
 
 

 
Abstract—We consider a plug-in control system via a concept 

of Implicit and Explicit Controls as the two stage controllers. 
We first show two conditions under which the plug-in control 
system can be optimized by a suitable design of explicit control 
in the 2nd stage, when an implicit control is given in the 1st stage.  
We then show another condition under which the resultant 
optimal cost can be minimized by a suitable design of the 1st 
stage implicit control, which is characterized as a feedback 
control that allocates all the closed-loop poles onto the 
imaginary axis. These two results clarify the system theoretic 
meaning of the implicit control from the viewpoint of inverse 
optimal control problem.  
 

Index Terms—A plug-in control system, implicit and explicit 
controls, optimal control, inverse optimal control problem 
 

I. INTRODUCTION 

concept of “Implicit Control” and “Explicit Control” 
has been proposed recently in [1] by the second author.  
To explain this concept, we consider for example a 

motor control system which consists of a motor and a 
servo-driver.  As is often the case, the servo-driver has a 
certain built-in feedback control loop.  Designers then regard 
the motor and the servo-driver as a controlled plant, and 
design a control law for the new controlled plant. We call the 
former inner control loop “Implicit control law” and the latter 
outer control loop “Explicit control law”.   Similar situations 
can be found in various control systems such as a brain 
nervous system of living things.  

We can regard that the above two control systems are 
designed by a common design method.  That is, firstly a 
certain feedback control law is constructed, and then an outer 
feedback control law is added.  In this paper, we focus on 
such a design method and call the system as a plug-in control 
system.   Especially, we adopt a concept of Implicit Control 
and Explicit Control.  By using an inverse optimal control 
approach, we first show two equivalent n.a.c.s. conditions 
under which the plug-in control system can be optimized by a 
certain plug-in optimal control law.  We then show n.a.c.s. 
conditions for a class of single input systems under which the 
resultant optimal cost can be minimized by some implicit 
control embedded in the 1st stage, which is characterized as a 
feedback control that allocates all the closed-loop poles onto 
the imaginary axis.  These results together clarify the system 
theoretic meaning of implicit control characterized as above 

 
T. Fujii is with Faculty of Engineering, Fukui University of Technology, 

Fukui, 910-8505 JAPAN (corresponding author : +81-776-29-2691; fax: 
+81-776-29-7891; e-mail: fujii@fukui-ut.ac.jp).  

K. Osuka  is with the Department of Mechanical Engineering, Osaka 
University, Osaka, JAPAN (e-mail: osuka@mech.eng.osaka-u.ac.jp). 

M. Bando is with the Unit of Studies for Space, Kyoto University, Kyoto, 
JAPAN  (e-mail: m-bando@rish.kyoto-u.ac.jp). 

from the viewpoint of inverse optimal control problem. 

II. PROBLEM STATEMENT 

A. Plug-In Control System 

At first, we define a Plug-in Control System based on the 
concept of Implicit and Explicit Control as proposed by the 
second author [1] in the following. 
 
Definition 1 (Plug-In Control System) 

Suppose that a controllable plant  

S0 : 0
x A x Bu                                          (1)                       

is constructed by a feedback control law named “Implicit 

Control Law” 
I I

u K x   from the original controlled plant  

S : x Ax Bv                                                   (2) 

as shown in Fig. 1 (a).  That is, 

0
( )

I
x A x Bu A BK x Bu     .                       (3) 

Here, we regard that the Implicit Control Law appears due to 
the interaction between plant and field.   

 
We then consider an outer loop feedback control law  
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E E
u u K x                                                      (4) 

as shown in Fig.1(b).  We named this control law as Explicit 
Control Law in [1].  Similarly, we name this two stage design 
method shown in the figure as a plug-in design method, and 
name the resultant double loop control system as a Plug-In 
Control System. 
  

  B.  Plug-In Optimal Control System 
 

Consider the Plug-In Control System  shown in Fig.1(b). 

: ( ) ,
PI I E I E

x A BK x Bu Ax Bv v u u      S           (5) 

where ,A B and the Implicit Control Law
I I

u K x  are given, 

while the Explicit Control Law 
E E

u K x 
 
is unspecified.  It 

is well known that we can always design
E

u as an optimal 

control for 0S   by LQ optimal control theory; we call the 

resultant optimal control system “Plug-In Optimal Control 
System.” However, it is not trivial that the overall control

I E
v u u  also becomes an optimal control for the original 

system S.   In view of this, we first consider the following 
optimality problem of Plug-In Optimal Control System in the 
usual sense with the above setting. 
 
Problem 1  

Can you find conditions and design
E

u such that the 

following two specifications are satisfied. 

S1)  The input
E

u u is an optimal control for the system S0. 

S2) The combined input 
I E

v u u   is also an optimal 

control for the system S. 
 

Note that not every Plug-In Optimal Control System is 
optimal for S. In other words, the specification S1 does not 
necessarily mean the specification S2, which is important for 
optimal design by the plug-in design method.      To satisfy 
this specification, some constraints may be required on the 

quadratic weights used in LQ design of .
E

u   This problem is 

a kind of inverse problem of optimal control [2].   

In Problem 1 the Implicit Control Law 
I

K is specified. So, 

there remains a possibility of strengthening the optimality of 
the Plug-In Optimal Control System, even if it satisfies S2, by 

proper choice of 
I

K .   This observation allows us to consider 

the following optimality problem of Plug-In Optimal Control 
System in a stronger sense. 
 
Problem 2  

Consider the Plug-In Optimal Control System which is 
optimal in the sense of satisfying the specification S2.  Can 

you find conditions and design
I

K such that it minimizes the 

resultant optimal cost.  
 
   This problem is defined in more detail in the next section so 
that we can obtain a meaningful solution.   

III. SOLUTIONS TO THE PROBLEMS 
 

In this section we solve the above inverse optimal control 

problems.  In order to understand Problem 1 intuitively,  we 
first show a solution for a scalar system [3] in which A  and 
B  are scalars with , 1A a B  . 

 

A.  Optimality of Plug-in Optimal Control System for a 
scalar system  

 

Suppose that we design the Explicit Control Law 

E E
u k x   for the system  

0 0
, 0

E I
x a x u a a k                             (6) 

as an optimal control law that minimizes the cost function. 

 2 2

0
0

E E E E
J q x u dt q



   .                      (7) 

The resultant optimal feedback gain of the Explicit Control 
Law is given by 

2

0 0E E
k a a q                                              (8) 

Then, we can easily derive conditions and the weight vq such 

that the combined input 
I E

v u u  becomes an optimal 

control minimizing the cost function 

 2 2

0
0v v vJ q x v dt q



                          (9) 

The answer to the question is the following. 

Result 1 (Optimality Problem)   

Firstly, set the weight vq in the cost function vJ as 
2 2 22 ( )

E Ev I I Iq k ak q k a q a                (10) 

and define 
2

E
D q a                                                  (11) 

Then we have the following result. 

Case 1  If 20 ( . ., )
E

D i e q a  , then for an arbitrary
I

k , 

the overall input ( )
EIv k k x    is always an 

optimal control for the cost Jv . 

Case 2  If 20 ( . ., )
E

D i e q a  , then for an arbitrary
I

k  

satisfying 2

EIk a a q   , the overall control 

( )
EIv k k x    is an optimal control for the 

cost Jv . 

B.  Optimality of Plug-in Optimal Control System for a 
general single input system 

 

The above result shows that a certain condition must be 

satisfied by the weight in the cost 
E

J chosen in the 2nd stage 

and the gain IK determined in the 1st stage, in order that the 

overall control ( )
EIv K K x    is also an optimal control 

for the original system S.  We show this condition in the next 
theorem in two ways.  One is given in the form of frequency 
domain condition, and the other in the form of Linear Matrix 

Inequality (LMI). 
 

Theorem 1  Let
E

K be an optimal feedback control law for 

the system S0 that minimizes the standard quadratic cost: 



 
 

 2 2

0
0

E E E
J Q x u dt Q



                        (12) 

Then the combined feedback control law ( )
I E

v K K x    is 

an optimal control  for the system  S  that minimizes the cost 

 2 2

0
0v v vJ Q x v dt Q



                        
 (13) 

for some weight 0vQ   if and only if the weight
E

Q and the 

gain IK satisfies the following two equivalent conditions: 
1 1

1

C1) ( ) ( ) ( ) ( )

. . R (14)

( ) : ( )

T T T

E

I

T j T j I B j I A Q j I A B

a e

T s I K sI A B

   



 



    



  

 
C2)  The following LMI has a real symmetric solution . 

0
0

T T T

E

T

I I I

I

PA A P K K Q PB K

B P K

   




 
 
 

                (15) 

 

Moreover, if the condition C2 holds, the overall control 

( )
EIv K K x    minimizes the cost Jv  

for the weight vQ  

given by 

               T T

E I IvQ Q PA A P K K                              (16)  

(Proof) Since 
0

( )
E EIA BK A B K K    is stable by the 

assumption on 
E

K , the overall control law
EIK K  is a 

stabilizing control law for S.   Thus it follows from the 

Inverse LQ theory [2] that the control law
EIK K  is an 

optimal control law for S if and only if the following LMI has 

a real symmetric solution 0X  . 

0
0

( ) ( ) ( )

( )

T

T

T T

I E I E I E

I E

XA A X K K K K XB K K

B X K K

  




   
  

  (17) 

Since
E

K  is  an optimal  control law for S that minimizes the 

cost (13), there exists some real symmetric 0 0P   such that  

0 0 0 0

0

0T T

E

T

E

P A A P P BB P Q

K B P

   


                     (18) 

Let 0:P X P  .  Substituting 0X P P  into (17) and using 

(18) we see that the left side of (17) is the same as that of  (15),  
and moreover applying some feedback transformation to (17) 
yields 

0 0( ( 0) ) ( ) ( )T T

E E I E I EX A BK A BK X K K K K           
(19) 

from which 0X  follows by Lyapunov theorem as well as 

the stability of 
0 E

A BK  as stated above. Finally by a well- 

known result on LMI [4] two conditions C1 and C2 are 
equivalent.   This completes the proof of Theorem 1 except 
the last part.   Since (1,1) block of the left side matrix of (17) 

is equal to that of (15) and hence to vQ by (16), the last part 

is obvious from LQ theory. 

C.  Strong optimality of the Plug-In Optimal Control System
 for a general single input system  

  
  In the previous section we have characterized the weighting 

matrix vQ of those cost vJ that is minimized by the overall 

control law
EIK K for a given IK .  In this section we 

minimize the resultant optimal cost 0

v vJ J  further by proper 

choice of IK .  This minimization is equivalent to that of the 

weighting matrix vQ , since the optimal cost 0

vJ reduces if so 

does the vQ due to a well-known monotonicity property of 

maximal solutions of Riccati equations [4]. Here we are 

concerned only with the vQ of diagonal form, and if all 

diagonal elements of vQ is minimized by IK , then we say 

that the associated Plug-In Optimal Control System is 
strongly optimal.  With regard to this problem we are 

interested in those IK for which all the eigenvalues of 

0 IA A BK  are on the imaginary axis, since the Implicit 

Control Law IK is one of such control laws [1].  With these 

settings, we then define the following detailed version of 
Problem 2, and show necessary and sufficient conditions 

under which the optimal cost 0

vJ can be minimized by some 

implicit control law embedded in the 1st stage, thereby clarify 
a merit of the Implicit Control Law. 
 

Problem 2 (Strong Optimality of Optimal PIS )  

Consider the Plug-In Optimal Control System: 

0 0 0
, , Re ( ) 0

E Ix A x Bu A A BK A                  (20) 

where 
E E

u K x   is an optimal control law minimizing the 

cost: 

 2 2

0
diag{ } 0E E E E iJ Q x u dt Q q


            (21) 

and the overall control ( )
EIv K K x    is also an optimal 

control minimizing the cost vJ with the weight vQ  given in 

Theorem 1.  Can you find conditions and design 0

IK such that 

the following three specifications are satisfied. 

S1) The weighting matrix vQ is diagonal for some 

symmetric solution  to the LMI of (15). 

S2) The gain matrix 0

I IK K minimizes the diagonal 

weighting matrix vQ .  

S3) All the eigenvalues of 0

0 IA A BK  are on the 

imaginary axis. 
 

To solve this problem, we consider the single input system S 
in the phase variable canonical form: 
 

S : x Ax Bv   
where 

 

1 2 1

0 1 0 0 0

0 0 0 0 0

,0 0 1 0 0

0 0 0 1 0

1
n n

A B

a a a a


 

   
   
   
   
   
   
     











        (22)  

P

P



 
 

For such a system we can always obtain a diagonal weighting 

matrix vQ for some real symmetric solution P of the LMI, 

and express it in terms of the elements of , EA Q and IK .  

However, these expressions are complicated in general, so 
we consider only the 2nd order system: 

S: 
1 2

00 1
,

1
,x Ax Bv A B

a a
      

     
                (23) 

Let 1 2[ ]IK k k .   Then by (15) we have 

1 2[ ]T

IB P K k k                                             (24) 

and so by [0 1]TB   we obtain  

   1 1

1 2

p k
P

k k

 
  
 

                                                        (25) 

as a general expression for possible symmetric solutions to 
(15).   Substituting this expression for P together with those 

for IK and 1 2diag{ }EQ q q as above into (16) yields 
T T

E I IvQ Q PA A P K K     
2

1 1 1 1

2

1 2 1 2 2 1 1 2 2 2 2 1

2 *

2 2

q k a k

k k a k a k p q k a k k

 


     

 
 
 

     (26) 

 

To meet the specification S1 for vQ , therefore, it is enough to 

choose 1p uniquely as follows: 

  
1 1 2 1 2 2 1 1 1 2 2 1 2( )( )p k k a k a k k k aa a a                (27) 

Then we can obtain the following diagonal weighting matrix  
2 2

1 1 1 1

2 2

2 2 2 2 1

( )

( ) 2

0

0
v

k a q a

k a q a k
Q

  

   

 
  
 

          (28) 

This expression enables us to give a solution to this problem 

as follows: 

Theorem 2  

Let 2n , 
1 2

diag{ , }
E

Q q q and 0 0 0
1 2[ ]IK k k  in Problem 2.  

Then there exists a control law 0

I
K satisfying the specifica- 

tions S2 and S3 if and only if 

 0 2 2

1 2 2 2 1 1 1
0, 2 2 max 0,q q q a a a q             (29) 

Under this condition the minimizing control law 0 0 0
1 2[ ]IK k k  

with
0

Re ( ) 0A  is given by 

 0 2 0

1 1 1 1 2 2
max 0, ,k a a q k a                    (30) 

and the minimized weighting matrix 0 0

11 22
diag{ , }

v
Q Q Q is 

given by 

       0 2

11 1 1
max 0,Q q a  , 0 0

22 2 2
Q q q  .             (31) 

Remark 1: By the phase variable canonical form of (23) it is 

easy to see that 0

2 2
k a means that 0

0 I
A A BK   has complex 

conjugate eigenvalues 0

1 1
j k a  ,  thereby satisfying the 

specification S3.  We should note, however, that S3 does not 

imply S2 in general.  In other words, not all IK that allocates 

all the closed-loop poles onto the imaginary axis guarantees 
the strong optimality of the Plug–In Optimal Control System.  
This is obvious from the expression of the minimizing control 

law 0
1k given by (30).  Obviously this expression suggests the 

existence of both lower and upper bounds of 0
1k .   For 

example, in the case of 1 22, 1a a  , 0
1k  takes only the values 

between 2 and 4. 
 

Remark 2: By Theorem 2 we can conclude that if we choose 

the weight
2

q alone larger than a certain value, then the 

resultant Plug-In Optimal Control System with 
0

Re ( ) 0A   

becomes optimal for the original system S.   This observation 
clarifies an important role played  by Implicit Control in the 
plug-in design method, in the sense that it achieves the strong 
optimality of Plug-In Optimal Control System. 

IV. CONCLUSION 

In this paper, we have considered a plug-in control system 
via a concept of Implicit Control Law and Explicit Control 
Law.  First, we showed that the plug-in control system can be 
optimized by designing a plug-in optimal control law suitably 
if and only if the quadratic weight and the Implicit Control 
Law associated with the plug-in optimal control system 
satisfy a certain condition at a time.  We then showed that the 
resultant optimal cost can be minimized further by choosing 
an Implicit Control Law suitably if and only if the quadratic 
weight alone satisfy a certain condition, thereby we clarified 
an important role which the Implicit Control Law plays in the 
plug-in design method.  Although we treat only the 2nd order 
system for simplicity in the latter half, we can extend the 
results in the same way to a higher order system up to 5th 
order system. 
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