
Linear Programming Formulation of kSAT
Algirdas Antano Maknickas

Abstract—With using of multi-nary logic analytic formula
and linear programming proposition that kSAT is in P and
could be solved in linear time was proved.

Index Terms—Linear Programming, kSAT, multivalued logic.

I. I NTRODUCTION

T HE Boolean satisfiability (SAT) problem [1] is defined
as follows: Given a Boolean formula, check whether an

assignment of Boolean values to the propositional variables
in the formula exists, such that the formula evaluates to
true. If such an assignment exists, the formula is said to be
satisfiable; otherwise, it is unsatisfiable. For a formula with
m variables, there are 2m possible truth assignments. The
conjunctive normal form (CNF)

(X1 ∨X2) ∧ (X3 ∨X4) ∧ · · · ∧ (Xn−1 ∨Xn) (1)

is most the frequently used for representing Boolean formu-
las, where¬∀Xi are independent. In CNF, the variables of
the formula appear in literals (e.g., x) or their negation (e.g.,
¬x (logical NOT¬)). Literals are grouped into clauses, which
represent a disjunction (logical OR∨) of the literals they
contain. A single literal can appear in any number of clauses.
The conjunction (logical AND∧) of all clauses represents a
formula.

Several algorithms are known for solving the 2 - satisfia-
bility problem; the most efficient of them take linear time [2],
[3], [4]. Instances of the 2-satisfiability or 2SAT problem are
typically expressed as 2-CNF or Krom formulas [2]

SAT was the first known NP-complete problem, as proved
by Cook and Levin in 1971 [1] [5]. Until that time, the
concept of an NP-complete problem did not even exist. The
problem remains NP-complete even if all expressions are
written in conjunctive normal form with 3 variables per
clause (3-CNF), yielding the 3SAT problem. This means the
expression has the form:

(X1 ∨X2 ∨X3) ∧ (X4 ∨X5 ∨X6) ∧ . . .

∧(Xn−2 ∨Xn−1 ∨Xn) (2)

NP-complete and it is used as a starting point for proving that
other problems are also NP-hard. This is done by polynomial-
time reduction from 3-SAT to the other problem.

In 2010, Moustapha Diaby provided two further proofs for
P=NP. His papers Linear programming formulation of the
vertex colouring problem and Linear programming formula-
tion of the set partitioning problem give linear programming
formulations for two well-known NP-hard problems [6], [7].

The goal of this paper is proof of proposition that kSAT is
in P using multi logic formula of discrete second order logic
proposed first in [8], [9] and could be solved inO (m).

Manuscript received December 01, 2012; revised December 19, 2012.
A.A. Maknickas is with the Department of Information Technologies,

Vilnius Gediminas Technical University, Vilnius, Lithuania LT-06227 e-mail:
algirdas.maknickas@vgtu.lt.

II. 2SAT IS IN P

THEOREM 1 If all variables are unique, equation

maxβ2 (X1, X2, ..., Xn−1, Xn) (3)

where

β2 (X1, X2, ..., Xn−1, Xn) =

µ (X1 +X2, µ (X3 +X4, ...,

µ (Xn−3 +Xn−2, Xn−1 +Xn)))

µ (a, b) =

⌊a⌋\⌊b⌋ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 1

(4)

and + is algebraic summation could be solved for ∀Xi ∈
{0, 1} in O (m).

Proof. Let start from investigation of

f(x1, x2, ..., xm) =
m
∏

i=1

xi, ∀xi ∈ R (5)

in hyper-cube of sides[0, 1]. This function is convex, because

m
∏

i=1

xi ≤
∑m

i=1
xiα

i (6)

1 =
∑m

i=1
αi (7)

It is obvious, on right side of (6) we have hyper-plane
which goes through vertexes(0, 0, 0, .., 0) and (1, 1, 1, .., 1)
of investigating hyper-cube. This hyper-plane has global
maximum like a functionf(x1, x2, ..., xm) and it equals
1. So we could resume that finding of global maximum
of f(x1, x2, ..., xm) could be replaced by finding of global
maximum of this hyper plane or

max

m
∏

i=1

xi =
1

n
max

n
∑

i=1

xi (8)

Let start to investigate (3)∀Xi ∈ R, i ∈ {1, 2, ..., n}. Func-
tion β2 could be calculated withinO (m) [10]. According to
(4) equation (3) could be rewritten as follow

maxµ (X1 +X2, µ (X3 +X4, ...,

µ (Xn−3 +Xn−2, Xn−1 +Xn))) =

maxµ (X1 +X2,maxµ (X3 +X4, ...,

maxµ (Xn−3 +Xn−2, Xn−1 +Xn)))

(9)

So, m local partial maximums must satisfy equalities
maxµ(Xk−1 +Xk) = 1 to avoid 0 result of global max-
imum. This leads to inequalities1 ≤ (Xk−1 +Xk) ≤ 2
but if we want to use (8) we must leave(Xk−1 +Xk) = 1
Now we could start to solve satisfiability problem as global

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

maximum of (3). If we have all variables unique, (9) could
be solved repeating solving of system of LP equations















max
∑k

i=k−1
Xi

Xk +Xk−1 = 1
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(10)

Each of them has not zero max and could be solved us-
ing best known algorithm of linear programming [11] in
O
(

n3.5
)

or in O(23.5). So all clauses should be optimized
in O

(

23.5m
)

©

A. Special cases

THEOREM 1.1 If some of unique variables are negations
¬Xi, equation

maxβ2 (X1, X2, ..., Xn−1, Xn) (11)

could be solved for ∀Xi ∈ {0, 1} in O (m).
Proof. If we have all variables unique, let replace all

negations¬Xk with X´
k and all others just renamed byX´

i .
Now (11) could be solved repeating solving of system of LP
equations















max
∑k

i=k−1
X´

i

X´
k +X´

k−1 = 1
0 ≤ X´

k−1 ≤ 1
0 ≤ X´

k ≤ 1

(12)

Each of them has not zero max and could be solved in
O(23.5). Going back to old variables do not change com-
plexity of each solution. So all clauses should be optimized
in O

(

23.5m
)

©

THEOREM 1.2 If some of variables in different clauses
are not unique, equation

maxβ2 (X1, X2, ..., Xn−1, Xn) (13)

could be solved for ∀Xi ∈ {0, 1} in O (m).
Proof. If Xn, Xn−1 are unique, let start to solve (13)

starting from a system of LP equations














max
∑n

i=n−1
Xi

Xn +Xn−1 = 1
0 ≤ Xn−1 ≤ 1
0 ≤ Xn ≤ 1

(14)

Now we know two unique variables. So maximum is reached
and system of equation is solved inO(23.5). If Xn = Xn−1,
Xn = 1 ∧ Xn−1 = 1. All other sub-equation could be
solved as follow: if solving sub-equation has one variable
with earlier found value, LP equations















max
∑k

i=k−1
Xi

1 ≤ Xk +Xk−1 ≤ 2
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(15)

could be solved by reducing of (15) within inserting of earlier
found variable value resigned to 1 (lower and upper bound
could be increased in case the broken plane result to1 earlier
and than is flat in 2D space); if all variables of solving
sub-equations (15) aren’t unique, these variables could be

reassigned to1 and solving repeated within next clause; if
solving sub-equation has two unique variables, LP equations















max
∑k

i=k−1
Xi

Xk +Xk−1 = 1
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(16)

could be solved. So all clauses should be optimized in
O
(

23.5m
)

©

THEOREM 1.3 If some of variables in different clauses
are not unique and are negation each other, equation

maxβ2 (X1, X2, ..., Xn−1, Xn) (17)

could be solved for ∀Xi ∈ {0, 1} in O (m).
Proof. Let mark all variables they are unique or not starting

from the end of CNF. Now cycle throughn variables must
be repeated to rename them toX´

k so that new replaced
variables marked as not unique will be negations which must
be replaced with1−X´

k, if they found second time. In kind
first time found not unique variable could be assigned to0.
This lead to value of1 for negation. It could be done in
O (2n) . Now we start solving process for last clause. If
X´

n = ¬X´
n−1, X´

n = 1. If X´
n, X

´
n−1 are unique, let start to

solve (17) from a system of LP equations














max
∑n

i=n−1
X´

i

X´
n +X´

n−1 = 1
0 ≤ X´

n−1 ≤ 1
0 ≤ X´

n ≤ 1

(18)

Now we know two or one unique variables. All other sub-
equation could be solved as follow: if solving sub-equation
has one variable with earlier found value, LP equations















max
∑k

i=k−1
Xi

1 ≤ Xk +Xk−1 ≤ 2
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(19)

could be solved by reducing of (19) within inserting of earlier
found variable value reassigned to 1 (lower and upper bound
could be increased in case the broken plane result to1 earlier
and than is flat in 2D space); if all variables of solving sub-
equations aren’t unique and are negations of earlier found
values in a different clauses, they values could be assigned
to 0 and values of residual variables leads to1; if all variables
of solving sub-equations aren’t unique and are negations of
earlier found values in the same clause, one of variables
must be assigned to1 and other to0; if at least two clauses
∃, whereXi ∧ ¬Xi, CNF is not satisfiable ;if solving sub-
equation has two unique variables, LP equations















max
∑k

i=k−1
Xi

Xk +Xk−1 = 1
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(20)

could be solved. Each sub-system of equation is solved in
O(23.5) to reach global maximum1. Finally, all clauses
should be optimizedm times or inO

(

23.5m+ 2n
)

. In case
m ≥ n we haveO (m) algorithm complexity©

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

III. 3SAT IS IN P

THEOREM 2 If all variables are unique, equation

maxβ3 (X1, X2, ..., Xn−1, Xn) (21)

where

β3 (X1, X2, ..., Xn−1, Xn) =

µ (X1 +X2 +X3, µ (X4 +X5 +X6, ...,

µ (Xn−5 +Xn−4 +Xn−3, Xn−2 +Xn−1 +Xn)))

(22)

µ (a, b) =

a\b 0 1 2 3
0 0 0 0 0
1 0 1 1 1
2 0 1 1 1
3 0 1 1 1

(23)

and + is algebraic summation could be solved for ∀Xi ∈
{0, 1} in O (m).

Proof. Let start to investigate (21) when∀Xi ∈ R, i ∈
{1, 2, ..., n}. Functionβ3 could be calculated withinO (m)
[10]. According to (22) equation (21) could be rewritten as
follow

maxµ (X1 +X2 +X3, µ (X4 +X5 +X6, ...,

µ (Xn−5 +Xn−4 +Xn−3, Xn−2 +Xn−1 +Xn)))
(24)

So, m local partial maximums must satisfy equalities
maxµ(Xk−2 + (Xk−1 +Xk) = 1 to avoid 0 result
of global maximum. This leads to inequalities1 ≤
(Xk−2 +Xk−1 +Xk) ≤ 3 but if we want to use (8) we
must leave(Xk−2 +Xk−1 +Xk) = 1

If we have all variables unique, (21) could be solved
repeating solving of system of LP equations























max
∑k

i=k−2
Xi

Xk +Xk−1 +Xk−2 = 1
0 ≤ Xk−2 ≤ 1
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(25)

Each of them has not zero max and could be solved in
O(33.5). So all clauses should be optimized inO

(

33.5m
)

©

A. Special cases

THEOREM 2.1 If some of unique variables are negations
¬Xi, equation

maxβ3 (X1, X2, ..., Xn−1, Xn) (26)

could be solved for ∀Xi ∈ {0, 1} in O (m).
Proof. If we have all variables unique, let replace all

negations¬Xk with X´
k and all others just renamed byX´

i .
Now (26) could be solved repeating solving of system of LP
equations























max
∑k

i=k−2
X´

i

X´
k +X´

k−1
+X´

k−1
= 1

0 ≤ X´
k−2

≤ 1
0 ≤ X´

k−1
≤ 1

0 ≤ X´
k ≤ 1

(27)

Each of them has not zero max and could be solved in
O(33.5). Going back to old variables do not change com-
plexity of each solution. So all clauses should be optimized
in O

(

33.5m
)

©

THEOREM 2.2 If some of variables in different clauses
are not unique, equation

maxβ3 (X1, X2, ..., Xn−1, Xn) (28)

could be solved for ∀Xi ∈ {0, 1} in O (m).
Proof. If Xn, Xn−1, Xn−2 are unique, let start to solve

(28) starting from a system of LP equations






















max
∑n

i=n−2
Xi

Xn +Xn−1 +Xn−2 = 1
0 ≤ Xn−2 ≤ 1
0 ≤ Xn−1 ≤ 1
0 ≤ Xn ≤ 1

(29)

Now we know three unique variables. Maximum is reached
and system of equation is solved inO(33.5). If Xn = Xn−1,
Xn = 1 ∧ Xn−1 = 1 ∧ Xn−2 = 1. All other sub-equation
could be solved as follow: if solving sub-equation has one
or two variables with earlier found value, LP equations























max
∑k

i=k−2
Xi

1 ≤ Xk +Xk−1 +Xk−2 ≤ 3
0 ≤ Xk−2 ≤ 1
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(30)

could be solved by reducing of (30) with inserting of earlier
found variables value reassigned to1; if solving sub-equation
three unique variables, LP equations























max
∑k

i=k−2
Xi

Xk +Xk−1 +Xk−2 = 1
0 ≤ Xk−2 ≤ 1
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(31)

could be found. So all clauses should be optimized in
O
(

33.5m
)

©

THEOREM 2.3 If some of variables in different clauses
are not unique and are negation each other, equation

maxβ3 (X1, X2, ..., Xn−1, Xn) (32)

could be solved for ∀Xi ∈ {0, 1} in O (m).
Proof. Let mark all variables they are unique or not starting

from the end of CNF. Now cycle throughn variables must
be repeated to rename them toX´

k so that new replaced
variables marked as not unique will be negations which must
be replaced with1−X´

k, if they found second time. In kind
first time found not unique variable could be assigned to0.
This lead to value of1 for negation. It could be done in
O (2n) . Now we start solving process for last clause. If not
all variables are unique in the first clause, after sorting of
variables so that third one will be negation and second one
will be unique, LP equations























maxX´
n +X´

n−1 + 1−X´
n

X´
n +X´

n−1 + 1−X´
n−2 = 1

0 ≤ X´
n−2 ≤ 1

0 ≤ X´
n−1 ≤ 1

0 ≤ X´
n ≤ 1

(33)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

could be solved. IfX´
n, X

´
n−1, X

´
n−2 are unique, let start to

solve (22) from a system of LP equations






















max
∑n

i=n−2
X´

i

X´
n +X´

n−1 +X´
n−2 = 1

0 ≤ X´
n−2 ≤ 1

0 ≤ X´
n−1 ≤ 1

0 ≤ X´
n ≤ 1

(34)

Now we know three or two unique variables. All other
sub-equation could be solved as follow: if solving sub-
equation has one or two variable with earlier found value,
LP equations























max
∑k

i=k−2
X`

i

1 ≤ X`
k +X`

k−1
+X`

k−2
≤ 3

0 ≤ X`
k−2

≤ 1
0 ≤ X`

k−1 ≤ 1
0 ≤ X`

k ≤ 1

(35)

where one or two of three variablesX`
k−2

, X`
k−1

, X`
k are

equal1 − X´
q could be solved by reducing of (35) within

inserting of earlier found variable value reassigned to1; if
all variables of solving sub-equations aren’t unique and are
negations of earlier found values in a different clauses, they
values could be assigned to0 and values of residual variables
leads to1; if all variables of solving sub-equations aren’t
unique and are negations of earlier found values in the same
clause, one of variables must be assigned to1 and other
to 0; if solving sub-equation has three unique variables, LP
equations























max
∑k

i=k−2
Xi

Xk +Xk−1 +Xk−2 = 1
0 ≤ Xk−2 ≤ 1
0 ≤ Xk−1 ≤ 1
0 ≤ Xk ≤ 1

(36)

could be solved. Each sub-system of equation is solved in
O(33.5) to reach global maximum1. Finally, all clauses
should be optimizedm times or inO

(

33.5m+ 2n
)

. In case
m ≥ n we haveO (m) algorithm complexity©

IV. KSAT IS IN P

THEOREM 3 If all variables are unique, equation

maxβk (X1, X2, ..., Xn−1, Xn) (37)

where

βk (X1, X2, ..., Xn−1, Xn) =

µ

(

k
∑

i=1

Xi, µ

(

2k
∑

i=k+1

Xi, ...,

µ

(

n−k
∑

i=n−2k+1

Xi,

n
∑

i=n−k+1

Xi

)))

(38)

µ (a, b) =

a\b 0 1 2 . . . n− 1
0 0 0 0 . . . 0
1 0 1 1 . . . 1
2 0 1 1 . . . 1
. . .

n− 1 0 1 1 . . . 1

(39)

where + is algebraic summation could be solved for ∀Xi ∈
{0, 1} in O

(

k3.5m
)

.

Proof. Let start to investigate 37 when∀Xi ∈ R, i ∈
{1, 2, ..., n}. Functionβk could be calculated withinO (m)
[10]. According to 4 equation 37 could be rewritten as follow

maxµ

(

k
∑

i=1

Xi, µ

(

2k
∑

i=k+1

Xi, ...,

µ

(

n−k
∑

i=n−2k+1

Xi,

n
∑

i=n−k+1

Xi

))) (40)

If we have all variables unique, (38) could be solved repeat-
ing solving of system of LP equations







max
∑2k

i=k+1
Xi

∑2k

i=k+1
Xi = 1

0 ≤ Xi ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}

(41)

Each of them has not zero max and could be solved in
O(k3.5). So all clauses should be optimized inO

(

k3.5m
)

©

A. Special cases

THEOREM 3.1 If some of unique variables are negations
¬Xi, equation

maxβk (X1, X2, ..., Xn−1, Xn) (42)

could be solved for ∀Xi ∈ {0, 1} in O
(

k3.5m
)

.
Proof. If we have all variables unique, let replace all

negations¬Xk with Yk and all others just renamed byYi.
Now (42) could be solved repeating solving of system of LP
equations







max
∑2k

i=k+1
Yi

∑2k

i=k+1
Yi = 1

0 ≤ Yi ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}

(43)

Each of them has not zero max and could be solved in
O(k3.5). Going back to old variables do not change com-
plexity of each solution. So all clauses should be optimized
in O

(

k3.5m
)

©

THEOREM 3.2 If some of variables in different clauses
are not unique, equation

maxβk (X1, X2, ..., Xn−1, Xn) (44)

could be solved for ∀Xi ∈ {0, 1} in O
(

k3.5m
)

.
Proof. If Xn, Xn−1, ..., Xn−k+1 are unique, let start to

solve (44) starting from a system of LP equations






max
∑n

i=n−k+1
Xi

∑n

i=n−k+1
Xi = 1

0 ≤ Xi ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}
(45)

Now we knowk unique variables. Maximum is reached and
system of equation is solved inO(k3.5). If Xn = Xn−1,
Xn = 1 ∧ Xn−2 = 1, All other sub-equation could be
solved as follow: if solving sub-equation has at least one
variable with earlier found value, LP equations







max
∑n

i=n−k+1
Xi

1 ≤
∑k

i=n−k+1
Xi ≤ k

0 ≤ Xi ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}

(46)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

could be solved by reducing of (46) with inserting of earlier
found variables value reassigned to 1; if solving sub-equation
k unique variables, LP equations







max
∑k

i=n−k+1
Xi

∑k

i=n−k+1
Xi = 1

0 ≤ Xi ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}

(47)

could be solved. So all clauses should be optimized in
O
(

k3.5m
)

©
THEOREM 3.3 If some of variables in different clauses

are not unique and are negation each other, equation

maxβk (X1, X2, ..., Xn−1, Xn) (48)

could be solved for ∀Xi ∈ {0, 1} in O
(

k3.5m
)

.
Proof. Let mark all variables they are unique or not starting

from the end of CNF. Now cycle throughn variables must
be repeated to rename them toX´

k so that new replaced
variables marked as not unique will be negations which must
be replaced with1−X´

k, if they found second time. In kind
first time found not unique variable could be assigned to0.
This lead to value of1 for negation. It could be done in
O (2n) . Now we start solving process for last clause. If not
all variables are unique in the first clause, after sorting of
variables so that negations occurs at the end of the list, LP
equations







max
∑l

i=n−k+1
X´

i +
∑n

i=l+1

(

1−X´
i

)

∑l

i=n−k+1
X´

i +
∑n

i=l+1

(

1−X´
i

)

= 1
0 ≤ X´

i ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}

(49)

could be solved. IfX´
n, X

´
n−1, ..., X

´
n−k+1

are unique, let
start to solve (48) from a system of LP equations







max
∑n

i=n−k+1
X´

i
∑n

i=n−k+1
X´

i = 1
0 ≤ X´

i ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}
(50)

Now we know at mostk unique variables. All other sub-
equation could be solved as follow: if solving sub-equation
has at least one variable with earlier found value, LP equa-
tions







max
∑l

i=k+1
X´

i +
∑2k

i=l+1

(

1−X´
i

)

1 ≤
∑l

i=k+1
X´

i +
∑2k

i=l+1

(

1−X´
i

)

≤ k

0 ≤ X´
i ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}

(51)

could be solved by reducing of (51) within inserting of earlier
found variables values reassigned to1; if all variables of
solving sub-equations aren’t unique and are negations of
earlier found values in a different clauses, they values could
be assigned to0 and values of residual variables leads to1;
if all variables of solving sub-equations aren’t unique and
are negations of earlier found values in the same clause, one
of variables must be assigned to1 and other to0; if solving
sub-equation hask unique variables, LP equations







max
∑2k

i=k+1
X´

i
∑2k

i=k+1
X´

i = 1
0 ≤ X´

i ≤ 1 ∧ ∀i ∈ {1, 2, ..., n}

(52)

could be solved. Each sub-system of equation is solved in
O(k3.5) to reach global maximum1. Finally, all clauses
should be optimizedm times or inO

(

k3.5m
)

©

V. CONCLUSION

Every NP mathematical problem is solvable in linear time
if exist full, appropriate and correct knowledge basis for it
and the time to get each item of knowledge basis is match
less than calculation time on this items.

REFERENCES

[1] Cook, Stephen (1971). ”The complexity of theorem proving proce-
dures”. Proceedings of the Third Annual ACM Symposium on Theory
of Computing. pp. 151158.

[2] Krom, Melven R. (1967), ”The Decision Problem for a Class of First-
Order Formulas in Which all Disjunctions are Binary”, Zeitschrift
fr Mathematische Logik und Grundlagen der Mathematik 13: 1520,
doi:10.1002/malq.19670130104.

[3] Aspvall, Bengt; Plass, Michael F.; Tarjan, Robert E. (1979), ”A linear-
time algorithm for testing the truth of certain quantified boolean formu-
las”, Information Processing Letters 8 (3): 121123, doi:10.1016/0020-
0190(79)90002-4.

[4] Even, S.; Itai, A.; Shamir, A. (1976), ”On the complexity of time table
and multi-commodity flow problems”, SIAM Journal on Computing 5
(4): 691703, doi:10.1137/0205048.

[5] Levin, Leonid (1973). ”Universal search problems . Problems of Infor-
mation Transmission 9 (3): 265266. (Russian), translated into English
by Trakhtenbrot, B. A. (1984). ”A survey of Russian approaches to
perebor (brute-force searches) algorithms”. Annals of the History of
Computing 6 (4): 384400. doi:10.1109/MAHC.1984.10036.

[6] Diaby M., Linear programming formulation of the vertex colouring
problem, Int. J. of Mathematics in Operational Research, 2010 Vol.2,
No.3, p. 259 - 289

[7] Diaby M., Linear programming formulation of the set partitioning
problem, Int. J. of Operational Research, 2010 Vol.8, No.4, p. 399 -
427

[8] Maknickas Algirdas, A., (2010). Finding of k in Fagin’s R. Theorem
24, arXiv:1012.5804v1.

[9] Maknickas Algirdas, A., (2012). How to solve kSAT in polinomial time,
arXiv:1203.6020v2.

[10] Maknickas Algirdas, A., (2012). How to solve kSAT in polinomial
time, arXiv:1203.6020v1.

[11] Ilan Adler, Narendra Karmarkar, Mauricio G.C. Resende and Geraldo
Veiga (1989). ”An Implementation of Karmarkar’s Algorithm for Linear
Programming”. Mathematical Programming, Vol 44, p. 297335.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II,
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013

