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An Exact Solution Algorithm for Maximizing
the Fleet Availability of an Aircraft Unit Subject
to Flight and Maintenance Requirements

Andreas Gavranis, and George Kozanidis

Abstract— Flight and Maintenance Planning (FMP) of
mission aircraft addresses the question of which available
aircraft to fly and for how long, and which grounded aircraft to
perform maintenance operations on, in a group of aircraft that
comprise a unit. The objective is to achieve maximum fleet
availability of the unit over a given planning horizon, while also
satisfying certain flight and maintenance requirements.
Heuristic approaches that are used in practice to solve the FMP
problem often perform poorly, generating solutions that are far
from optimum. On the other hand, the more sophisticated
mathematical optimization models that have been developed to
tackle this problem handle small problems effectively, but tend
to be computationally inefficient for larger problems that often
arise in practice. In this work, we develop an exact solution
algorithm for the FMP Problem, which is capable of identifying
the global optimal solution of realistic size problems in very
reasonable computational times. Initially, this algorithm
obtains a valid upper bound on the optimal objective function
value by solving a simplified relaxation of the original problem;
then, this value is gradually reduced, until a feasible solution
that attains it is identified. The algorithm employs special valid
inequalities (cuts), which exclude solutions that do not qualify
for optimality from further consideration. The experimental
results that we present demonstrate that the proposed solution
algorithm is significantly more efficient than a commercial
optimization software package that can be used alternatively
for the solution of the problem under consideration.

Index Terms— fleet availability; flight and maintenance
planning; exact solution algorithm; mixed integer linear
programming.

1. INTRODUCTION

LIGHT and Maintenance Planning (FMP) is an
important decision making problem arising at the
operation level of numerous types of mission fleets,
involving military or fire-fighting aircraft, rescue choppers,
etc. The objective is to maximize fleet availability, while
also satisfying certain flight and maintenance requirements.
In this work, we develop an exact solution algorithm for
the FMP problem, which is capable of identifying the global
optimal solution of realistic size problems in very reasonable
computational times. This algorithm employs an iterative
procedure that considers successive relaxations of the
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original problem, adding a suitable valid inequality (cut)
each time the associated solution does not qualify for
optimality. The computational results that we report
demonstrate the superiority of the proposed algorithm over a
commercial optimization software package that can be used
alternatively for the solution of the FMP problem.

The remainder of this paper is structured as follows. In
Section II, we summarize the related literature, and in
Section III, we present the FMP optimization model. In
Section IV, we develop the exact methodology for the
solution of this model, and in Section V, we present
experimental results demonstrating its computational
efficiency. Finally, in Section VI we summarize our
conclusions.

II. LITERATURE REVIEW

Numerous problems dealing with aircraft operations have
been investigated in the past, both in the commercial, as well
as in the military context. In the context of military
applications, Safaei et al. [1] develop a mixed integer
optimization model to formulate the problem of workforce-
constrained maintenance scheduling for a fleet of military
aircraft, and use generic optimization software to solve it.
The model utilizes a network flow structure in order to
simulate the flow of aircraft between missions, the hangar
and the repair shop.

The increasing importance of effective military aircraft
maintenance was recently also recognized by the Operations
Research and Management Science (ORMS) community.
The 2006 Franz Edelman INFORMS Award for outstanding
operations research and management science practice was
bestowed on Warner Robins Air Logistics Center [2].
Working with Realization Technologies and faculty from the
University of Tennessee, WR-ALC used an operations
research technique called Critical Chain to reduce the
number of C-5 aircraft in the depot undergoing repair and
overhaul from twelve to seven in just eight months. As a
direct consequence, the time required to repair and overhaul
the C-5 aircraft was reduced by 33%.

Although FMP is an important decision making problem
encountered in several diversified areas, the relevant
published research is rather limited. Sgaslik [3] introduces a
decision support system for maintenance planning and
mission assignment of a helicopter fleet that partitions the
master problem into two sub-problems which are formulated
as elastic mixed integer programs and solved separately with
standard optimization software. Instead of maximizing the
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fleet availability, the suggested approach minimizes the cost
associated with the violation of some of the problem’s
constraints (e.g., those referring to the required flight time,
the maintenance capacity and the flight time of each
individual aircraft), while also maintaining a certain lower
bound on the fleet availability.

Pippin [4] develops a mixed integer linear program
(MILP) and a quadratic program for issuing the flight plan
of a unit of army helicopters. Both models minimize the cost
associated with the deviations of the individual helicopter
residual flight times from their target values, but neither of
them addresses the decisions related to the maintenance
aspect of the problem. A more simplistic model for flight
planning of training aircraft was studied by Rosenzweig et
al. [5]. The authors solve this model with generic
optimization software.

The U.S. Department of the Army has released a Field
Manual on Army Aviation Maintenance, which describes a
practical “sliding scale scheduling” or “aircraft flowchart”
graphical tool for scheduling aircraft for phase/periodic
inspection and deciding which aircraft should fly in certain
missions [6]. Utilizing this tool, Kozanidis et al. [7]
developed a mixed integer nonlinear optimization model and
an exact solution algorithm for solving the FMP problem
over a single-period planning horizon. In contrast, the
solution algorithm that we develop in the current work
accommodates a multi-period planning horizon.

Kozanidis [8] proposes a multi-objective MILP model for
the FMP problem that maximizes the minimum aircraft and
flight time availability of the wing and of the squadrons that
comprise it. Ref. [9] complements that work, by developing
a single objective optimization model, which adopts one out
of these objectives (wing aircraft availability) and
incorporates the remaining ones with the introduction of
associated constraints. Due to the excess computational
effort required for the solution of the aforementioned
models, the authors resort to heuristics for solving them
[10].

Finally, Cho [11] develops a MILP to model the FMP
problem. The proposed formulation generates a daily flight
and maintenance plan that distributes the maintenance
workload evenly across the planning horizon. The main
differences that this model exhibits with respect to the one
that we address in the current work, is that it uses different
definitions for the objective function and for the flight
requirements of the unit. More specifically, that model
minimizes the maximum number of aircraft in maintenance
at any given time in order to smoothen the variability of the
maintenance demand over time. Additionally, it translates
the original flight load requirements into sortie assignments,
which are successively assigned to the aircraft of the unit.

The author also considers a two-stage formulation, which
disaggregates the problem by determining the flight and
maintenance decisions in two separate stages. Both the
single and the two stage model are solved with generic
optimization software, although a discussion that proposes
equivalent alternative formulations and outlines the
development of potential heuristic solution approaches is
also included.
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III. MODEL FORMULATION

We consider a unit of mission aircraft (typically, a combat
wing). In order to retain the readiness of the unit at a high
level, the unit command issues at the beginning of each
planning horizon associated flight requirements. These
requirements (also referred to as flight load) determine the
total flight time that the aircraft of this unit must fulfill in
each time period of the planning horizon.

The fleet availability of a unit is usually expressed in
terms of the total number of aircraft that are available to fly
(aircraft availability), and in terms of the total residual flight
time of all available aircraft (residual flight time
availability). The residual flight time of an aircraft is defined
as the total remaining time that this aircraft can fly before it
has to be grounded for a maintenance check. This time is
also referred to as bank time in the related military literature
[6]. The residual flight time of an aircraft is positive if and
only if this aircraft is available to fly.

Similarly, we define the residual maintenance time of
each individual aircraft as the total remaining time that this
aircraft needs in order to complete its maintenance service.
The residual maintenance time of an aircraft is positive if
and only if this aircraft is undergoing a maintenance check
(and is therefore not available to fly).

For the maintenance needs of the unit, there exists a
station responsible for providing service to its aircraft. This
station has certain space (also referred to as dock space) and
time capacity capabilities. Given the flight requirements of
the unit, and the physical constraints that stem from the
capacity of the maintenance station, the goal is to issue a
flight and maintenance plan for each individual aircraft that
maximizes the unit’s readiness to respond to external threats,
i.e., the fleet availability.

The mathematical model that has been developed for the
FMP problem adopts the following mathematical notation:
Sets:

N: set of unit aircraft, indexed by #.

Parameters:

T : length of the planning horizon, indexed by ¢,

S, : flight load in period ¢,

B, : time capacity of the maintenance station in period ¢,

C : space capacity of the maintenance station,

Y : residual flight time of an aircraft immediately after it
exits the maintenance station (phase interval),

G : residual maintenance time of an aircraft immediately
after it enters the maintenance station,

Al, : state (0/1) of aircraft » at the first period of the
planning horizon,

Y1, : residual flight time of aircraft » at the first period of
the planning horizon,

G1, : residual maintenance time of aircraft »n at the first
period of the planning horizon,

X © maximum flight time of an available aircraft in a
single time period,

Y,in : lower bound on the residual flight time of an
available aircraft,

G,.in - lower bound on the residual maintenance time of a
grounded aircraft,

K : a sufficiently large number.
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Decision Variables: v, =Yl n=1,.. .,|N| (25)
a,, : binary decision variable that takes the value 1 if '

aircraft » is available in period #, and 0 otherwise, g, =Gl,n=1.. "|N| (26)
Ve © tesidual flight time of aircraft » at the beginning of x4 >0; n= 1,,_,,|N|, t=1,.,T 27)

period ¢, S0 B )3
X, : flight time of aircraft » in period ¢, Ynir8ns 20 =1 N|’ 1=2,..T+1 (28)
g,, : rtesidual maintenance time of aircraft n at the  p,,.r,,.q, binary, n=1,..|N|, t=1,.,T (29)

beginning of period 7, a,,.d,,. f,, binary, n=1,...[N|, =2,.,T +1 (30

h,, : maintenance time of aircraft » in period ¢,

d,, : binary decision variable that takes the value 1 if
aircraft » exits the maintenance station at the beginning of
period ¢, and 0 otherwise,

fue o binary decision variable that takes the value 1 if
aircraft » enters the maintenance station at the beginning of
period 7, and 0 otherwise,

4w Pns» ¥y - auxiliary binary decision variables. . ) b X

The proposed FMP model (Kozanidis, 2009; Kozanidis et flew during that period. Similarly, constraint set (5) updates

al. 2010) is a mixed integer linear program, formulated as the ) re.51dua1 maintenance tlme of each alrc.raft at. the
beginning of the next period, based on its residual

The objective function (1) maximizes the cumulative
residual flight time availability of the unit over the entire
planning horizon, which consists of the sum of the individual
fleet availabilities of all time periods. Constraint set (2)
updates the residual flight time of each aircraft at the
beginning of the next period, based on its residual flight time
at the beginning of the previous period and the time that it

follows: > ) o0 ) )
71 VI maintenance time at the beginning of the previous period
Max Zz V., (1) and the time that it received maintenance during that period.
1=2 n=1 Constraint sets (3), (4), (6) and (7) ensure that variables d,,,
St Yy = Vo — X, + Yd, .1 :1,...,|N|,t =1.,7 (2) and f,, take appropriate values, based on the values of
d,.=>a, —a,n=L.,N,t=1L.T 3) Varlabl.es s Cons.tramtlset ®) ensures.that the flight load in
’ ’ ’ each time period is satisfied. Constraint sets (9) and (10)
Ay — Gy T 1'1<1_dn,1+1)2 0.1, n = 1,---,|N|, t=1,.,T (4) ensure that the time and space capacity constraints of the
g =g, —h +Gf..n =l,...,N|, t =1,..T (5) maintengnce station are not violated in any tim§ period.
’ ’ ’ ’ Constraint sets (11) and (12) ensure that the maintenance
f;z,Hl 2da,, —a,.,n= L..,|N|,t =1.,T (6) station does not remain idle whenever there is at least one

t=1..T () aircraft waiting for service. Constraint sets (13) and (14)

a,,—a,,. +1L1(1-f . 1)=201Ln =1,..
e ( a ) ’ T ensure that an aircraft's availability ceases as soon as its

V]

N

x =S, t=1,.T (8) residual flight time drops to 0. Similarly, constraint sets (15)
e and (16) ensure that an aircraft becomes available as soon as
%h B oelT ) its residual maintenance time drops to 0. Constraint set (17)
gt = T TS states that the residual flight time of an aircraft cannot
v exceed Y, and ensures that it is equal to 0 whenever this
Z(l—an‘,) <C,t=2,.,T+1 (10) aircraft is not available. Similarly, constraint set (18) states
! ¥ that the residual maintenance time of an aircraft cannot
B < th +K(1-g), t=1,..T (11) exceed G, and ensures that it is equal to 0 whenever this

o aircraft is available. Constraint set (19) imposes an upper
‘AZ)V‘:gn.t < ‘AZ)VL‘hn,t FKgt =TT (12) bpund on the maximum time thgt an ai’rcraft can fly during a
i i single time period. Such a restriction is usually present due

y +Kp, <Kpn =1,...,|N|, t =1,.,T (13) to technical reasons. C(')nstra’int set (20) imposes a'lower
’ ’ bound on the residual flight time of each available aircraft,
a, . < (yn,t - xn,t>K + Kp,,,n = 19"'7|N|5 t =1,.,T (14) and constraint (21) imposes a lower bound on the residual
g, +Kr, <Kn= 1,...,|N, t =1,..T (15) mainter}ance time of each non-availab.Ie aircraft. Thf:se
’ ’ constraints are introduced to prevent an aircraft from ending
l-a,,, < (gn,t - hn,t)K +Kr,,, n= 1:---:|N|, t=L.,T (16) up with negligible but positive residual flight or maintenance

y <Ya,n-= L~~-,|N d=2,..T+1 a7 time. Con'straint set (22) ensures that the total time that an
’ ’ aircraft flies during a single period does not exceed its
ni SG(I_%,;), n =1,...,|N, t=2,.,T+1 (18) residual flight time at the beginning of the same period.

X, <X a,.n=L..Nt=1..T (19) Similar.ly, constraint set (23) ensures ‘Fhat the tot.al time. that
| | the maintenance crew works on an aircraft during a single

Vi 2 Y00, .0 =1,.. -’|N s 1=2,..T+1 (20) period does not exceed the residual maintenance time of this

g,.>G, (1 _am)’ n=1,.. .|N,t=2,..T+1 (21) aircraft at the beginning of the same period. Constraint sets
' | (24), (25) and (26) are used to initialize the state of the

X0y S Yy =1 |N|, 1=1,..,T 22) system at the first period of the planning horizon. Finally,

B <8yt =1=~~-,|N|, t=1,.T (23) constraints (27), (28) and (29), (30) are the non-negativity
’ ) and the integrality constraints, respectively.

a,, =Al,, n=1,.[N| 24)
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IV. SOLUTION METHODOLOGY

We propose a solution algorithm which utilizes the fact
that the cumulative fleet availability of the unit depends
solely on the combination of aircraft that enter and exit the
maintenance station and that the number of such
combinations is finite. The algorithm solves a relaxation of
the original problem first, in order to identify a valid upper
bound on the optimal objective function value. Starting from
this bound, the algorithm reduces gradually the value of the
objective, until a feasible flight and maintenance plan that
attains it is identified.

In general, there exist several aircraft combinations that
can result in the same cumulative fleet availability. Each
time one such combination is identified, the algorithm
performs two separate checks for feasibility. The first check
involves a typical flow balance calculation on the number of
aircraft that enter and exit the maintenance station. The
second check investigates whether it is possible for this
particular aircraft combination to be realized by a specific
flight and maintenance plan. If both these checks are
successful, then the associated solution is optimal and the
algorithm terminates. If not, a cut is added to the model,
excluding this combination from further consideration. To
check a particular aircraft combination for feasibility, we
utilize the original formulation, after adjusting accordingly
the model constraints to “force” the realization of this
aircraft combination. The following subsections portray in
more detail each step of the proposed solution algorithm.

A. Bounding the Optimal Objective Function Value

As determined by constraint (8), the fleet time availability of
the unit drops in each time period by the corresponding
flight load, independently of the particular flight and
maintenance time allocation to the aircraft of the unit.
Therefore, the cumulative fleet availability of the unit is
maximized when the number of aircraft that enter the station
for service over the entire planning horizon is the maximum
possible, and each grounded aircraft completes its service as
early as possible.

To see why this is the case, note that it is suboptimal for
the maintenance station to interrupt the service of a
grounded aircraft once this has begun, since this could
potentially delay the addition of this aircraft’s phase interval
to the fleet availability of the unit by one or more time
periods. This would clearly result in lower cumulative fleet
availability, since the availability of any individual time
period is more heavily weighted in the objective function
than that of any succeeding one. Thus, as far as the
maintenance decisions in each time period are concerned, it
is always optimal for the station to begin its service on the
grounded aircraft with the lowest residual maintenance time
and to work continuously on this aircraft until its service is
completed. Of course, this service may be spread out over
more than one time periods if the time capacity of the station
is not sufficient. In extend, a first-in-first-out policy is
optimal for each subsequent aircraft that will enter the
station for service.

Given this maintenance priority policy, an upper bound on
the optimal objective function value can be obtained by
computing the maximum possible number of aircraft that can
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enter the station for service over the entire planning horizon.
This number can be found by grounding each available
aircraft as early as possible. For time savings, the value of
this bound is computed independently of whether the
associated aircraft combination satisfies all the constraints of
the original formulation. This implies that the corresponding
solution this bound will be associated with will not
necessarily be feasible. Note that, for each individual time
period, the number of aircraft that cumulatively enter or exit
the station according to this aircraft combination is the
maximum possible in any feasible solution.

This aircraft combination is the first one that is checked
for feasibility. If this check is successful, then the associated
solution is optimal and the algorithm terminates. If not, the
algorithm adds a cut that excludes this particular
combination from further consideration, and searches for the
next best combination.

B.  Checking a Particular Aircraft Combination for

Feasibility

Checking a particular aircraft combination for feasibility
is quite trivial. It can be easily shown that there exists an
optimal solution to the problem defined by (1)-(30), which
preserves a steady rotation of the aircraft in and out of the
maintenance station, in non-decreasing order of their
residual flight/maintenance times. In practice, no such
restriction is present. Aircraft are allowed to enter and exit
the maintenance in any feasible order, and their indices are
updated accordingly to represent their relative order in terms
of their residual flight/maintenance times. With this in mind,
the index of each aircraft at the beginning of the next period
should be a decision variable allowed to take any feasible
value. Since adding this degree of freedom complicates
things unnecessarily, in what follows we impose a steady
rotation of the aircraft in and out of the maintenance station.
The proof that this has no effect whatsoever on the optimal
solution is identical to the proof of Proposition 1 in [7]; for
space consideration, we do not repeat this proof here.

With this in mind, the check of whether a particular
aircraft combination is feasible reduces to a check of
whether there exists a feasible flight and maintenance plan
that realizes this combination. This is equivalent to checking
the original formulation for feasibility with known the values
of decision variables a,,,, d,, and f,,, for n=1,...,|N| and ¢ =
2,...,7+1. In conjunction with the preservation of the order
of aircraft, this simplifies things considerably. As a result,
this check can be performed straightforwardly in negligible
computational time, as is also demonstrated by the
computational results that we present in Section V.

C. Generating a Cut for the Exclusion of a Particular
Aircraft Combination

For the sake of illustration of how a cut excluding a
particular aircraft combination is generated, we introduce the
following additional notation:

in, : number of aircraft that enter the station for service at
the end of time period 7 in aircraft combination £;

out,;: number of aircraft that exit the station at the end of
time period ¢ in aircraft combination &

my. - number of grounded aircraft at the beginning of time
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period ¢ in aircraft combination k

Suppose now that a particular aircraft combination with
index k =1 is proven infeasible. In this case, we need to add
a valid inequality excluding this combination, in order to
check if the current cumulative fleet availability can be
attained by a different combination with index & = 2. A
suitable cut that achieves this is the following:

T T
Z| in,, —in,, | + Z| out,, —out,,|21-
1=1 1=1

The corresponding formulation that we utilize in order to
search if such a combination exists is the following:

Max zT:(Y(T —t+1)out,,)

t=1

T T
S.t. ZloulL2 < Zoul,_l, r =L.,T
t=1 t=1
Z:inh2 < Zintvl, r =1.T
t=1 t=1
m, =m_,+in,_,—out_,, t=2,.,T+1
m, < C t =2,.,T+1

out, < m,,t =1.T

T T
Z| in,, —in,, | + Z| out,, —out,, |21,
=1 1=l

in,,, out,, integer 20, t=1,..,T;

m,, integer 20, t=2,..,T +1 (39)

The objective function of the above formulation is
equivalent to the objective function of the original problem.
Constraint sets (32) and (33) impose the upper bounds on
the cumulative number of aircraft that exit and enter the
station, as determined by the initially identified aircraft
combination. Constraint set (34) updates the number of
grounded aircraft based on the number of aircraft that enter
and exit the maintenance station. Constraint set (35) ensures
that the space capacity of the maintenance station is not
violated in any time period. Constraint set (36) states that the
number of aircraft exiting the station at the beginning of
each time period cannot exceed the number of grounded
aircraft. Constraint (37) is the valid cut that excludes the
previously identified infeasible combination. Of course, if
more than one such combinations are found, one such cut
needs to be added for each of them. Finally, constraint sets
(38) and (39) impose the non-negativity and the integrality
of the decision variables.

D. A Small Numerical Example

In this section, we illustrate the application of the proposed
algorithm on a small numerical example. Consider a unit
comprising of 6 aircraft, 5 of which are available and 1 of
which is grounded at the beginning of the planning horizon.

TABLE I
RESIDUAL FLIGHT/MAINTENANCE TIMES (yjy/gjp) (HOURS)
i=1 i=2 i=3 i=4 i=5 j=1
5 38 186 213 257 70

Table I presents the residual flight times of the available
aircraft and the residual maintenance times of the grounded
aircraft. In this table, bold-style entries denote maintenance
times of grounded aircraft and plain-style entries denote
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flight times of available aircraft.
Table II presents the flight load requirements and the time
capacity of the maintenance station in each time period.
TABLE I
FLIGHT LOAD REQUIREMENTS
AND TIME CAPACITY OF THE MAINTENANCE STATION
t 1 2 3 4 5 6

S, 97 115 99 121 121 113
B, 129 148 154 144 126 135

Initially, we utilize the procedure for obtaining the upper
bound on the optimal cumulative fleet availability. Table III

(31) shows the associated combination of aircraft that enter and

exit the maintenance station in each time period.
TABLE III
INITIAL AIRCRAFT COMBINATION

t 1 2 3 4 5 6
in 2 0 0 1 1 1
out 1 0 0 1 0 1

First, we check if this combination satisfies the flow
balance of the aircraft. Since it does, we next check if this

(36) combination leads to a feasible solution for the original

(37

formulation. This reduces to checking if there exists a
feasible allocation of the flight load and the station’s time

(38) capacity for which this combination is realized. This is not

true here; therefore, we add a valid-cut excluding this
combination, and we solve the sub-problem defined by (31)-
(39) to see if there exists another combination that results in
the same cumulative fleet availability. The optimal solution
of this sub-problem identifies the aircraft combination
shown in Table IV.

TABLE IV
SECOND AIRCRAFT COMBINATION
t 1 2 3 4 5 6
in 1 0 0 1 1 1
out 1 0 0 1 0 1

This combination is also infeasible; therefore, a new cut
excluding it is added. The procedure continues similarly
until the optimal solution of the problem is identified. This

happens at the 6™ combination which is shown in table V:
TABLE V
OPTIMAL AIRCRAFT COMBINATION

t 1 2 3 4 5 6
in 1 0 1 0 1 0
out 1 0 0 1 0 1

V. COMPUTATIONAL RESULTS

The proposed solution algorithm was implemented in
C/C++ interfacing with LINGO 11.0 [12] through LINGO
Dynamic Link Library (DLL) callback functions and its
performance was compared against that of the MILP model
of Section III, which was developed in LINGO 11.0. Our
computational experiments were performed on an Intel Core
2 Duo E6750 @ 2.66GHz processor with 2 GB system
memory.

We used 7 different values for |V and solved 20 random
problem instances for each of them. We chose a
considerably smaller problem size for the first 3 sets of
problems, in order to enable their exact solution with the
MILP model. In order to test the efficiency of the proposed
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solution algorithm on large scale problems too, we also
tested it on problem instances with |[N] = 100, 200, 300, and
400. We were not able to apply the MILP model on these
problems due to its excessive computational requirements.
Typical combat wings of the HAF may consist of up to 100
aircraft; therefore, a high speed solution algorithm, such as
the one that we propose is extremely important.

The value of T was always taken equal to 6, since the
flight requirements are typically issued for a planning
horizon of 6 monthly periods. The required flight time for
each squadron and period combination was a random
number distributed uniformly in the interval [16|N], 21|N]].
The time capacity of the maintenance station in each time
period was a random number distributed uniformly in the
interval [21|N], 26|NV|], and the space capacity was set equal
to 0.1|V], rounded up to the nearest integer. These figures
correspond to actual FMP configurations encountered in the
HAF. We generated the number of grounded aircraft
randomly, using a discrete probability function that
considered integer values between 0 and C, inclusive. We
set parameters Y and G equal to their actual values, i.e., 300
and 320 hours, respectively. The residual flight time of each
available aircraft was a random number distributed
uniformly in the interval [Y,,;,,Y], whereas the residual
maintenance time of each grounded aircraft was a random
number distributed uniformly in the interval [G,,;,,G]. We
used actual values drawn from the real application for the
remaining problem parameters, i.e., X, = 50, Y = 0.1 and
G.in = 0.1. We performed several checks to ensure that each
randomly generated problem instance was feasible.

Table VI presents the average and maximum required
computational times of the MILP LINGO model and of our
proposed solution algorithm. The superiority of the latter
becomes immediately clear, since its computational
requirements are significantly lower than those of the MILP
LINGO model. As the results of Table VI demonstrate, the
computational savings increase considerably for large scale
problem instances, for which the application of LINGO is
impracticable.

TABLE VI
COMPUTATIONAL REQUIREMENTS (IN SECONDS)
MILP LINGO Proposed algorithm
IN| Avg Max Avg Max
12 9.70 68.39 0.46 0.50
16 14500.24 33966.27 0.47 0.50
20 57979.32 277450.66 0.47 0.50
100 0.56 0.58
200 0.67 0.70
300 0.78 0.80
400 0.90 0.94

The number of iterations that the proposed solution
algorithm performs is relatively small on the average. A
short computational study reveals that the size of the
problem alone is not indicative of the computational effort
needed to reach an optimal solution. In order to make the
task of finding the optimal solution more challenging for the
algorithm, we opted for larger values of C equal to 0.35|V|
and 0.4|N|, rounded up to the nearest integer, although this is
not in agreement with the actual value of C for realistic
problems. We solved 20 random problem instances for each
of the large scale problem values with |[N] = 100, 200, 300,
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and 400. The results are presented in Table VII.

TABLE VII
EFFECT OF VALUE OF C ON COMPUTATIONAL REQUIREMENTS
C= [0.35]N]] C=[04N]]

IN| Avg Max Avg Max
100 3.84 11.55 4.85 19.77
200 4.73 16.31 7.42 72.48
300 5.63 23.59 4.58 16.89
400 14.46 154.7 5.05 3291

As the results of Table VII demonstrate, the

computational burden of the proposed solution algorithm
increases considerably when the value of C increases.
However, the computational requirements are still very
reasonable even for such large scale problem instances, for
which the application of LINGO is impracticable.

VI. CONCLUSIONS & FUTURE RESEARCH

In this work, we developed an exact solution algorithm for
the FMP problem, i.e., for the problem of issuing a joint
flight and maintenance plan for a group of aircraft that
comprise a unit, so as to maximize the unit’s fleet
availability. Our experimental results demonstrate that the
proposed algorithm is capable of handling even large FMP
instances quite effectively. An interesting extension for
future research is to include a second objective in the model
formulation that will minimize the variability of the fleet
availability, so that this does not vary significantly in each
time period of the planning horizon.
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