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 
Abstract—This paper considers a Geo/G/1 queue, in which 

the server operates a single vacation at end of each consecutive 
service period. After all the customers in the system are served 
exhaustively, the server immediately leaves for a vacation. 
Upon returning from the vacation, the server inspects the queue 
length. If there are customers waiting in the queue, the server 
either resumes serving the waiting customers (with probability 
p) or remains idle in the system (with probability 1-p) until the 
next customer arrives; and if no customer presents in the queue, 
the server stays dormancy in the system until at least one 
customer arrives. Using the generating function technique, the 
system state evolution is analyzed. The probability generating 
functions of the system size distributions in various states are 
obtained. The waiting time distribution is also derived. With the 
vacation of fixed length time (say T), the long run average cost 
function per unit time is analytically developed to determine the 
joint optimal values of T and p at a minimum cost. 
 

Keywords—Cost, Discrete time queue, Randomized vacation, 
Direct search method 
 

I. INTRODUCTION 

HE modelling analysis for the queueing systems with 
vacations has been done by a considerable amount of 

work in the past. A comprehensive and excellent study on the 
vacation models, including some applications such as 
production/inventory system and communication/computer 
systems, can be found in Takagi [4] and Tian and Zhang [7]. 
On the other hand, along with the advent of computer and 
communication technologies, the analysis of discrete-time 
queueing systems has received more attention in the 
scientific literatures over the past years—Hunter [2], Bruneel 
and Kim [1], Takagi [5], and Woodward [9]. The reason for 
this is that discrete-time systems are more appropriate than 
their continuous-time counterparts in their applicability for 
the study of many computer and communication systems 
applications in which time is divided into fixed-length time 
intervals (‘slots’). The applications to communication and 
computer systems include asynchronous transfer mode 
multiplexers in the broadband integrated services digital 
network, slotted carrier-sense multiple access protocols, and 
time-division multiple access schemes. 

An excellent study on discrete-time queueing systems with 
vacations has been presented by Takagi [5]. Zhang and Tian  

 
[10] investigated a Geo/G/1 queue with multiple adaptive 
vacations. Tian and Zhang [6] analyzed a GI/Geo/1 queueing 
system with multiple vacations by matrix-geometric solution 
method and Li and Tian [3] used the same method to study a 
GI/Geo/1 queueing system with working vacation and 
vacation interruption. Wang et al. [8] investigated the 
discrete-time Geo/G/1 queue with randomized vacations and 
at most J vacations. Zhang and Tian [10], Tian and Zhang [6], 
and Li and Tian [3], they gave the stochastic results for the 
queue length and waiting time. We should note that in Zhang 
and Tian [10], Zhang and Tian [6], and Li and Tian [3], no 
optimal vacation policies are obtained.  

In this paper, a Geo/G/1 system with a single vacation 
policy and randomized activation (namely <V, p> policy) 
was considered. The <V, p> policy is performed under the 
following conditions: (i) the server leaves for a single 
vacation when the system is empty, (ii) if the server returns 
from the vacation and at least one customer is waiting in the 
queue, the server may either activates with probability p or 
stays dormancy in the system with probability 1 p , and (iii) 

when the server is dormant in the system, he activates to 
serve the waiting customers as the next customer arrives. 

Such a model has a potential application in wireless local 
area networks (WLANs). Access Points (APs) are specially 
configured nodes on WLANs and act as a central transmitter 
and receiver of WLAN radio signals. To keep the APs 
functioning well, some maintenance activities are needed. 
For example, virus scan is an important maintenance activity 
for the APs. It can be performed when the AP is idle and be 
programmed to perform on a regular basis. After finishing the 
maintenance activity, AP can enter the sleep mode when 
there is no radio signal to be transmitted for power saving. It 
can also enter the sleep mode after finishing the some kinds 
of maintenance activities such as refreshing AP current status. 
AP will awake from sleep mode and begin to serve when the 
new radio signal arrives. 

 

II. MODEL DESCRIPTION  

Let the time axis be marked by 0, 1,…, n,…. Assume that a 

potential arrival occurs within  and a potential 

departure occurs ( ,

( , )n n

)n n .When a customer arrives in the nth 

slot and the system is empty, the service is started in the 
(n+1)th slot. This type rule of arrivals and departures is 
called late arrival system (LAS) with delay access. 
Customers arrive according to a Bernoulli process with 
rate   . The service times of the customers are independent 
and identically distributed according to a general probability 

mass function 1{ }i ib 
  with probability generating function 

T 
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(PGF) and jth factorial moments , 

. After all the customers in the system are served 

exhaustively, the server operates a <V, p> policy. As soon as 
the system becomes empty, the server immediately takes a 
single vacation, where the vacation time is a discrete random 

variable, denoted by V, with probability mass function 

1( ) i
i iB u b u
  jB

1{ }i iv

1, 2j 


  

having PGF and jth factorial moments 

, . At the vacation completion instant, the server 

checks the system to see if there is any waiting customer and 
decides the action to take one of the following two cases 
according to the state of the system: 

1
i

iv u
( ) iV u  

1, 2

1 1B

jV j 

, 1 1,1 ,1 , 1

1,1 1, 1 ,1 ., 2, 1

k i k i k i k i k i

k i k i k i

b p b p b

b b k

       

     
  

  

    

i   

 


             (6) 

Case 1: If there is any customer waiting in the queue, the 
server will resume serving the queue with probability p or to 
stay dormancy in the system with probability 1  until at 

least one customer arrives. 

p

Case 2: If there is no customer waiting in the queue, the 
server remains idle in the system until the next customer 
arriving 

Arriving customers form a single waiting line based on the 
order of their arrivals. The server can serve only one 
customer at a time. If the server is busy, arriving customer 
has to wait in the queue until the server is available. All 
customers arriving to the system are assumed to be eventually 
served, i.e.   . Furthermore, various stochastic 

processes involved in the system are independent of each 
other. We use the symbol 1x x  , for 0 1x  . 
 

III. MODEL FORMULATION AND STATIONARY DISTRIBUTION 

Let  denote the state of the server,  n

0,  if the se

1, if the

2, if the
n

rver is on vacation at time

 server is idle at time ;

 server is busy at time . 

n

n

n

;








  



remaining vac

remaining ser

 


lim Pr[ 0,n n
  

m Pr[ 1,k n L


 

lim Pr[ 2,n n
  

 

Let  indicate the number of customers in the system at 

time .  

nL

n

n

,k i
n



li
n

 

,k i
n

Define  

ation time at , if

vice time at , if

n

n

n

n





 

 

0,

2.
 

Let us define the following limiting probabilities 

, ]nL k i   ,  ; 0, 1k i 

],n k   ; 0k 

, ],nL k i     . 0, 1k i 

The Kolmogorov equations for the stationary distribution 
are given by 

0, 1  ,1i i 0, 1 ,iv     1i                                       (1) 

, ,k i 1 1, 1 , 1, 1k i k i       k i                                       (2) 

0 0,1 0                                                                     (3) 

,1 1,1 ,k k k kp p k     1                                          (4) 

1,

To resolve (1)-(6), we use the following generating functions:  

,
0 1

( , ) k i
V k

k i
G u z z u i

 

 
    , ,1

0
( ) k

V k
k

z z 



   , 

0
( ) k

I k
k

G z z



  ( ,,  ,

1 1
) k i

B k i
k i

z z uG u 
 

 
   , 

,1
1

( ) k
B k

k
z z 




  ,   ( 1z   and 1u ). 

Multiplying (1) and (2) by and summing over k after 
multiplying (1) and (2) by u  and summing over i, it finally 
yields 

kz
i

1,1

( )
( , ) ( ) ( ) ( )V V

u z
G u z V u z z

u

      
   .           (7) 

Multiplying (5) and (6) by and summing over k after 
multiplying (5) and (6) by  and summing over i, we have 

kz
iu

0,1 1,1

( )
( , ) ( )[ ( ) ( ) ( )]

( ( ) )( )
( ) ( ) ( ) .

B I

B

u z
G u z B u zG z p z z

u

B u z z
p B u z B u

z

     

 

V

  

 
  

 
    

   (8) 

Inserting (u )z    in (7) and (8), respectively, we obtain 

1,1

( )
( )

( )V

V z
z

z

   
 





,                                                     (9) 

 0,1 1,1

( )
( )

( ) ( )

(1 ) 1 ( ) ( )

B

zB z
z

z B z z

p z p pz V z

  
   

  


 

    

       .

tain 

    (10) 

Multiplying (3) and (4) by and summing over k, we obkz
0,1( ) ( ) ( )I VG z p p z z      .                         (11) 

Substituting (9) into (7) and (11), it gives 

 0,1 1,1( ) ( )IG z p pV z
       ,                       


         (12) 

 
1,1

( ) ( )
( , )

( )V

u V u V z
G u z

u z

  


 

 


 
.                             (13) 

Substituting (9), (10) and (12) into (8), we obtain  

 

0 0,1 1,1 1, 1

2,1 1,1 , 1

i i i i i

i i

b p b p b

b b i

       

   
    

  

 
                  (5) 

 
 0,1 1,1

( , )
( ) ( )

(1 ) 1 ( ) ( )

BG u z
u z B z z

p z p pz V z

   

   

 
     

      

  (14) 

The PGF of the number of customers in the system is given 

( ) ( )uz B u B z   

.

by  

 
 0,1 1,1

( )
( ) ( ) (1, ) (1, )

( )

(1 ) 1 ( ) ( )

I V B

B z
L z G z G z G z

B z z

p z p pz V z

  
  

  



.

   
 

      


  (15) 

Setting 0z   i
n, (1L

n (9) and using the normalization 
conditio ) 1 , we obtain 

 0,1

1

(1 ) ( )V 
( )p V pV

 
  




 
 ,                                              (16) 

 1,1

1

(1 )

( )p V pV

 
  




 
.                                              (17) 
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 0,1Substitution  and 1,1  into (15) gives 

 
 

 1

(1 )(1 ) ( )

(

(1 ) ( ) 1 ( ) ( )
.

(1 ) ( )

z B z

z

p z V p pz V z

z p V pV

  
 

  

 

  
 

      
  

    (18) 

Differentiating and setting , the expected 

number of customers in the system is given by 

  1( )

1 1 1
( )

k n l jj n n l n l
k n

k j n
pv b z C z 

   

  
      

0
l

l

( )
)

L z
B z 

( )L z 1z 

 
2 2

2 1

1

2
[ ]

2(1 ) 2 ( )

B p V V
L

p V pV

  



2E

 


 
  

                     (19)  . 

IV. THE TURNED-OFF PERIOD AND TURNED-ON PERIOD 

 

he turned-off period is comprised of vacation period and 

F of the server turned-off 

 

A. The turned-off period 

T

idle period. Hence the PG

period is given by 
  ( ) ( ) ( ) ( ) ( ) ( )VI u p pI u V u V u V u I u     ,       (20

which leads to the expec

) 

ted length of the turned-off period as 

1

( )
[ ]off

pV q
E S V




From (21), we obtain the expected lengths of the vacation 


  .                                     

period and idle period are

            (21) 

 

1[ ]VE S V ,                                                                        (22) 

( )
[ ]I

pV p
E S

 
 .          


                                                (23) 

 

B. The turned-on (

From Takagi [8], we have the PGF of busy period for the
 delay access 

busy) period 

 
classical Geo/G/1 with late arrive

( ) ( ( ) )z B z z z     .                             (24) 

The busy period begins as one of the following three cases: 
Case 1:  j messages arrive during the vacation period which 

tion completion instant, vacation time is k slots. After the vaca
the server begins service with probability p. Such event 

occurs with probability ( ) , 1, 2 , 1, 2,j
kpv k j k   , where 

( )j k j k j
k j kv C v   . 

Case 2:  j messages arriv d which e during the vacation perio
vacation time is k slots. At the end of the vacation, the server 
remains idle in the system with probability p . In this case, 

the server begins providing service as next message arrives. 
Such event occurs with probability 

 ( ) 1 ( )

1
, 1, 2 , 1, 2,j m j

k k
m

pv pv k j k 





     . 

Case 3:  No message arrives during the vacation period 
hich vacation time is k slots. In this case, the server starts w

providing service as a message arrives. Such event occurs 

with probability 1

1
, 1,2k m k

k k
m

v v k   





   . 

The PGF of the sub-busy period is extended by Case 1-3 as 

 ( )

1 1 1 0
( )j n n l n l

k n l
k j n l

pv b z C z  

   
     . 

k n  l j

 
1 1 0

( )
n lk n n l n l

k n l
k n l

v b z C z  
 



  
   . 

Hence the PGF of the busy period for the <V, p> policy 
Geo/G/1 queueing system is given by 

 ( ) ( )

( ( )) ( ) ( )
( )

p
p V z V V

z

z B z z z 

   
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             

25) 

and the expected length of the busy period is given by  

 

  (

1 ( )
[ ] (1)

(1 )on

p V pV
E S

  

 

     


.                          (26) 

sy 
cycle 
From (21) and (26), we obtain the expected length of bu

1 ( )V
[ ] [ ] [ ]V off on

p V p
E C E S E S

 
.                (27) 

(1 ) 
 

  


V. WAITING TIME IN THE QUEU

Let us define the following PGFs:  

 

E 

( | )V z vacationW the PGF of the waiting time in the queue 
of a customer conditioning that the server state is on 
vacation; 
( | )z idleIW  the PGF of the waiting time in the queue of a 

omer conditioning that the server state is idle; 
( | )z busy

cust

BW  the PGF of the waiting time in the queue of a 

omer cocust nditioning that the server is busy; 
( )QW z  the PGF of waiting time in the queue of a customer; 

For the Geo/G/1 system with <V, p> policy, an arrival may 
cur as one of the following three cases:  
ase 1: A customer arrives while the server is o

oc
C
and find
va

rvice time of the 

n vacation 
 k customer( 0k  ) in the system: (i) while the 

cation is just end, the server is switched to busy period with 
probability p, the customer must wait the se
preceding k customers; and (ii) while the vacation is just end, 
the server is switched t period with probability o idle p  until 

the next customer arrives, the customer must wait the time for 
the next arrival plus the service time of the preceding k 
customers. 
Case 2: There are exactly k customers in the queue and the 
server is idle in the system when the customer arrives. 
Case 3: A customer arrives while the server is busy and finds 
k customers in the system. In this case, the waiting time in the 

i) the 
queue of the customer consists of: (i) the remaining service 
time of the customer being served at time n ; and (i

service time of the k-1 customers in the queue at time n . 
From Case 1 yields 

 1 1
, ,

0 1

( | )

( ) [ ( )]
1

V

ki i k
k i k i

k i

W z vacation

z
p z B z p z B z

z

 


   
 

 0 1k i 



       
 

1 IP 

 (28) 
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From Case 3, we have  

  11
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1 1
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k i

k i
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.                                (30) 

ally, the PGF of the waitin
customer is given by 
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VI. OPTIMIZATION ANALYSIS  

As a particular case, the Geo/G/1 queueing system with <T, 
> policy, in which the server takes a vacation of fixed length 

T at the ending of the busy period and the server begins 
service with n the queue at 
vacation completion instant. We construct the total expected 
co

e and the corresponding 
system

) 

 

VI. OPTIMIZATION ANALYSIS  

As a particular case, the Geo/G/1 queueing system with <T, 
> policy, in which the server takes a vacation of fixed length 
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Table 2. The illustration of the implement process of  *p

 

 

VII. CONCLUSION 

The study introduces the <V, p> policy for a discrete-time 
Geo/G/1 queueing system, in which a single server randomly 
reactivates when some customers present in the queue at 
ending of vacation completion instant. Some important 
system characteristics are derived, including the system 
length distribution and waiting time distribution. The study 
finally develops efficient methods to find the optimal <T, p> 
policy that minimizes the expected cost function. 
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