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H . Tracking Control of LPV Systems over a
Communication Network

Sung Hyun Kim, Bum Yong Park, and PooGyeon Park

Abstract—This paper investigates the problem of ., track-
ing control design over a communication network that considers
network-induced delays, packet losses, and so on. The goal of
this paper is to present the method of applying a relaxation
technique to improve the H., tracking performance in such
a framework, which allows to fully exploit the information on
parameters of LPV systems.

Index Terms—Linear Parameter Varying (LPV), Network
Control System (NCS), tracking control.

I. INTRODUCTION

HE design of networked control systems for nonlin-
T ear systems have been recently received considerable
attention in control societies to overcome the spatial limits
of the traditional control systems. Thus, abundant literature
on networked control systems (NCSs) have been published
in the literature: for stabilization problem [3], [4], Heo
stabilization problem [2], [5], H~ tracking control problem
[1], and so on. In particular, the linear parameter-varying
(LPV) approach has been regarded as a way capable of
systematically representing nonlinear systems because the
well-established linear-system theory including the convex
optimization can be still applied to the analysis and syn-
thesis of such systems. However, an important issue in the
LPV-model-based approach [6] is how to take advantage
of the measurable parameter in the direction of improving
the control performance, such as H., performance under
consideration in this paper.

Thus, various attempts have been carried out to achieve the
performance improvement (see [7]). However, to the best of
our knowledge, there are only handful of results that partially
exploit the information on parameters of LPV systems in the
process of studying the tracking control problem. Motivated
by the above concerns, we discuss a way to address the
problem of H ., tracking control design over a communica-
tion network that considers network-induced delays, packet
losses, and so on. To this end, methodologically, we propose
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the continuous-time version of the relaxation technique given
in [10].

The rest of the paper is organized as follows. Section II
gives a mathematical description of NCSs and presents useful
lemmas. Section III presents the main result of this paper.
Furthermore, through a numerical example, Section IV shows
the verification of our results. Finally, Section V makes the
concluding remarks.

Notation: Throughout this paper, we will adopt standard
notions. The notations X > Y and X > Y mean that X — Y
is positive semi-definite and positive definite, respectively. In
symmetric block matrices, () is used as an ellipsis for terms
that are induced by symmetry.

II. SYSTEM DESCRIPTION AND USEFUL LEMMAS
Consider an LPV system of the following form:

&(t) = A(O1)x(t) + Bu(O1)u(t) + By (0)w(t)

y(t) = C(O)x(t), (D
where z(t) € R" and u(t) € R™ denote the state and
the control input, respectively; and w(t) € R™» denotes
the disturbance input such that w(t) € £3 and 6(t) is the

time-varying parameter and y(t) is the output. Assume that

A0+Ze u0+29

(£)A;, Bu(

2)

Bw( Bw 170 et

w0+ze OQ‘I'Z@

Connected with (1), we consider the following dynamic
system that generates the reference signal z,(t) € R™=:

o (t) = Ay (t) + (1), 3)

where A, is an asymptotically stable matrix and r(¢) denotes
the reference input belonging to £ . Here define the tracking
error e(t) as e(t) = x(t) — x,.(t) and apply the following
control law to (1):

“4)
where e(t — d(t)) = x(t — d(t)) — . (t — d(t)) and dy <
d(t) S d27

F(©,) = Fy + Z 0;(t)F;

Then the resultant closed-loop system is given by

() = A(O)C(t) + Aa(0:)C(t — d(t)) + Bu ()i (t),
(5)
z(t) = C(0:)C(1), (6)
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where((t) = col(e(t), z,(t)), w(t) = col(w(t), r(t)), By employing the Jensen inequality [8] and the lower bounds
i [ A©) A©)) - A, lemma [9], we can obtain a upper bound®fas follows
(©) = 0 A ; (7) ¢ ¢
: T O<-([ @i m([ iada)
= | Bu(©4)F(©) 0 t—dy t—dy
Ag(6) = 0 0 (8 1 t—dy t—dr
? - (()da)” Ry ((@)da)
- B,(©:) -1 } = p1(t) (/7 -
B, (0y) = ,CO) =] CO;) 0 t—d(t) t—d(t)
( t) I 0 I ( t) [ ( t) ] 1 t—d(t) ) . t—d(t) .

Lemma 2.1: For real matricesX, Y, and S > 0 with T (D) (/t_d ¢(a)dar) RQ(/t_d ¢(a)da)
appropriate dimensions, it is satisfied that < (X — _ T _2 T B ’
SY)TS=1(X — SY) and hence the following inequality - 1(t)(el e2) Faler —e2)n(t)
holds: Y7SY > XTY + YTX — XTS-1X. Further if - 0" (t)(e2 — es)T Ra(ea — e3)n(t)

X = pul, thenYTSY > puY + pYT — p2S~1, wherep pll(t)
is a scalar. On the other hand, Sf < 0, then it is assured _ T —e)T _
' , n' (t)(es —eq)” Ra(es — eq)n(t (15)
thatYTSY§7MY7MYT7u2571 pQ(t) ( )( 3 4) 2( 3 4) ( )
where
I1l. M AIN RESULTS
. p1(t) = (d(t) —d1)/d21 > 0, p2(t) = (d2 — d(t))/d21 > 0,
A. PLMI-type condition
) . p1(t) + p2(t) =1 (16)
Choose a Lyapunov-Krasovskii functional
N (15) is represented as the following inequality:

V(1) £Vi (1) + Va(t) + Va(t), ©

Vi () =¢(H)7 PC(t), < (DM (t) .
t t V 5i(e2 —eg)n(t) L (e2 —ez)n(t)
Vo(t) = (a ada+/ (a a)da, - - I -
10 /td1 ¢ (@)Q1¢(a) s ¢ ()Q2((a) /2—2(63 —ed)n(t) 2 Z_z(es —ed)n(t)
oo (17)
v = [ [ mé@dads
—dy Jt+8 where
7d1 t . .
+ d21/ (T (a)Ral(a)dadp I = (e1 —e2)" Ri(ez — e1) + (e2 — e3)" Ra(ez — e2)
—d2 t+8 » o ) 4+ (63 — 64)TR2(64 — 63) 4+ He((€2 — 63)TS(€3 — 64)),
where P, @1, Q2, R1, and R, are positive definite with (18)
appropriate dimensions. Let us define an augmented state , S
n(t) = col(¢(t), C(t — dv), C(t — d(t)),¢(t — do),(t)) and T2 = [ ST R, } (19)

the corresponding block entry matrices as

V (¢) is upper-bounded by

a2[10000],e2[0 7 000] V"W
es2[0 0 10 0],s2[0 00 1 0], VOO G
es 2 b2 (e2 — es)n(t) B2 (e2 — es)n(t)

[0 0 00 I], [ m,

P, £ /I(@t)el + /Id(@t)eg + Bw(@t)eg) \/%(63 - 64)77(t)
Time derivative ofV;(t) .
V0 = o (OFele] ) ao) Nt (Subity crteton in el sense) V(o) -
Va(t) = 0" (t) (e (Q1 + Q2)er — e Qrea — ] Qaes) n(t),

VB (es — ea)n(t)

(20)

(11) 0> 1IIp 4+ II; +113,0 < Ilo (21)
Va(t) = 0" ()®] (diRy + d3,Rz) ®en(t) + O, (12) where
where I3 = £ CT(0,)C(0,)e; —y2eles (22)
t t—dy . 5 —1 . D D
O——_d T R o) der—d / T (N Rt (ad SetP = diag(Py, P;) and P = P~ = diag(Py, P»),
' tfdf (@) Fa(e)da—dz t,d(t)c (@) ot (a)do whereP, = P,* and P, = P, *. Then,
t—d(t) . i
—dzl/ (T (a)Ral(a)da PAO,) = PA(©;) PiA(O;) — DA, }
t—do L 0 PQAT ’
. Ao = | HPOIFOIR 0]
V(t) =n" ()on(t) + O (13) -
~ P B,(©6 —P
where PB,(0;) = 7 ! 0( t) P; },
Iy =He(e{ P®;) + €] (Q1 + Q2)e1 — e Qrea — e Qaeq
+ @ (di By + d3) Ro) & (14)  where F(©,) = F(0,)P,
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The H, stabilization condition is given as follows:

PO, = XA(0;)Xe1 + X A4(0;)X ez + X B, (0;)es 0 < Iy, (31)
) <
( 3) 0> IIp + II; + 113
where = He(e] P®;) + €] (Q1 + Q2)e1 — €3 Q1ea — €] Qaey
X = diag(Pl,I), (24) + (I)? (d%Rl + d%le) (I)t + (61 — 62)TR1 (62 — 61)
Aoy = | ACIR AC)mA] L gm) e ) Rales —ea) + ea — ea) aled o)
. B (OB i) + He((ea — e3)7S(e3 — eq)) + eI CT(0,)C(Oy)er
Asoy) = | POTO) 0 @8)  —yeles (32
Bu(©)) = [ B,(©) —I } 27) By letting Ry = XPR,PX and Ry, = XPR,PX. Then
WA L 0 Pyl the condition (32) can be converted by (23) into

Theorem 1: Let u3 > 0, uz > 0 be prescribed. Suppose T % T % T 5
that there exist a scalay > 0; matricesF, and S; and 0>Hef(e; XA(6r)Xertey XAa(Or) Xester X Biy(Oy)es)

symmetric positive definite matriceB:, Py, O1, O, Ri,  +e1(Q1+ Q2)er — €3 Qrea — ef Qaeq + (X A(O1) X ey

and R, such that +X A4(0y)Xes + X B, (0)es)" X (di Ry + d3, Ra) X
r(1,1) 0 dlf_l_(@t) 0 dlf_l_d((at) X(XA(O¢)Xer + XAq(O)Xes + X B, (0;)es)
0 (272) d21A(®t) 0 d21Ad(®t) +(€1762)TPXR1XP(62761)
D01 & B e PiRRe—w
* ) 2 - - —
e w ] m ® 65 tes —e)) PXRXPles—es)
0 0 0 (%) (%) +He((ea—e3)TS(es—es))+eTCT(0,)C(0)e1 —~eles
I GO I O I ) ___0_____ 0o __. (33)
L 0 0 | COe)X 0 0 _ n et R % %%
0 0 Bo(©)) | 0 i} where X = X . Futher, sinceliag(X ) =
0 dl o (@t : 0 el X, for i = 1,2,3 4 and diag(X, X X ) =
215,(01) = es pre- and post-multiplying both S|des (33) by
Og nggt) : XC O(Gt) diag(X,X,X,X,I) and its transpose yields
P | 28 - _ _
Ry + S 0 | 0 (28) 0>U + (A(Oy)er + Ay4(0)es + B (©y)es)T
(666) 021 ! 8 X (d?Ry + d3, Ra)(A(O1)er + Aa(O1)es + B, (O;)es)
R e SR @
o< R, S - where¥ = He(e] A(6, )el+el Aq(©1)es+el B, (Or)es)+
=1 ST Ry (29) e1 (Q1+Q2)€1*€2 Qiea—e Q2€4+(€1*€2)TR1(62*61)+
(62 — 63) R2(63 — 62) + (63 — 64) R2(€4 — 63) + He((€2 —
where 633 ﬁ(e3 —e4)) + elTXCT((Gt)C()Gt)Xel — 52 65 es, ln
11 R+d 2 p772 P , which X = XPX—dlagPth >Q QlZXQl
(L1) = piRy + diag(=2u Py, =2 ) Os = XQuX, Ry = XR\X, Ry = XRoX, and § —
(2,2) = p3R> + diag(~ 2“213}7 _QlfQP?)’ XSX. That is, by applying the Schur complement to (34),
(3,3) = He(A(© ))+Q1+Q2*R1, we can obtain
(4’4) _Ql RQ’ B 5 *Rfl 0 (121_(6061+;1_d(@t)63+B_w(®t)€5)
(5, 5) —2R2 — He(S) (6, 6) = —Q2 — Rs, 0> 0 —R2 dgl(A(Gt)el +Ad(®t)63+Bw(®t)e5)
0P A(©,) - A, () () | v
Ao = | ,
0 Py A, (35)
Ay(0;)= {B“(Gt())F(Gt) 8} ,B,(0,)= {nggt) ;I} Here, since?; ' = XR; ' X andR;* XR2 1X, it follows
3 : ] 2 from lemma 2.1 thatR;! > 2, X — 43R, and Ry >
CO) =] C(O) 0 212X — 42 R,. In this sense, it is clear that (35) holds if
Th(_an_the closed-lo9p systems (6) is a~sympt0tically stafde a (1,1) 0 |diA©,) 0 diAg(©;) 0 diBu,(0;)]
satisfieq |.z||2 < ’y|]w||2 for all nonz_erOzg(t) € £5]0,00) and 0 (2,2)d21A(0,) 0 dp1Ag(0,) 0 dayBo(O;)
for any time-varying delayi(t) satisfyingd; < d(t) < ds. ) () 3.3 i A0 0 Bu(Oy)
Moreover the minimized, performance can be achieved _ | "7 ) Z Rd iS‘ &) ¢
by the following optimization problemnin v subject to (28) () (4,4) B2+ - ~
and (29). Here the control and observer gain matrices can be () () () (x) (55 R4S 0
reconstructed as 0 0 0 (*) (x) (6,6) 0
o L () ()] () 0 0 —I
F(8;) = F(0,) P! (30) (36)
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ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)



Proceedings of the International MultiConference of Engineers and Computer Scientists 2012 Vol II,

IMECS 2012, March 14 - 16, 2012, Hong Kong

where
(1,1) = pi Ry + diag(—2p1 Pr, —2p1 Py),
(2,2)" = p3 Ry + diag(—2p2P1, —2u Ps),

(3,3)" = He(A(0,))+Q1+Q>—R1+XCT(0,)C(0,)X,
(4,4) = —Q1 — Ry — Ry,

= 7@2 - RQ;

There exist a non-convex term (8, 3)”. Thus, to deal with

(5,5) = —2R, — He(S), (6,6)’

the term, we can obtain (28) using the Schur complement. Let

us pre- and post-multiply both sides of (31) diag(X, X)
and its transpose. Then we can obtain

0< {X{%QX E _}

ST XRy X (37)

B. LMI-type condition

Another representation for (28) is given as follows:

0 >L(0(t))
2 Lo+ Zei(t) (Li+ L)+ 02
3 =1
s ( S 6.06;(0)6s +Za ) |
=1 \j=i+1
(38)
where
r(,1) 0 d1 Ao 0
0 (2,2 da1 Ao 0
(*) (x) | He(Ao)+Q1+Q2—R1 Ry
roal| 0 0 (%) (4,4)
(+) (%) (*) (%)
0 0 0 (%)
GO G I () ______ 0_.
L 0 0 CoX 0
d1/1_d,0 0 dlB_w,o b0 T
da1Agp 0 da1Byo!' O
Ago 0 Buo 1+ XCT
Ry + S -5 0 : 0
(5,5) Ro+S 0 1 0 ’
(%) (6,6) 0o ' 0
0 0 = 0
0 0 0 T -1
- Aopl AO 7AT } = _ |: Bu70F0 0 }
Ado=1" PoA, A= 0 0]
_ [ Buo —I
Buo=| ") P2};CO:[CO 0 ]
[0 0] diAdi 0 diAg; O diBus 1 0 ]
00 dglA 0 dglAdz 0 d21Bw7i! 0
00 A 0 Ay 0 B,; XCT
cal0o0f 00 0 0 0 !0
““lool o o o o0 0 , 0 |’
00/ 0 0 0 0 0 0
ooy 0 o0 0 0 0 .0
(00 00 "0 0 0 "0 |

ISBN: 978-988-19251-9-0
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A — APy Ai*Ar} A _7|:Bu,OF‘i+Bu,iFO 0
Tlo pA T 0 0)
D, _Bw,i —1I
Bw,i* 0 P2:|,C—[C 0]
[0 0] 0 0 didgy 0 0,07
0 0|0 0 dydgy 0 0'0
0 0[]0 0 Az 0 0,0
coal 0010 0 0 0 0'0
T ®[x 00 00,0
0 0|0 O 0 0 0'0
Lo 00 0 0 0 0,0
L O 0|0 O 0 0 0'0 |
- Bu..:F; 0
[0 0] 0 0 didgsy; 0 0,07
0 0|0 0 dydg,; 0 0'0
0 0[]0 0 Az;; 0 0,0
coa| 0 00 0 0 0 0'0
Yol (0 0 0 0,0]
0 0|0 O 0 0 0!0
SO0 00 0.0 00,0
L 0O 0|0 O 0 0 0'0 |
~ [ Bu.F; 0
Ad,u‘—_ 0 0

By the S-procedure
0> L(O(t) + N(O(t))

where0 < N(O(t)) is given by (> i_; 6;(t)
0;(t) < b;, 0<0;(t)0;(¢))

N(©O(t)) =C, + T + iCQi(Ai + A7)

i=1

+ Z Z Csij (Zij + i),
=1 j=1,j#i
1 171
01| |1
0=C,2 (Wo Wy -

7
+ (ai + b;)0;(t) —

()I
0<Coy 2 —02(t) +
0 < Csi5 = 0;()0; (1),

aib;,

for0 < A;+A7 and0 < Eij+§]3;. With some algebraic ma-
nipulations, the constrairit < A (©(t)) can be represented
as follows:

0 <N(©())
=N + Z 0i()(N; + NT) + > 03 (t)N
= =1
+> ( Z 0:(t)0;(1)Ny; + Za ) ,
=1 j=1+1
(40)
whereNy = Wy + WOT — Z;:l albz(Al + AzT), N, = (ai +

N;; = —(W; +W;)+(2;; +X5;). Hence, the condition (39)

IMECS 2012
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becomes

0>Ty+ i@i(t)(l“i + F?) + i@?(ﬁ)Al

+ Z < Z 0:(t)0;(t)®s; + z_: oi(t)ej(t)@g;> ,
i=1 \j=i+1 =

where

Lo = Lo+ No = Lo+ Wo+W¢ =Y abi(Ai + A
i=1

Di=Li +N; = L; + (a; +bi) Ay — Wo + Wi,

Aj =L+ Ny = Ly — (N + AT) — (W + W),

(41)

i)

Qij = Lij +Nyj = Lij — (Wi + Wy) + (X5 + Xji)
The condition (41) boils down to
0>[I 60 -~ 6, L[I 6.(0) --- 6,(t)]]",
(42)
where
[ Iy | Ty Ty Ly ]
(x) | A1 ®q2 Dy,
L2 (%) ] (x) Ay . (43)
(I)(r—l)r
(%) | (%) (x) A

IV. NUMERICAL EXAMPLE
In this section, Consider the following plant [11]:

a1 (t) = wa(t)
Bo(t) = —a3(t) — 0.1ma(t) + 12 cost + u(t)

0 1 0 1
A= {o —O.J Az = {—25 —0.1} ’
0 0 0 1
Bu,O - |:1:| 7Bw.,0 - |:1:| aA’l" - |:_3 _2:| 9’
Ayp=0,Cy = 0,Bu; =0,B,,; = O(i =1,2, ...,r)
a3 (t) a3 (t)
0,(t) =1— 12 0,(t) = 22
1®) 25 02 = =5
M1:M2:1,a1:a2*0,b1:b2:1,
0

x1(t) € [-5, B],r(t) = { } ,w(t) =12cost

4sint

z(0) =2 — 117, 2,.(0) = [-0.5 1]T

Fig. 1 displays the first state behaviors. The simulationltes
shows that thé, tracking controller on the LPV systems

(44)

Fig. 1.

(1]

2

(6]

(8]

9]

25

150 . . ]

0.5p ¢

-1.5 P I I © I 7
15
Time (sec)

Simulation Results
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