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Linear Programming Formulation of kSAT

Algirdas Antano Maknickas

Abstract—With using of multi-nary logic analytic formula Il. 2SATISINP
and linear programming proposition that kSAT is in P and ] ) )
could be solved in linear time was proved. THEOREM 1 If all variables are unique, equation
Index Terms—Linear Programming, KSAT, multivalued logic. max B (X1, Xa, ooy X1, Xn) 3)
where
I. INTRODUCTION
HE Boolean satisfiability (SAT) problem [1] is defined B2 (X1, X2y oy X1, Xp) =
-as foIIowfs:BGivlen a Bololean fo;mula, che_gk Wk|1eth(_erba|m (X1 + Xo, 1 (X3 + Xy, ..
assignment of Boolean values to the propositional variables X X X X
in the formula exists, such that the formula evaluates to H(Xn—g + Xnoz, Xy + X))
true. If such an assignment exists, the formula is said to be La]\[D] | 0 1 2
satisfiable; otherwise, it is unsatisfiable. For a formula with 1 (a,b) = 0 0 00 (4)
m variables, there are 2m possible truth assignments. The ; 8 1 1

conjunctive normal form (CNF)

(X1 VX)) A (X3 VX)) A A (X vV X) (1) and + is algebraic summation could be solved for VX, €

is most the frequently used for representing Boolean form{@, 1} in O (m).

las, where-VX; are independent. In CNF, the variables of Proof. Let start from investigation of

the formula appear in literals (e.g., x) or their negation (e.g., m

—X (logical NOT—)). Literals are grouped into clauses, which Flan, @9y oy ) = H% Ve; € R (5)
represent a disjunction (logical OR) of the literals they =1

contain. A single literal can appear in any number of clauses.

The conjunction (logical ANDA) of all clauses represents ain hyper-cube of sidef), 1]. This function is convex, because
formula.

Several algorithms are known for solving the 2 - satisfia- [T <30 @ial (6)
bility problem; the most efficient of them take linear time [2], i—1 -
[3], [4]. Instances of the 2-satisfiability or 2SAT problem are o= ot (7)

typically expressed as 2-CNF or Krom formulas [2]

SAT was the first known NP-complete problem, as provdtl is obvious, on right side of (6) we have hyper-plane
by Cook and Levin in 1971 [1] [5]. Until that time, thewhich goes through vertex€$, 0,0, ..,0) and(1,1,1,..,1)
concept of an NP-complete problem did not even exist. Tlé investigating hyper-cube. This hyper-plane has global
problem remains NP-complete even if all expressions ameaximum like a functionf(x1,z,...,z,,) and it equals
written in conjunctive normal form with 3 variables perl. So we could resume that finding of global maximum
clause (3-CNF), yielding the 3SAT problem. This means th# f(x1, 22, ..., 2,,) could be replaced by finding of global

expression has the form: maximum of this hyper plane or
(XlVXQ\/X3)/\(X4\/X5\/X6)/\... m 1 n
ANXnaV X VX)) (@) max [ [ o = Jmax ) o ®)
=1 =1

NP-complete and it is used as a starting point for proving that

other problems are also NP-hard. This is done by polynomisfet Start to investigate (3).X; € R,i € {1,2,...,n}. Func-
time reduction from 3-SAT to the other problem. tion 3, could be calculated withi® (m) [10]. According to

In 2010, Moustapha Diaby provided two further proofs fof#) €auation (3) could be rewritten as follow

P=NP. His papers Linear prog_ramming formul_ation of the max (X1 + Xo, 10 (X3 + X, ooy
vertex colouring problem and Linear programming formula-
tion of the set partitioning problem give linear programming p#(Xn—g + Xn2, Xn—1 + Xn))) = (9)
formulations for two well-known NP-hard problems [6], [7]. max 1 (X1 + Xz, max i (X3 + Xy, ...,

The goal of this paper is proof of proposition that KSAT is max 1 (Xp_3 4+ Xn_2, Xn 1+ X))
in P using multi logic formula of discrete second order logic . . . N
proposed first in [8], [9] and could be solved @ (m). So, m local partial maximums must satisfy equalities

max p(Xk—1 + X,) = 1 to avoid 0 result of global max-
Manuscript received December 01, 2012; revised December 19, 2012ymum. This leads to inequalities < (Xj_1 + X3) < 2
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maximum of (3). If we have all variables unique, (9) couldeassigned td and solving repeated within next clause; if
be solved repeating solving of system of LP equations  solving sub-equation has two unique variables, LP equations

mafo:k_l X; mafo:k_l X;
X+ X1 =1 Xe+Xp_1=1
10 k k-1
0< X1 <1 (10) 0< X1 <1 (16)
0< X, <1 0< X, <1

Each of them has not zero max and could be solved uguld be solved. So all clauses should be optimized in
ing best known algorithm of linear programming [11] inp (23°m) O

O (n*®) or in O(2%?). So all clauses should be optimized THEOREM 1.3 If some of variables in different clauses
in O (23'57”) O are not unique and are negation each other, equation

A a)eCIal Cases maxﬂg (Xl,XQ,...,anl,Xn) (17)

THEOREM 1.1 If some of unique variables are negations ~could be solved for V.X; € {0,1} in O (m).

—X;, equation Proof. Let mark all variables they are unique or not starting
from the end of CNF. Now cycle through variables must
max 3 (X1, Xo, ..., Xn_1, Xp) (11) be repeated to rename them 1, so that new replaced

variables marked as not unique will be negations which must
Fe replaced with — X, , if they found second time. In kind
irst time found not unique variable could be assigned.to
This lead to value ofl for negation. It could be done in
6(271) . Now we start solving process for last clause. If

could be solved for VX; € {0,1} in O (m).

Proof. If we have all variables unique, let replace al
negations-X;, with X, and all others just renamed by, .
Now (11) could be solved repeating solving of system of L

equations . ) X, ==X, ,, X, =1.1f X, X, _, are unique, let start to
max Zi;kfl X; solve (17) from a system of LP equations
Xt Xpor =1 (12) n
0<X, ;<1 ma}le':nq X;
0<X, <1 X, +X, ;=1
. 0<X, ;<1 (18)
Each of them has not zero max and could be solved in 0< X <1

O(23%). Going back to old variables do not change com-

plexity of each solution. So all clauses should be optimizedow we know two or one unique variables. All other sub-

in O (23'5m) O equation could be solved as follow: if solving sub-equation
THEOREM 1.2 If some of variables in different clauses has one variable with earlier found value, LP equations

are not unique, equation
k
max } ;g X;

maxﬂ2 (X15X2a-~-aanlaXn) (13) 1 SXk-i-Xk_l < 2 (19)
0< X1 <1
could be solved for V.X; € {0,1} in O (m). 0< X: <1 1

Proof. If X,,, X, are unique, let start to solve (13)
starting from a system of LP equations could be solved by reducing of (19) within inserting of earlier
found variable value reassigned to 1 (lower and upper bound

n
Maxy ;py Xi could be increased in case the broken plane resuletarlier

gZ}X"_lzl 1 (14) and than is flat in 2D space); if all variables of solving sub-
02 X”—<1 1 equations aren’t uniqgue and are negations of earlier found

values in a different clauses, they values could be assigned

Now we know two unique variables. So maximum is reachég 0 and values of residual variables |eadSI(If all variables
and system of equation is solveddy23%). If X,, = X,,_,, ©f solving sub-equations aren’t unique and are negations of
X, = 1 A X,_1 = 1. All other sub-equation could be€arlier found values in the same clause, one of variables
solved as follow: if solving sub-equation has one variabfust be assigned to and other td); if at least two clauses
with earlier found Va'ue’ LP equations El, WhereXi AN _‘X»L', CNF is not satisfiable ,|f SOIVing sub-
equation has two unique variables, LP equations
max Zf:kq Xi

1< X5+ Xpq <2 max Y ¢,y X;

15
0< Xp_1 < 1 (15) Xp 4 X1 = 1 0
0<Xp <1 0< X, 1<1
0< X, <1

could be solved by reducing of (15) within inserting of earlier

found variable value resigned to 1 (lower and upper bourduld be solved. Each sub-system of equation is solved in
could be increased in case the broken plane resuletarlier O(23°) to reach global maximuni. Finally, all clauses
and than is flat in 2D space); if all variables of solvinghould be optimizedn times or inO (23'5m+2n). In case
sub-equations (15) aren’t unique, these variables could be> n we haveO (m) algorithm complexityO)
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. 3SATISINP
THEOREM 2 If all variables are unique, equation
maxﬁg (X1;X2;---;Xn—1;Xn) (21)
where
B3 (X1, X2, ..., X1, X)) =
p( X1+ Xo + X, 1 (X + X5 + X, ooy (22)
H (Xn75 + Xn74 + Xn737Xn72 + anl + Xn)))
a\b|0 1 2 3
0|0 0O 0 O
pwlad)= 1 |0 1 1 1 (23)
2 10 1 1 1
3 (0 1 1 1
and + is algebraic summation could be solved for VX, €
{0,1} in O (m).

Proof. Let start to investigate (21) whenX; € R,i €
{1,2,...,n}. Functionfs could be calculated withi® (m)

THEOREM 2.2 If some of variables in different clauses
are not unique, eguation
max 3 (X1, Xo, ..., X5—1, X) (28)
could be solved for V.X; € {0,1} in O (m).
Proof. If X,,, X,,_1,X,_2 are unique, let start to solve
(28) starting from a system of LP equations

maxy . o X;
Xn+Xn1+Xpo=1
0 S Xn—2 S 1
0<X,1<1

0<X, <1

(29)

Now we know three unique variables. Maximum is reached
and system of equation is solved@(33°). If X,, = X,,_1,

X, =1ANX,_1 =1AX,_o = 1. All other sub-equation
could be solved as follow: if solving sub-equation has one
or two variables with earlier found value, LP equations

[10]. According to (22) equation (21) could be rewritten as

follow
maX,u (Xl + X2 —|— X3,,u (X4 + X5 —|— XG; ceey

(24)
H (Xn75 + Xn74 + Xn737 Xn72 + anl + Xn)))

So, m local partial maximums must satisfy equalities

max p(Xp—2 + (Xp—1 + Xi) 1 to avoid 0 result
of global maximum. This leads to inequalities <
(Xg—2 + Xi—1 + Xi) < 3 but if we want to use (8) we
must leave( Xy o + X1 + Xi) =1

If we have all variables unique, (21) could be solve
repeating solving of system of LP equations

maXZf:k_QXi
Xp+Xp1+ X2 =1
0< X 2<1

0< X1 <1

0< X, <1

Each of them has not zero max and could be solved
O(3%®). So all clauses should be optimized @ (3%5m)

O

(25)

A. Secial cases

THEOREM 2.1 If some of unique variables are negations
-X;, equation

max B3 (X1, X2, ..., Xn—1, X»)

could be solved for VX; € {0,1} in O (m).

Proof. If we have all variables unique, let replace al
negations-X; with X, and all others just renamed by, .
Now (26) could be solved repeating solving of system of L
equations

(26)

max Zf:k_Q X,

Xk‘ +)‘(k’71 +Xk’71 == 1
0<X, ,<1
0<X, <1

0<X, <1

(27)

Each of them has not zero max and could be solved

O(3%%). Going back to old variables do not change com-
plexity of each solution. So all clauses should be optimized

in O (3%°m) O
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maXZf:k_QXi

1< X+ X1+ X 2<3
0< X 2<1

0< X1 <1

0< X, <1

(30)

could be solved by reducing of (30) with inserting of earlier
found variables value reassignedltdf solving sub-equation
three unique variables, LP equations
d
max 2521%2 X,
X+ Xp1 +Xp2=1
0< Xk-2<1
0<Xk-1<1
0<Xp<1

(31)

could be found. So all clauses should be optimized in
@ (3*5m) O

THEOREM 2.3 If some of variables in different clauses
are not unique and are negation each other, equation

HlaXﬂg (Xl, XQ, ceny anl, Xn)

could be solved for VX; € {0,1} in O (m).

Proof. Let mark all variables they are unique or not starting
from the end of CNF. Now cycle through variables must
be repeated to rename them 1, so that new replaced
yariables marked as not unique will be negations which must
be replaced with — X, , if they found second time. In kind
frst time found not unique variable could be assigned.to
This lead to value ofl for negation. It could be done in
O (2n) . Now we start solving process for last clause. If not
all variables are unigue in the first clause, after sorting of
variables so that third one will be negation and second one
will be unique, LP equations

(32)

max X, +X, ;+1-X,
in X, +X, 1 +1-X, ,=1
0<X, ,<1 (33)
0<X, ;<1
0<X, <1
IMECS 2013
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could be solved. IfX,, X, ,, X, _, are unique, let start to  Proof. Let start to investigate 37 whewX; € R,i €
solve (22) from a system of LP equations {1,2,...,n}. Functiong;, could be calculated withi® (m)

max Y7 X; [10]. According to 4 equation 37 could be rewritten as follow
X+ X, 1+ X, 5=1

k 2%k
0<X, ,<1 (34) max fi (Z X1 ( Z Xy

0<X, <1 i=1 i—kt+1

0<X, <1 n—k n
Now we know three or two unique variables. All other ”( Z X Z Xl)))

sub-equation could be solved as follow: if solving sub- =nm2hAliEnsh
equation has one or two variable with earlier found valué,we have all variables unique, (38) could be solved repeat-

(40)

LP equations ing solving of system of LP equations
k N
max ) ;o X; \ max Z?ik_H X
L<Xp + X +X, <3 Sk X =1 (41)
0<X, ,<1 (35) i=ktl 7 .
SAp oS 0<X;<1 AVie{l1,2,..,n}
0<X,; <1
0<X, <1 Each of them has not zero max and could be solved in

3.5 imi 3.5
where one or two of three variables, ,, X, ,, X, are 8(k ). So all clauses should be optimized th(k*°m)

equall — Xq' could be solved by reducing of (35) within
inserting of earlier found variable value reassigned jtaf
all variables of solving sub-equations aren't unique and are Special cases

negations of earller_found values in a dlffere_nt claus_es, theyTHEOREM 3.1 If some of unique variables are negations
values could be assigned@and values of residual variables

leads to1; if all variables of solving sub-equations aren’tﬂXi’ equation
unique and are negations of earlier found values in the same max S, (X1, X2, ..., Xn_1, Xn) (42)

clause, one of variables must be assigned tand other
to 0; if solving sub-equation has three unique variables, Lébuld be solved for VX; € {0,1} in O (k:3'5m).

equations Proof. If we have all variables unique, let replace all
max Y F X, negations-X;, with Y, and all others just renamed ;.
X+ Xp 1+Xp0o=1 Now (42) could be solved repeating solving of system of LP
0< X, 2<1 (36) equations
0< X1 <1 ok
0<Xp<1 max Zi:kJrl Y;
Z?ﬁkﬂ Yi=1 (43)

could be solved. Each sub-system of equation is solved in
0O(335) to reach global maximum. Finally, all clauses
should be optimizedr times or inO (3*°m + 2n). In case Each of them has not zero max and could be solved in

0<Yi<1 AVie{1,2,..,n}

m > n we haveO (m) algorithm complexityO O(k*%). Going back to old variables do not change com-
plexity of each solution. So all clauses should be optimized
IV. KSATISINP in O (k3%m) O
THEOREM 3 If all variables are unique, equation THEOREM 3.2 If some of variables in different clauses
max B (X1, Xo, oo, X1, Xn) (37) are not unique, eguation
Where maxﬁk (Xl,Xg,...,Xn_l,Xn) (44)
Bre (X1, Xay ooy Xn—1, Xpn) = could be solved for VX; € {0,1} in O (k*°m).
k 2k Proof. If X,,,X,—1,..., X,_k+1 are unique, let start to
2 ZXuM Z D, CHN (38) solve (44) starting from a system of LP equations
i=1 i=k+1

n—k n m%lx Z?:n—k—&-l Xl
2 Z Xi, Z X; Zi:n—k+1 Xi=1 (45)

i=n—2k+1  i=n—k+1 0<X;<1 AVie{l1,2,..,n}

a\b |0 1 2 n—1 Now we knowk unique variables. Maximum is reached and
0 00 0 0 system of equation is solved i@ (k35). If X,, = X,,_1,
1 0 1 1 1 X, =1AX,_o =1,... Al other sub-equation could be
plab)= o |g 1 ] 1 (39) solved as follow: if solving sub-equation has at least one
o variable with earlier found value, LP equations
n—1|0 1 1 ... 1 max 7oy Xi
where -+ is algebraic summation could be solved for VX; € 1< X<k (46)
{0,1} in O (k*5m). 0<X; <1 AVie{l,2,..,n}
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could be solved by reducing of (46) with inserting of earlier V. CONCLUSION

found variables value reassigned to 1; if solving sub-equationgyery NP mathematical problem is solvable in linear time

k unique variables, LP equations if exist full, appropriate and correct knowledge basis for it

and the time to get each item of knowledge basis is match

k
max y . X; . ) o
Zz,n—kﬂ i less than calculation time on this items.

k
Zi:n—k+1 Xl =1
0< X, <1 AVie{1,2,...n}

(47)
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could be solved. IfX,, X, ,,..,X, ., are unique, let
start to solve (48) from a system of LP equations

max Z?:nfkfl X;
Zi:njk+1 X; =1
0<X, <1 AVie{l,2,..,n}

(50)

Now we know at mostt unique variables. All other sub-
equation could be solved as follow: if solving sub-equation
has at least one variable with earlier found value, LP equa-

tions
l 4 2k 4
max ;. X;' +2 i (1- X;')
1 S Zé:k-&-l Xi =+ Z?il-i,—l (1 - Xi) § k (51)

0< X, <1 AVie{l,2,..,n}

could be solved by reducing of (51) within inserting of earlier
found variables values reassigned ipif all variables of
solving sub-equations aren’t uniqgue and are negations of
earlier found values in a different clauses, they values could
be assigned t0 and values of residual variables leadslto

if all variables of solving sub-equations aren’t unique and
are negations of earlier found values in the same clause, one
of variables must be assigned tand other td); if solving
sub-equation has unique variables, LP equations

maxX:?ikJrl Xl-'
2k :
Zi:kﬂ X; =1
0<X, <1 AVie{l,2,...,n}

(52)

could be solved. Each sub-system of equation is solved in
O(k3%) to reach global maximuni. Finally, all clauses
should be optimizedn times or inO (k*5m) O
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