the control period. and the value ofAcceleratorOpening calculates its own

In the software design phase, we build a software modelvalue, and stores the calculated value in attribiaiejue
UML to implement the controller model. Software design callethod exec of ThrottleContro] which is periodically ex-
be divided into functional design and nonfunctional desigecuted in the control period, calls methagdate of class
In functional design, we transform a Simulink model into dorqueand methodupdateof classThrottleOpening

II. CONTROL SOFTWARE DEVELOPMENT PROCESS

ISBN: 978-988-19251-1-4 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

EngineRevolution

ThrottleOpenig
#throttleOpening:

cons

cons uint16
EngineStatus +update()
eco_ns_ Torque +get()
#torque:uint16
- cons
AcceleratorOpening| ¢« +update() (3
+get
cons | *9et0 ThrottleGontrol

T«

+exec()

Fig. 4. Example Class Diagram of Functional Model

<<aspect>>
(Producer, Consumer, Relation)
(EngineStatus, Torque&&ThrottleOpening, cons)

Relation

buffers

Buffer
#buf:uint16

+update()
+get()

Fig. 5. Aspect Pattern of Buffering

C. Nonfunctional Design

An embedded control system is a hard real-time ¢
tem with timing constraints. We design the task structt
scheduling policy, task priorities to meet timing constrai
in nonfunctional design. We may also add mechanit
such as synchronization, mutual exclusion and inter-1
communication to the model so that the software corre
executes in the preemptive multi-task environment. Asp
oriented programming[12] has been applied to sepa
non-functional properties from functional properties. Mo
level aspects for non-functional requirements have also |
presented[13][14].

Our nonfunctional design is based on the aspect-orie
design method we have already presented[15][16]. We |
also presented aspect patterns for nonfunctional properti
embedded control software and developed a model we
to weave the aspect patterns into the functional model.
example, mechanisms for triggering methods (time-trigge
or event-triggered[17]), synchronizations and inter-task ci
munications are defined as aspect patterns. We select &
patterns and weave them into the functional model with
model weaver to get the implementation model.

We consider the case in which the calculation of the val
of EngineRevolutionEngineStatusand AcceleratorOpening
and the calculation of the values BérgetTorqueand Throt-
tleOpeningare executed by different periodic task. If tl
priority of the former task is higher than the priority

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

EngineRevolution cons ThrottleOpenig
#throttleOpening:
Buffer cons intie
EngineStatus [«—{#bufuint16 T +update()
buffers|+update) [Soons orque +get()
+get() #torque:uint16 J
AcceleratorOpening +update() cons I
cons | *9et0
ThrottleControl
+exec()

Fig. 6. Example Class Diagram of Implementation Model

Crosscutting elements of the aspect pattern are represented as
variables (variable elements), which is bound with the actual
elements of the base model. In this cdmducer Consumer

and Relation are variables. The binding expression means
that variableProduceris bound withEngineStatusvariable
Consumeiis bound withTargetTorqueand ThrottleOpening

and variableRelationis bound withcons We put the class
diagram shown by Figure 4 and the aspect shown by Figure 5
into the input of the model weaver, and we get the woven
class diagram shown by Figure 6.

[1l. M ODEL TRANSFORMATION ENVIRONMENT
A. Layering Support Tool

The target of the transformation to a UML model is the
higher layer model of the layered Simulink model, which
consists of subsystem blocks, inport blocks and outport
blocks. As described in Section II-B, a value object corre-
sponds to a data in the higher layer model and methpathte
of the value object corresponds to the subsystem block that
calculates the value of the data. To make a class reusable, the
Simulink model should be well-layered before transformation
so that subsystem blocks calculating the important data such
as reasonable physical quantities are presented at the higher
layer.

We have developed a layering support tool to select
important data in a Simulink model and layer the Simulink
model. Figure 7 illustrates the layering work with the tool.
The layering support tool analyzes an input Simulink model,
and shows all data of the Simulink model on the window
of the tool. Each data of the Simulink model is shown by a
row of the table on the window. ColumBystenmeans the
subsystem or the whole model in which the data is presented,
columnSrc Blockmeans the source block of the data, column
Dst Blockmeans the destination block of the data, &ata
Namemeans the name of the data if the data has a name.
For example, the third row of the table in Figure 7 shows the
data fromSumlto Subsystemgvith no name inControllerl

the latter task, the latter task may be preempted by t{tae whole model).

former task. So a mechanism of mutual exclusion or inter- We can select the data to be presented in the higher layer
task communication is needed for data integrity. Here, we usg checking columnUpper Layer In this case, the data
buffering mechanism, which is one of wait-free inter-taskamedDatal from Subsystemio Outl in Controllerl and
communications. Figure 5 shows the class diagram of tttee data fromGainlto Sumlin Subsystemare checked. If
aspect pattern of buffering, which connects a producer objebe checked data has no name, we have to attach the name to

and a consumer object. ClaBsffer has attributdouf to store
the value, methodpdateto get the value fronfProducerand
store the value ibuf, and methodjetfor Consumeto get the

the data. In this example, narb&ataBis attached to the data
from Gainlto Sumlin SubsystemIrhen, the tool generates
a layered Simulink model in which the just the checked data

value stored irbuf. The class diagram of the aspect pattern &re presented in the higher layer. In this example, there are

enclosed by a package with stereotypeaspect->, which
represents that the enclosed diagram is an aspect.
The binding expression is written under<aspect->.

ISBN: 978-988-19251-1-4
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

two subsystem blocks in the higher layer of the generated
Simulink model. One subsystem block outpiataB and
another subsystem block outpudataA

IMECS 2012

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

Controller1

Gain1

DataA ——(_)

Out1

Subsystem1 <

Gain1 Sum1

XMI File
=<
outputﬁ

=i

@input

In1 DataA

In2

Window of Layering Support Tool

System Sre Block Data Name| UpperLayer!

Dst Block

Controller1 Sum1

Gain1

Layering
Support
Tool

Controllert Subsystem1

Qut1

Controller1 DataA

Subsystem1|

Gain1 Sum1 DataB

DataA

Sum1

\
\|| Subsystem1
\

\ cee

Controller1

CO—

In1 DataB

DataA —>(_)
In2 2, outt
i K 7
H—
1 ,’
v

Sum1

Sum1 Gaint

In1 DataB In1 DataA

n2 In2

Gain1

Fig. 7. Layering of Simulink Model

B. Model Transformation Tool

We have developed a model transformation tool to tra
form a layered Simulink model to a UML model. We deve
oped the first version of the tool to generate class diagr.
and object diagrams as the UML structural model[18].
class diagram is generally used to represent the structui
object-oriented software. An object diagram is also use
for the embedded control system, in which most objects
statically created at the initialization process, not dynamici
created. Then we have extended the model transforms
tool to generate sequence diagrams as the UML behav
model. A Sequence diagram is used to represent interac
between objects in time sequence.

Figure 8 shows the internal processing of the model tre
formation tool. The tool inputs a mdl file, which is a file 1
store the information on a Simulink model. Then the tool :
alyzes the mdl file and extracts Simulink model data nee
for transformation. The tool generates structural model ¢
referring to the Simulink model data. The tool also generz
behavioral model data referring to the Simulink model d

and the structural model data. Finally, the tool translates t
structural model data and the behavioral model data int
XMl files. XMl is a standard file format of UML[19]. The
details of structural model generation and behavioral mo
generation are described in Section IlI-C and Section IlI-D.

C. Structural Model Generation

!

Model Transformation Tool

T

Simulink
Model
Analysis

Structural
[> Mmodel [>
Generation

Behavioral
Model [>
Generation

XM! File
Generation

Simulink
Model
Ddata

v

A4

Model
Data

Structural ’

Behavioral
Model
Data

" 1

Fig. 8. Model Transformation Tool

(a)

(b)

©

@

ControlX

Simulink ©—> In1 DataB— In1 DataG] D
int In1 Datal
model DataA
1 2
. DataB DataC DataD DatakE ControlX
lass
diagram # DataB:int #DataC |<—— # DataD #DataC [<—®
+ update() + update() cons 7y update() + update() + exec()
+get() +get() + get +get()

Object

diagram l ‘DataA l

| Lo] || Come o]| [L]

Fig. 9. Transformation Rules for Structural Model

An object of the object diagram is also generated referring
to the data.

Column (b) of Figure 9 shows the rule to transform a
data from a subsystem block to a class of the class diagram
and an object of the object diagram. A class with the name,
attributes and methods is generated referring to the data. The
name of the generated class is the name of the @B
in this case). The name of the attribute is also the name of
the data. If the data typent in this case) is declared in
the Simulink model, the data type is added to the attribute.
The generated class has methgatlateand methodyet An
object of the object diagram is also generated referring to
the data.

Column (c) of Figure 9 shows the rule to transform a
line between subsystem blockSubsystemand Subsystem?2
in this case) to an association between clasBegaC and
DataD in this case) of the class diagram and a link of the
object diagram. The preceding block with a line can be
an inport block. The associatia@onsis generated referring
to the line. A link of the object diagram is also generated
heeferring to the line.

Column (d) of Figure 9 shows the rule to generate a whole
o%ject and composition. Composition means whole-part re-

dgﬂonship. A whole object is generated corresponding to the

ole Simulink model ControlX in this case). Composition
etween a whole objecCpntrolX in this case) and a value
object PataE in this case) is generated.
Figure 4 shows the generated class diagram from the

Figure 9 shows rules to transform elements of the Simulir&imulink model shown by Figure 2. Figure 10 shows the

ISBN: 978-988-19251-1-4

model to elements of the class diagram and the objeptnerated object diagram from the same Simulink model.
diagram. Column (a) of Figure 9 shows the rule to transforithe object diagram consists of six objects of the classes
a data from an inport block to a class of the class diagrashown in Figure 4. Just one object of each class exists
and an object of the object diagram. A class with just tHeecause each subsystem block of the Simulink model is
name is generated referring to the data. The name of flust one instance of the subsystem block. The objects are
generated class is the name of the d&tatéAin this case). connected with links that correspond to the lines of the

IMECS 2012

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

:EngineRevolution ‘:Thrott\eContml ‘ ‘ :Torque ‘ ‘:Thro(tleOpenig‘ ‘ EngineRevqut\on‘ ‘m‘ ‘:AcceleratorOpening‘
:ThrottleOpenig exec() 1 1 1 ! ! !
- g update() ! 1 1 1 1
:EngineStatus > A get) | . i
DY [[1
[- 1 geto 1 1 1
:AcceleratorOpening :ThrottleControl 1 1 1 >
<--mmeee- AT AT ittt JJ
1 1 1 1
. . . . <-mmmee ; i i i i
Fig. 10. Example Object Diagram of Functional Model | update() " I I I
T > gef 1 1 1
i DA gl i i
1 1 ge{() 1 1
b, d >
(@ (b) (© () ' PE— —— !
..ControlX.... ! get() ! ! !
Simulink | | I:]—' [DataAFb W ’m‘-—’m‘—» m ' \ \
| % : 2 || et ’ : : : !
<---------- = --------- o 1 1 1
- 1 1 1 1 1
+update() | %NS | + update() DataD DataE . : i
el | ContralX | = < = Fig. 12. Example Sequence Diagram of Functional Model
9 exeo() — +gety) + update(
= TABLE |
[oums | MODELS USED IN EXPERIMENTS
" :DataB DataC
df;*;f:r‘" “GontrolX ‘DataA
ControlX Target System Number of Blocks
@ @ @ @ Subsystem\ Inport \ Outport
l :Cumrolxl l DataAl ControlX| | :DataB :DataC FUeI |n]eCt|OnS 15 4 1
41 DataE | | - - - -
e ! exeq)! ! ! 2 = Hybrid Electric Vehicle 30 6 5
Sequence ! H N
diagram E E Stepping Motor Control 8 1 4
i
: < -m-n -
T 1 T h \

IV. EXPERIMENTS

We have applied the model transformation environment
to a number of Simulink models such as a fuel injections
system, a hybrid electric vehicle system and a stepping
motor control system, which are provided by the MathWorks,
Inc.[1].

At first, we made the original Simulink models layered
with the layering support tool. Table | shows the number
of blocks of the layered Simulink models used in the

Figure 11 shows rules to transform elements of tlexperiments. The columBubsystenshows the number of
Simulink model to elements of the sequence diagram. Tsubsystem blocks, the coluninport shows the number of
sequence diagram is generated referring to not only “inport blocks and the colum®utport shows the number of
Simulink model but also the generated class diagram ¢ outport blocks. Then we transformed the layered Simulink
the generated object diagram. models to class diagrams, object diagrams and sequence

Column (a) of Figure 11 shows the rule to generate a lifeiagrams using the model transformation tool.
line of a whole objectControlX in this case) and execution We show the case of a hybrid electric vehicle system. The
activated by messagexec Column (b) of Figure 11 shows example hybrid electric vehicle is a series-parallel hybrid
the rule to generate a value object the lifeline. electric vehicle that consists of a gasoline engine and an

Column (c) of Figure 11 shows the rule to genenapelate €lectric motor. Figure 13 shows the higher layer of the
message sequence and execution activated by the mesd@gred Simulink model of the hybrid electric vehicle system.
sequence. The whole objecEdgntrolX in this case) calls Figure 14 shows the generated structural model: the class
methodsupdateof value objects DataB and DataC in this diagram and the object diagram. The class diagram consists
case). The order of the message sequence is determifbdhirty-seven classes. Figure 15 shows the generated be-
according to the (partial) order of the data flow of th&avioral model: the sequence diagram.

Simulink model. The original Simulink models used in the experiments

Column (d) of Figure 11 shows the rule to generget re_:present just control logics. They are built by control en-

message and execution activated by the message. If an Ob?%gers without considering implementation. After layering

consumes (gets) the value of another object, mettcf he original models, the transformation tool successfully
the latter object is called by methaghdateof the former transforms the layered Simulink models to class diagrams,
object. object diagrams and sequence models. So we think the

Figure 12 shows the generated sequence diagram il sformatio_n tool can be applied to embedded control
the Simulink model shown by Figure 2. The sequenc%) tware design.
diagram shows that methoekecof object ThrottleControl
calls methodupdate of object Torque and methodupdate V. CONCLUSION
of object ThrottleOpeningsequentially. Methodupdate of We have developed a model transformation environment:
object Torquecalls methodget of EngineStatusand Accel- a Simulink model layering support tool and a Simulink to
eratorOpeningto get those values. Methagkecof Throttle- UML model transformation tool. The model transformation
Control is executed periodically in the control period. tool generates class diagrams, object diagrams and sequence

Fig. 11. Transformation Rules for Behavioral Model

Simulink model shown by Figure 2 and to the associatio
of the class diagram shown by Figure 4.

D. Behavioral Model Generation

ISBN: 978-988-19251-1-4 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol I,
IMECS 2012, March 14 - 16, 2012, Hong Kong

corresponds to the subsystem block that calculates the value
of the data. We have also applied the tool to a number of
Simulink models and found it useful for embedded control
software design.

We are going to extend the model transformation tool to
generate a state machine diagram to make software design
more efficient and to deal with Simulink models with State-
flow charts.

REFERENCES

[1] The MathWorks Inc., http://www.mathworks.com/.

[2] Sangiovanni-Vincentelli, A. and Di Natale, M., Embedded System
Design for Automotive ApplicationdEEE Computer\Vol.40, No.10,
pp.42-51, 2007.

[3] Ramos-Hernandez, D. N., Fleming, P. J., Bennett, S., Hope, S., Bass, J.
M. and Baxter, M.J., Process Control Systems Integration Using Object
Oriented TechnologyProceeding of Technology of Object-Oriented
Languages and Systems TOOLS 38,148-158, 2001.

[4] Ramos-Hernandez, D. N., Fleming, P. J. and Bass, J. M., A Novel
Object-Oriented Environment for Distributed Process Control Systems,
Control Engineering Practiceyol.13, Issue 2, pp.213-230, 2005.

[5] Kuhl, M., Spitzer, B. and MNller-Glaser, K. D., Universal Object-
Oriented Modeling for Rapid Prototyping of Embedded Electronic
Systems,Proceedings of the 12th IEEE International Workshop on

| Rapid System Prototypingp.149-154, 2001.

- [6] Miller-Glaser, K. D., Frick, G., Sax E. andill, M., Multiparadigm
Modeling in Embedded Systems DesidBEE Transactions on Con-
trol Systems Technologypl.12, No.2, pp.279-292, 2004.

[7] Sjostedt, C.-J., Shi, J.,6Fngren, M., Servat, D., Chen, D., Ahlsten,
V. and Lonn, H., Mapping Simulink to UML in the design of em-

7 i sy

Fig. 13. Simlink Model of Hybrid Electric Vehicle System

Sy

1N

=

-

i
i!

= B bedded systems: Investigating scenarios and structural and behavioral
mapping,OMER 4 Post Workshop Proceedin@$08.
& I [8] Yokoyama, T., Naya, H., Narisawa, F., Kuragaki, S., Nagaura, W.,
- Imai, T. and Suzuki, S., A Development Method of Time-Triggered
e Object-Oriented Software for Embedded Control Syste3gstems and
= Computers in Japanyol.34, No.2, pp.338-349, 2003.

18 [9] Yokoyama, T., An Aspect-Oriented Development Method for Em-

bedded Control Systems with Time-Triggered and Event-Triggered

ECC) ProcessingProceedings of the 11th IEEE Real-Time and Embedded
Technology and Application Symposiupp,302—311, 2005.

[10] Yoshimura, K., Miyazaki, T., Yokoyama, T., Irie, T. and Fujimoto,

== S., A Development Method for Object-Oriented Automotive Control
. Software Embedded with Automatically Generated Program from

— Controller Models,2004 SAE World Congresg004-01-0709, 2004.
[11] Narisawa, F., Naya, H. and Yokoyama, T., A Code Generator with
Application-Oriented Size Optimization for Object-Oriented Embed-
58 ded Control SoftwareDbject-Oriented Technology: ECOOP’98 Work-
shop ReaderSpringer LNCS-1543, pp.507-510, 1998.

Fig. 14. Class Diagram and Object Diagram of Hybrid Electric Vehicl§l2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.

System Loingtier, J. M. and Irwin, J., Aspect-Oriented ProgrammiRmceed-
ings of 11th European Conference on Object-Oriented Programming,
pp.220-242, 1997.

[13] Wehrmeister, M. A,, Freitas, E., Pereira, C. E. and Wagner, F. R., An
Aspect-Oriented Approach for Dealing with Non-Functional Require-
ments in a Model-Driven Development of Distributed Embedded Real-
Time SystemsProceedings of 10th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing,
pp.428-432, 2007.

[14] Driver, C., Reilly, S., Linehan, E., Cahill, V. and Clarke, S., Managing
Embedded Systems with Aspect-Oriented Model-Driven Engineering,

[+
)
R
a8

X
124

e
ley

Dot
=

E ERNEEE ACM Transactions on Embedded Computing Systé&fis10, No.2,
eEEs===]! pp.21:1-26, 2010.

‘5 e | [15] Soeda, T., Yanagidate, Y. and Yokoyama T., Embedded Control
2] I Software Design with Aspect PatterrBroceedings of International

_ 1 Conference on Advanced Software Engineering and Its Applications

2009, pp.34-41, 2009.

4 |] [16] Soeda, T., Yanagidate, Y. and Yokoyama T., Embedded Control

SE| Software Design with Aspect Patterdsurnal of the Chinese Institute
of Engineersyol.34, Issue 2, pp.213-225, 2011.

[17] Kopetz, H., Should Responsive Systems be Event-Triggered or Time-
Triggered?]EICE Transaction on Information & Systemé&l.E76-D,
No.11, pp.1325-1332, 1993.

Fig. 15. Sequence Diagram of Hybrid Electric Vehicle System [18] Kamiyama, T., Soeda, T., Yoo, M. and Yokoyama, T., A Simulink to

UML Transformation Tool for Embedded Control Software Design,
Proceedings of 2010 International Conference on Computer and
. Software Modelingpp.93-97, 2010.
diagram. Each class of a generated UML model correspongs object Management GroupML Metadata Interchange Specification,

to a data in the Simulink model and the method of the class Version 2.0.1, 2005.

TEREFE

ISBN: 978-988-19251-1-4 IMECS 2012
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

