
 

 
Abstract—State estimation  is widely used  in  the  field of 

process  system  engineering.  There  are  several  available 
technologies  regarding  this  topic,  e.g.  Extended  Kalman 
Filter (EKF). The EKF is the variant of the standard Kalman 
filter and is successfully applied on the nonlinear systems 
for state estimation. As well known, the PEMFC is a typical 
nonlinear  system,  and  some  of  the  internal  states  are 
obtained  costly,  and  even  cannot  be measured  directly. 
Hence,  in order  to obtain  these  internal states effectively 
via collecting measurable variables,  the EKF  is applied  in 
this  study.  The  goal  of  this  paper  is  to  demonstrate  the 
implementation of the EKF based on a PEMFC model which 
is taken  in a  literature,  in order to estimate the  following 
internal  states:  concentrations  of  vapor  and  oxygen  in 
cathode  chamber,  as  well  as  cell  temperature.  The 
corresponding  results  show  that  the  EKF  can  serve  as  a 
‘software sensor’ for the control design or the supervision 
in the fuel cell system. 
 

Index Terms—State estimation, Extended Kalman filter, 
PEMFC system 
 

I. INTRODUCTION 

S well known, not all the states in a chemical process are 
easily obtained. The state estimation could be a costless 
solution to access these states via state estimation 

techniques. For the linear system, the state estimation can be 
done by the Kalman Filter (KF) because the probability 
distribution function (pdf) of the system state is propagated in 
an optimal way. However, the KF is not suitable for the 
nonlinear systems. An alternative solution is a variant of the 
standard KF, e.g. extended Kalman filter (EKF) or unscented 
Kalman filter (UKF). It is known that there exists no perfect 
solution that is superior to other techniques of state 
estimation. The main principle of choosing an estimation 
method is to trade off various aspects such as accuracy of 
estimation, difficulty of implementation, numerical 
robustness, and computational load [1].  
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The EKF with different applications encounter in several 
literatures. Dan Simon [2] briefly introduced the mentioned 
different kinds of state estimation methods and their basic 
principles, respectively. By comparing these methods, the 
EKF is one of the most widely used and attractive methods 
owing to its relative simplicity and efficacy for nonlinear 
system. Kandepu et al. [3] depicted the principle of the EKF, 
and four nonlinear cases were introduced: the first one is the 
Van der Pol oscillator. The second is an estimation problem 
in an induction machine. The third is the state estimation in a 
reversible reaction. Finally, a hybrid solid oxide fuel cell 
(SOFC) system is introduced to evaluate the performance of 
the EKF. In the literature [4], an evaluation of the EKF was 
given by comparing to the moving horizon estimation 
(MHE). It turned out that, the computational load required to 
solve the MHE is greater than the EKF. For the differential 
algebraic equation (DAE) system, the EKF can be used 
through the proper modifications as well [5]. 

The combination of the EKF and the fuel cell system can 
be also found in several literatures. It is known that the fuel 
cell system is a strong nonlinear system. Some internal states 
in the system (e.g. cathode side relative humidity (RH)) 
would be detected costly by the delicate sensors. To reduce 
the cost of the system, those sensors can be removed by using 
the EKF. Some internal states (e.g. oxygen partial pressure 
and cell temperature) cannot be directly measured by sensors 
and could be estimated via the EKF as well. Recently, some 
studies concerning on the state estimation in the fuel cell 
systems have been carried out. Groetsch et al. [6] applied the 
EKF which is designed on the basis of the reduced model of a 
molten carbonate fuel cell (MCFC) system. The EKF was 
tested by both simulations and experiments. It is stated the 
temperature sensors in the stack as well as the expensive 
concentration measuring equipments can be removed. 
Kandepu et al. [7] used both UKF and EKF methods on the 
SOFC system to estimate the stack temperature. Suares et al. 
[8] used a nonlinear programming (NLP) formulation for 
both the parameter and state estimation in a PEMFC. 
Goerguen et al. [9] proposed a novel method for estimation of 
the inside humidity by exploiting its effect on cell resistive 
voltage drop. There are seldom studies reporting the 
applications of EKF in the PEMFC system. Hence, the main 
motivation of this paper is to apply the EKF and describe its 
implementation in PEM fuel cell system with considerable 
clear manner. 

The organization of this paper is as follows. In section 2 
the fundamental theory of Kalman filter and EKF is 
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illustrated by using an example of a nonlinear system. In 
Section 3 the EKF is tested via a PEMFC system. The 
introduction of the fuel cell system model, implementation of 
the EKF technique and the simulation results are included. 
Finally, the conclusions are drawn in Section 4.  

II. FUNDAMENTAL THEORY OF THE KF AND THE EKF 

A. Principle of the KF  

The KF is the minimum-variance state estimator, no matter 
with- or without Gaussian noise [3]. To illustrate the 
principle of the KF, the following linear discrete-time system 
is taken into account. The model equations are given in (1) 
and (2): 

1k k kx Fx w   （1） 

k k ky Hx v   （2） 

where k  is the time step, kx represents the state to be 

estimated at time k ,
 ky  is the measurement at time k ,

 kw  

and kv
 
are the zero-mean process noise and measurement 

noise with co-variances Q and R, respectively, i.e. 

[ ]T
k kE w w Q ， [ ]T

k kE v v R ， [ ] [ ] 0k kE w E v  , F and H 

are the state transition and measurement matrix, which 
represent the essential characteristics of the system. Fig.1 
shows the framework of state estimation. It is assumed that the 
system can be observable fully, and the KF formulations for 
the states are given as follows [3]: 

1
T

k kP FP F Q 
   （3） 

1ˆ ˆk kx Fx 
  （4） 

( )k k kP I K H P   （5） 

ˆ ˆ ˆ( )k k k k kx x K y Hx      （6） 
1( )T T

k k kK P H HP H R     （7） 

where 1,2,...k   I is the identity matrix, ˆkx  is the priori 

estimation of the state kx , ˆkx

 

is the posteriori estimation of 

the state, kK is the Kalman gain, kP is the covariance of the 

priori estimation error ˆk kx x . kP is the covariance of the 

posteriori estimation error ˆk kx x . The initialization of the 

KF is written as: 

0 0ˆ ( )x E x   （8） 

0 0 0 0 0ˆ ˆ[( )( ) ]TP E x x x x      （9） 

Generally there are two main steps in KF. The first step is 
called ‘prediction step’, as shown in (3) and (4). The second 
step is called ‘update step’, shown in (5), (6) and (7). 

B. Introduction of the EKF via an exemplary nonlinear 
model 

The KF is the unbiased estimation for the linear model [3]. 
For the nonlinear model, the expectation of the nonlinear 
function cannot be easily obtained. Under this situation, the 
EKF can be derived when the nonlinear model is linearized 
and the expectation can be approximated as the linear 
function of the estimated state. The main disadvantage of 
linearization lies in biased estimation and insufficient 

accuracy. However, for the state estimation in nonlinear 
systems, the EKF has several attractive features because it 
can be easily understood and implemented. In this study, the 
EKF is firstly illustrated with a discrete-time nonlinear 
dynamic system which is given as: 

where process noise kw
 
and measurement noise kv

 
also 

abide by [ ]T
k kE w w Q ， [ ]T

k kE v v R ， [ ] [ ] 0k kE w E v  . 

 and h  represent the characteristics of the representative 

nonlinear system. The main differences between EKF and KF 
lie in the ‘prediction step’. The detailed formulations of the 
EKF can be found through (12)-(18). 

1ˆ ˆ( )k kx x 
  （12） 

11

1
ˆˆ kk

T

k k
xx

P P Q
x x

 






 


 
 
 

 （13） 

ˆk

T

xy k
x

h
P P

x 

 
 

  （14） 

ˆ ˆk k

T

yy k
x x

h h
P P R

x x 

 
 
   （15） 

1
k xy yyK P P   （16） 

ˆ ˆ ˆ( )k k k k kx x K y y     （17） 
T

k k k yy kP P K P K  
 （18） 

 

 
Actually, a nonlinear system is usually represented by a 

continuous-time model rather than a discrete-time model 
because the continuous model can be obtained directly 
through the fundamental balances (e.g. mass balance, energy 
balance, etc.). Without losing generality, the mathematical 
formulation of a continuous-time nonlinear model can be 
written as: 

( , )x f x u  （19） 

In order to apply the EKF in discrete manner, equation (19) 
would be transferred into the discrete-time form in order to 

obtain
x




 in (13). There exist some available approaches to 

achieve such purpose, e.g. explicit or implicit Euler methods, 
and Runge-Kutta method. In this study, the discretization can 
be prevented by means of the sensitive equation which is 
defined as: 

1 1( )k k kx x w     （10） 

( )k k ky h x v   （11） 

ku ky

ˆ ˆ,k ky x
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Fig. 1.  Framework of state estimation with the KF 
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According to (20), the derivation of the sensitive variable, 
S, can be given as following: 

1 1 1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )
( )

ˆ( )ˆ ˆ ˆk k k

dS t d x t f x f x x t
J S t

dt dt x tx x x  
  

    
           

 　　
(21) 

where the Jacobian matrix J is the partial differential 

of ˆ( )f x  to ˆ( )x t . Combining (19) and (21) can lead to the 

extended differential equations, see (22): 

( , ) , ,

,

n n

n n

x f x u x R f R

S J S J R 

   


  




 （22） 

The initial matrix for the sensitive equation equals to the 
unit matrix, which is given as: 

0
n n

kS I R 
    （23） 

Afterwards, the 

1ˆkxx








 in (13) can be written as: 
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（24） 

Hence, it is obviously that the introduction of a sensitive 

variable ( )S t is another way to calculate the

1ˆkxx








.  

To demonstrate the principle of the EKF with sensitive 
equation, a highly nonlinear Van der Pol oscillator is used. 
The model equations are given as follows: 

1 2 1

2
2 1 2 1 20.2 (1 )

x x w

x x x x w

  

     




 （25） 

The output of the nonlinear system is defined below: 

1 2

1 2

[ ]

[ ]

T

T

x x x

y x x v



 
 （26） 

where covariance of process noise w
 
and measurement 

noise v
 
are both set as 310 I . The initial value of x  is chosen 

as 0 [1.4 0]Tx  . The initial value of estimated states in the 

EKF is selected as 0ˆ [0 5]Tx  . The elements in the Jacobian 

matrix used in the sensitive equation (see (22)) are given as 
following: 

2 1

2
1

(1,1) 0

(1,2) 1

(2,1) 1 0.4

(2,2) 0.2(1 )

J

J

J x x

J x


 
 

  

 
（27） 

The corresponding simulations are carried out to verify the 
EKF in this case. As can be seen in Fig. 2, large errors at the 
beginning occur due to the selection of the initial values. 
After less than one second, the estimated states give the 
convergent behavior. 

III. PEM FUEL CELL STATE ESTIMATION BY MEANS OF THE 

EKF 

A. The model of the reference PEMFC 

In order to use the EKF on the state estimation in a 
PEMFC system, a simple model should be considered. For 
this purpose, the study of Lauzze and Chmielewski (2006) 
[10] is chosen. Fig.  3 shows the piping and instrumentation 

diagram (P&ID) of the selected PEM fuel cell system 
considered in [10]. The system consists of a fuel cell stack, air 

supply sub-system, cooling sub-system and electrical devices. 
The fuel cell stack consists of cathode, MEA (Membrane 
Electrode Assemble), anode and cooling part. The air supply 
sub-system mainly contains a compressor which is used to 
feed the air into the stack. The cooling sub-system is 
composed of a pump which is used to feed the coolant into the 
stack. For the sake of simplicity, other peripheral components 
(e.g. radiator, back-pressure valve, heat exchanger and 
humidifier) are ideally treated and not displayed in the Fig. 3. 

 
In the work of Lauzze and Chmielewski, the PEM fuel cell 

is treated as a CSTR (Continuous Stirred Tank Reactor) with 
lumped parameters. The following general assumptions are 
made: (1) The generated water in the fuel cell is in gas phase. 
(2) All gases obey the ideal gas law. (3) The temperature of 
all the solid materials and the coolant in the jacket is lumped. 
(4) The anode part is not considered in the model due to the 
assumption of a pure hydrogen feed. (5) The water transport 
in the membrane is neglected. (6) The dynamics of air stream 
and coolant delivery are neglected as well.  

The formulated model bases on material and energy 
balances [10]. The material balance equations are developed 

 
Fig. 3.  P&ID of the selected PEM fuel cell system according to the work of 
Lauzze and Chmielewski (2006)[10]: 'A' and 'V' represent the current sensor 
and voltage sensor, respectively. 'FIC' means the flow indicating controller, 
'TIC' the temperature indicating controller, and 'PIC' the pressure indicating 

controller. 
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Fig. 2.  Estimated states for Van der Pol oscillator using EKF 



 

for the oxygen, nitrogen and water vapor concentrations in the 
cathode gas chamber. The energy balance equations are 
developed for the cathode gas chamber, for the solid material 
and for cooling part to derive the temperature in each 
compartment. The electrochemical kinetics are modeled by 
using Tafel equation. The oxygen transport from chamber to 
the reaction zone is modeled by Fickean diffusion equation. 
The oxygen diffusion coefficient is a function of relative 
humidity (RH) at the cathode side in order to consider 
flooding issues. As for the ohmic losses in the membrane, an 
empirical relationship between the proton conductivity, water 
content and temperature is employed from [11]. 

B. Implementation of the EKF 

According to the selected model，the state vector x is 

2 2 2
[ ]TH O O N cat sol jacC C C T T T , which represents vapor 

concentration, oxygen concentration, nitrogen concentration, 
the temperature of the gas stream in cathode side, cell 
temperature and coolant temperature, respectively. In the 
output vector [ ]Tcell cat jacy u T T p  ，the cell voltage, the 

temperature of the gas stream in cathode side, coolant 
temperature, and total gas pressure in cathode side are 
included. They are measured directly by the corresponding 

sensors. Depending on the measurable catT  and p  in output 

vector, the total concentration of the gas in cathode can be 
calculated through the ideal gas law. Hence, in order to 
access all the six states, a vector containing the states to be 
estimated

2 2

ˆ ˆ ˆˆ [ ]TH O O solx C C T
 
is chosen.  

In this study, the EKF is implemented in Matlab 
environment. The EKF algorithm is programmed subject to 
the flow chart in Fig. 4. Herein, the program starts with the 
given initial values for the states to be estimated. Afterwards, 
the pre-mentioned ‘prediction step’ is executed to calculate 

the ˆkx  by (12), kP

 

by (13) and Kalman gain kK  by 

(14)-(16). It is known that the value of 
x




 is critical for kP
 

and can be calculated by the sensitive equation. As discussed 
before, a Jacobian matrix of the system model is needed. In 
the next, the ‘update step’ is programmed to renovate the 

predicted states ˆkx and covariance matrix kP
at the current 

sampling time. Finally, the updated ˆkx  and kP
 
(i.e. ˆkx  and 

kP
) will be fed into the next prediction step as new initial 

values, if the end condition of the simulation is not fulfilled. 
Such procedure is executed iteratively in Matlab. 

C. Simulation results 

In order to test the EKF for the state estimation in the 
PEMFC, the related simulation is carried out. In the 
simulation, the current density is applied as the system input, 
and its profile is given in Fig. 5. It contains two step-change 
at t=10 s and t=20s, respectively. 

Fig. 6 and Fig. 7 show the simulated results of vapor and 
oxygen concentrations and theirs estimations. The dashed 
line represents the profile of the concentration which is 
calculated via the model, the solid line is the estimated profile 

via the EKF approach. At the beginning, results of both 
model and EKF are different due to the initial values 
selection. After five 

seconds around, the results of EKF generally converge to the 
model results due to the EKF algorithm. Fig. 8 shows the 
simulated results of cell temperature and its estimation. It is 

observed that the convergence time of cell temperature 
estimation is shorter than the other two states, around one 
second. 
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Fig. 4.  The flow chart for EKF algorithm implementation 
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Fig. 6.  Vapor concentration and its estimation 
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Fig. 5. Current density as the input of the PEM fuel cell system model 



 

 

IV. CONCLUSION 

In this paper, the principle of the EKF is introduced and 
illustrated by the example of the Van der Pol oscillator. The 
calculation of 

1ˆkxx








is obtained by employing the sensitive 

equations. Afterwards, a PEM fuel cell system is chosen. The 
state estimations of three internal states are selected to be 
estimated via the EKF. During the implementation of the 
EKF, the sensitive equations are employed, resulting in no 
requirement of model discretization. The simulation results 
show that the estimated states track the model results with a 
satisfactory manner. The implementation of the EKF in the 
PEMFC in this paper can be used for the purpose of system 
control and monitoring. It can also be migrated to other 
nonlinear cases after the proper modifications. 
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Fig. 7.  Oxygen concentration and its estimation 
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Fig. 8. Cell temperature and its estimation 




