
 

  
Abstract—How to efficiently assign vessels to berths and how 

to allocate limited cranes to serve each vessel at each berth are 
vital decisions to be made in operating container terminals. This 
paper same as previous works assumes that quay cranes to be 
transferred are operated in a push-in and pull-out way, and can 
not cross each other. However, previous works do not consider 
all possible ways of transferring cranes in their model and 
algorithms. This paper first discusses conditions for feasibly 
transferring cranes between berths, followed by providing a 
complete mixed integer programming model. Though to 
optimally solve the MIP model directly is almost impossible for 
large size problems, the fundamental insights revealed in 
modeling the problem can provide valuable thinking in 
developing approximate solution method. 
 

Index Terms—berth allocation, crane transfer, mixed integer 
programming, transfer path 
 

I. INTRODUCTION 
UE to the economic efficiency of containerization using 
a unit-load concept, sea container service has 

dramatically grown in an average of 7-9% per year during the 
past two decades [1] and nowadays it has been a primary 
means for international transport of sea freight. As an ever 
severe competitiveness among major hub seaports like 
Singapore, Hong Kong, Shanghai in Asia, Rotterdam and 
Hamburg in Europe is still ongoing, how to enhance the 
effectiveness and efficiency of relevant container terminal 
operations at the quayside area, the yard and the landside area 
has been the core theme of port authorities [2]. 

Many factors such as turn-around time for ship liners, 
crane utilization, crane productivity, and berth utilization can 
affect the success of container terminal operations [3]. 
Reducing turn-around time in a multi-user terminal is 
particularly crucial for both ship liners and terminal operators. 
After an arrival of a container ship at the port, the ship is 
moored at an assigned berth using quay cranes to unload and 
load containers. Thus, availability of berths and quay cranes 
has direct impact on the performance of a container terminal. 
However, berths and quay cranes are the two most expensive 
investments in a container terminal. Hence, for an existing 
infrastructure system of a container terminal, how to 
optimally allocate vessels to available berths and how to 
optimally assign limited number of quay cranes to vessels are 
the two central problems to be solved such that total 
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turnaround time for serving all container ships is minimized. 
A quay crane is a large quayside gantry crane having a 

supporting framework and a moving spreader. Because of its 
heaviness and size, a quay crane is mounted on a rail track 
alongside the quay to facilitate the movement among berths. 
Quay cranes to be transferred are operated in a push-in and 
pull-out way, and can not cross each other. This spatial 
limitation tends to constrain the use of limited cranes to 
efficiently serve ships in a less turn-around time. 

Research on relevant issues in a container terminal has 
been growing quickly during the last decade. Regarding a 
general overview of container terminal operations and their 
optimization planning, we refer the readers to [2], [4], and [5]. 
As to review concentrated on the quayside operational 
decisions, Bierwirth and Meisel [6] recently gave a 
comprehensive classification on berth allocation problem 
(BAP), quay crane assignment problem (QCAP), quay crane 
scheduling problem (QCSP) and their respected partial or full 
integration problems, e.g. the integration of BAP and QCAP 
(denoted as BAP+QCAP). The BAP is to determine best 
berthing positions and berthing times for serving ships at 
berths (discrete BAP) or at arbitrary positions along the quay 
length if empty space is enough (continuous BAP). To avoid 
ambiguity, we remark that, as used by [6], the QCAP 
considers the allocation of specific quay cranes to each vessel 
while the QCSP is to determine the sequence of tasks (e.g. 
individual container, container group, ship-bay) to be 
operated for each crane assigned to a vessel. Moreover, static 
and dynamic version of the above problems can be 
differentiated respectively according to that all ships are 
ready at the start of planning and ships may arrive during the 
planning horizon. We focus on discussing issues resulting 
from the integration of discrete dynamic BAP and QCAP. 

This paper considers the BAP and the QCAP 
simultaneously in a container terminal so that a berth 
schedule with the least total turnaround time, which includes 
the waiting and processing times for each ship, can be 
determined. In particular, we focus on discussing the 
non-crossing requirements among cranes. In the next Section, 
we formally describe our research problem. Section 3 
discusses feasible conditions for moving quay cranes among 
berths/vessels. A mixed integer programming model is then 
formulated in Section 4. Finally, some conclusions are given 
in Section 5. 

II. PROBLEM DESCRIPTION 
Because the duration of serving a ship depends on the 

number of cranes assigned to the ship, and the cranes can not 
move freely, investigating an integrated plan of the BAP and 
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the QCAP is essential in order to lessen the probability of 
developing an infeasible berthing plan. Recently, Imai et al. 
[7] investigated the discrete dynamic BAP+QCAP, where the 
number of quay cranes required for each vessel is a given 
constant. Scheduling was on a continuous time axis too. In 
particular, Imai et al. [7] explicitly considered the 
non-crossing constraints on quay cranes in their mixed 
integer program (MIP) formulation, and proposed a genetic 
solution algorithm. However, their MIP model has several 
mistakes, and this paper addresses these issues. The objective 
is to minimize the total turnaround time, the sum of the 
difference between the departure time and the arrival time of 
each vessel. We first state the assumptions same as those 
considered by [7] below. 
A1.  The number of berths is given, and the service 

beginning time of each berth is not the same; a rolling 
berth schedule can thus be built from a practical 
viewpoint. 

A2.  The arrival time of each vessel during the planning 
horizon is given, and without interruption once a vessel 
is in service. 

A3. Each berth can serve at most one ship anytime. 
A4. Every vessel can be served at any one berth and has a 

favorable berthing position.  
A5. Every vessel requires a specific number of cranes to 

start its service.  
A6. Cranes are on the same rail track and can not cross each 

other. That is, cranes are moved in a push-in and 
pus-out way. 

A7. Cranes can not move from berth i to berth j if any 
intermediate berth between i and j is busy in handling a 
vessel. Once cranes are assigned to a vessel, they can 
not be transferred to other berths until the vessel has 
finished all its workload.  

Assumptions of A6-A7 impose non-crossing restrictions 
on transferring cranes among berths. On one hand, cranes can 
not be freely moved from berth i to berth j through 
intermediate berths between berths i and j except that no any 
other cranes are held in the intermediate berths. On the other 
hand, time invariant assignment of cranes is considered in our 
study; that is a vessel uses a fixed number of cranes 
throughout its service duration. Thus, certain conditions have 
to be satisfied in order to transfer cranes among berths. Imai 
et al.[7] discussed conditions to guarantee the feasibility of 
transferring cranes for building a mixed integer program 
model. However, they ignored several possible ways for 
transferring cranes. In the next Section, we give a detailed 
analysis about the feasibility conditions for transferring 
cranes. 

III. FEASIBILITY CONDITIONS FOR TRANSFERRING CRANES 
Fig. 1 (a) illustrates a situation for any two consecutive 

ships of each ordered pair of adjacent berths along a 
continuous time axis. For clearance and latter use, we add a 
node between two consecutive ship service positions, say k 
and k+1, of each berth as shown in Fig. 1(b); the node 
constructed between positions of k and k+1 will be labeled k. 
Our purpose is to determine certain conditions such that a 
feasible transfer arc can be built from node k to node k ′ . In 
other words, the existence of a feasible transfer arc from node 
k to node k ′ says that some of the cranes after finishing the 

service of the thk  ship of berth i may be feasibly moved to 
berth i′  before the beginning time of serving the ( 1)thk ′ +  
ship at the berth, where i′ can be 1i i− + or 1 . Due to the 
assumption of disallowing crane transfer from a berth which 
is currently serving a ship, we first discuss conditions to 
ensure the feasibility of moving cranes between two adjacent 
ordered berths, followed by discussing the case of between 
nonadjacent ordered berths. Due to limited space, we 
therefore skipped the proof for propositions 2 and 3 stated 
below. 

A. The Case of Adjacent Ordered Berths 

Let ,
s
i kt  and ,

f
i kt  be respectively the start and finish time 

for the ship served at the thk  position of berth i. Imai et al. [7] 
have discussed conditions required for moving cranes 
between two adjacent ordered berths using illustration shown 
in Figure 2; that is a feasible transfer arc from node k to 
node k ′ exists if one of the following conditions (a) 

, ,
s f
i k i kt t′ ′ ≤ & , .

f f
i k i kt t′ ′ >  or (b) , 1 ,

s f
i k i kt t′ ′+ ≥ & , .

f f
i k i kt t′ ′ ≤  is 

satisfied. Imai et al. [7] then formulated corresponding 
constraints for each above case separately in their mixed 
integer programming model. However, the above two cases 
is indeed a single case as stated in Proposition 1. 
Proposition 1:  

The conditions of either (a) , ,
s f
i k i kt t′ ′ ≤ & , .

f f
i k i kt t′ ′ >  or (b) 

, 1 ,
s f
i k i kt t′ ′+ ≥ & , .

f f
i k i kt t′ ′ ≤ is equivalent to , 1 , ,

s f s
i k i k i kt t t′ ′ ′ ′+ ≥ ≥ . 

Proof:  
    ( )⇒  

, ,
, 1 , , , , 1 , ,

, ,

From (a)     ,
s f
i k i k s f f s s f s

i k i k i k i k i k i k i kf f
i k i k

t t
t t t t t t t

t t
′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ +
′ ′

⎫≤ ⎪ ⇒ ≥ > ≥ ⇒ ≥ ≥⎬> ⎪⎭
      

, 1 ,
, 1 , , , , 1 , ,

, ,

From (b)    ,
s f
i k i k s f f s s f s

i k i k i k i k i k i k i kf f
i k i k

t t
t t t t t t t

t t
′ ′+

′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ +
′ ′

⎫≥ ⎪ ⇒ ≥ ≥ ≥ ⇒ ≥ ≥⎬≤ ⎪⎭

, 1 , ,either (a) or (b)   s f s
i k i k i kt t t′ ′ ′ ′+∴ ⇒ ≥ ≥  

( )⇐  

, 1 , , , 1 , , , either   s f s s f f s
i k i k i k i k i k i k i kt t t t t t t′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ +≥ ≥ ⇒ ≥ > ≥

, 1 , , ,or       s f f s
i k i k i k i kt t t t′ ′ ′ ′ ′ ′+ ≥ ≥ ≥  

, , , , , 1 , , ,Thus &  or  &s f f f s f f f
i k i k i k i k i k i k i k i kt t t t t t t t′ ′ ′ ′ ′ ′ ′ ′+≤ > ≥ ≤

, 1 , ,         Q E Ds f s
i k i k i kt t t′ ′ ′ ′+⇔ ≥ ≥

 
Therefore, condition of , 1 , , s f s

i k i k i kt t t′ ′ ′ ′+ ≥ ≥ can guarantee 

the feasibility of transfer arc ( , )k k ′ . However, as shown in 
Fig. 3, feasible arc ( , )k k ′ is clearly existed but conditions 
considered by [7] will not allow this construction. Fig. 4 is an 
example of 3 berths for illustrating the case ignored by [7]. 
Note that berth service times are not equal. Considering only 
the sufficient conditions of Proposition 1, the optimal 
objective value in terms of the total time stayed in the 
container terminal is 123 minutes, as shown in Fig. 4a. The 
left vertical bar and right vertical bar of each red thick line 
represent respectively the start and completion service time 
of a ship, and the number along each red thick line is the 
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number of cranes available for the ship. For each berth, a 
dummy ship with arrival time same as the berth ready time 
and zero service time is constructed for building possible 
transferring arcs; otherwise, the first ship of each berth can 
not use cranes transferred from other adjacent berths. The 
number with underline along the arrowed line is the number 
of cranes transferred. But a feasible solution with the 
objective value of 119 can be found as shown in Fig. 4b. This 
is because no feasible transfer arcs from ship 1 to ship 4 can 
be built due to the violation of sufficient conditions 
of , 1 , , s f s

i k i k i kt t t′ ′ ′ ′+ ≥ ≥ . However, it is obvious to see that the 

cranes after serving ship 1 can be feasibly moved for serving 
ship 4 if required. 

In fact, a necessary and sufficient condition for ensuring 
the feasibility of transfer arc connected to node k ′ is 

that , 1 ,
s f
i k i kt t′ ′+ ≥ is satisfied for at least one k as stated in 

Proposition 2(a). However, this loose condition will allow a 
bunch of transfer arcs to be built, in which lots of them are 
useless but complicating the problem to be solved. In the 
example of Fig. 5, cranes through transfer arcs 
of ( 2, )k k ′− , ( 1, )k k ′− and ( , )k k ′ are all feasible, but cranes 
may be delayed and held in berth i, and then finally moved 
through arc ( , )k k ′ if necessary. Therefore, if feasible transfer 
arcs from an adjacent berth for supporting cranes of 
the ( 1)thk ′ + ship of berth i′ do exist, we perhaps would like to 
construct at least one feasible arc for node k ′ , otherwise 
feasible transfer between non-adjacent berths may not be 
allowed. Proposition 2(b) gives the sufficient conditions. 

Proposition 2:  
(a) There exists at least a feasible transfer arc from 

berth i to node k ′ of berth i′ if and only if there exist 
a k such that , 1 ,

s f
i k i kt t′ ′+ ≥ . 

(b) Conditions of (i) , 1 ,
s f
i k i kt t′ ′+ ≥  & , ,

f s
i k i kt t ′ ′≥ or 

(ii) , 1 , , , , 1 , 1,  &  s f f s f s
i k i k i k i k i k i kt t t t t t′ ′ ′ ′ ′ ′+ + +≥ < >  guarantee 

the existence of feasible transfer arc ( , )k k ′ . 
 
 

 
Fig. 1.  An illustration of how nodes are constructed 

 
Fig. 2.  Possible transfer cases considered by Imai et al 

 
Fig. 3.  A transfer arc not allowed by proposition 1 

 
Fig. 4.  A counter example 

 
Fig. 5.  An illustration of how transfer arcs are built 

 
Fig. 6. An infeasible case for transferring cranes 

B. The Case of Adjacent Ordered Berths 
Is every pair of adjacent ordered berths satisfying 

, 1 ,
s f
i k i kt t′ ′+ ≥ also feasible for moving cranes between 

non-adjacent ordered berths? An infeasible example is 
illustrated in Fig. 6, where transferring cranes through 
arcs , 1( i ik k + ) and 1, 2( i ik k+ + ) are both feasible while cranes can 

not be transferred from the th
ik ship of berth i to 
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the 2( th
ik + +1) ship of berth i+2 due to

2, 2,( 1)i i

f s
i k i kt t

++ +> . In this 

example, a transfer path from node ik to node 2ik + is feasible 

if transfer arcs of , 1( i ik k + ) , 1, 2( i ik k+ + ) and , 2( i ik k + ) are all feasible. 

In addition, all cranes after serving the 1
th

ik + ship of berth i+1 
have to be moved to berth i+2 or beyond, otherwise those 
cranes will block the movement path. 

Proposition 3:  
Let ,

s
i kt and ,

f
i kt be the start time and the finish time for 

the thk ship served at the berth i, respectively. 
Let ={0 } {1 , , , B } r r r r rB k∪ K K , where 0r  is a dummy node of 
berth r, and r{1,2, ,B } K is the set of nodes constructed 
according to the service order for the ships assigned to berth r. 
Adding node 0r  at each berth is to allow that cranes used for 
the first ship of a berth may also be used for the first ship of 
another berth. Without loss of generality, we assume 

2i i′≤ −  below. Given that cranes are not allowed to 
crossover a busy berth, and cranes bypass through an idle 
berth in a push-in and pull-out way, then transferring cranes 
from node ik of berth i to node ik ′ of berth i′ is feasible if there 

exists a path of ( , , , , )i r ik k k ′K K i r iB B B ′∈ × × × ×K K , such 
that the following conditions are satisfied: 
(i)  , 1 ,r r

s f
r k r kt t

′′ + ≥ for ,i r i r r i′ ′ ′≤ < < ≤ . 

(ii) All cranes after serving the th
rk ship of berth r have to be 

transferred to berth q, where 1 1i r i′+ ≤ ≤ − and q i′≥ . 

It is clearly that cranes used for the th
ik ship of berth i can be 

feasibly transferred to the th
ik ′  ship of berth i′ if there exist a 

feasible path bypassing cranes through berths of 
( 1, 2, , 2, 1)i i i i′ ′+ + − −K . However, to consider all such 
kind of feasible transfer paths would result in a rather 
complex and impractical optimization model described in 
next section. Thus, from practical viewpoints, we may restrict 
that cranes used for berth i can be moved to 
berth i′ satisfying i i β′ − ≤ , where β  is a given parameter. 

IV. THE FORMULATION 
Since the mixed integer programming (MIP) model given 

by Imai et al. [7] considers partial transfer possibilities and 
has some errors, we formulate a general MIP in this section. 
To construct possible transfer arcs for each pair of berths, say 
from berth i to berth i′ , we check condition of , 1 ,

s f
i k i kt t′ ′+ ≥ as 

stated in proposition 2(a); which is expressed as constraints 
(12). Moreover, to check whether a feasible transfer path 
exists from berth i to berth i′ , we require that each pair of 
berths of the transfer path considered is feasible, that is, we 
examine a total of 0.5( )( 1)i i i i′ ′− − −  pairs of berths of the 
transfer path as stated in proposition 3, which is expressed as 
constraints (17) ~ (19) and (21) ~(22). Indices and variables 
used in the mixed integer programming model are first 
described below, followed by a complete MIP model that 
considers scheduling each vessel at a berth with sufficient 
cranes through possible transfer mechanism. 

Parameters, sets, and indices: 
T  total number of berths 
N     total number of vessels 
B      set of berths with indices i or i′ , { }1, ,B = TK  

V    set of vessels with indices j or j′ , { }1, ,V = NK  

U   set of service orders with indices k or k ′ , 
{ }1, ,U = NK  

W set of service orders, { }0W U= ∪  

iS  ready time for serving vessels at berth i  

jA  arrival time of vessel j 

TQ  total number of quay cranes 

jF   number of quay cranes required for vessel j 

,i jC  service time of vessel j at berth i 
, , ,i i k kW ′ ′  all possible paths from the k th order of berth i to 

the k ′ th order of berth i′ through intermediate 
berths between i and i′  

ˆ( )p i  the corresponding node of berth î  on path 
, , ,i i k kp W ′ ′∈  

ˆ, , , , ,i i k k p i′ ′Ω  set of all possible paths that start from node ˆ( )p i  

of an intermediate berth î of path p in , , ,i i k kW ′ ′ , 
and have the same subpath of p while visiting 
berth i′  

M a big constant 

Variables: 
, ,i j kx  = 1, if vessel j is assigned to the kth order of berth i; 

=0, otherwise 
, ,i j kb  start time of servicing vessel j at the kth order of 

berth i 
, ,i j kf   completion time of servicing vessel j at the kth 

order of berth i 
,i kz  number of quay cranes held at berth i after 

servicing a vessel at the kth order 
, , ,i i k km ′ ′  number of quay cranes transferred from node k of 

berth i to node k ′ of berth i′  
, , ,i i k kδ ′ ′  =1, if there exists a feasible transfer arc from node 

k of berth i to node k ′ of adjacent berth i′ ; =0, 
otherwise 

, , ,
p

i i k kφ ′ ′  =1, if there exists a feasible transfer path p from 

node k of berth i to node k ′ of adjacent berth i′ ; =0, 
otherwise 

 
Mixed integer programming model: 
Minimize   

, ,
( A )

i j k j

j V i B k U

f
∈ ∈ ∈

−∑ ∑∑  (1) 

Subject to  

, , 1    i j k
i B k U

x
∈ ∈

=∑∑ j V∀ ∈  (2) 

, , 1 i j k
j V

x
∈

≤∑  ,i B k U∀ ∈ ∈  (3) 
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, , A  i j k j
i B k U

b
∈ ∈

≥∑∑ j V∀ ∈  (4) 

, , , , , , 1M(1 )i j k i j k i j k
j V j V j V

b x f −
∈ ∈ ∈

+ − ≥∑ ∑ ∑ ,i B k U∀ ∈ ∈  (5) 

, , , ,Mi j k i j kb x≤  , ,i B j V k U∀ ∈ ∈ ∈  (6) 

, , , , , , ,i j k i j i j k i j kb C x f+ =    , ,i B j V k U∀ ∈ ∈ ∈  (7) 

, ,0i j i
j V

f S
∈

=∑  i B∀ ∈  (8) 

,0 TQi
i B

z
∈

=∑  (9) 

, , ,Fj i j k i k
j V

x z
∈

≤∑  ,i B k U∀ ∈ ∈  (10) 

, , , , , 1 , , ,  i k i i k k i k i i k k
i i B k W i i B k W

z m z m′ ′ ′ ′+
′ ′ ′ ′≠ ∈ ∈ ≠ ∈ ∈

+ = +∑ ∑ ∑ ∑ ,i B k W∀ ∈ ∈  (11) 

, , 1 , , , , ,M( 1)  i j k i i k k i j k
j j V j V

b fδ′ ′ ′ ′ ′+
′≠ ∈ ∈

− − ≥∑ ∑
 , , , ,i B i B i i k W k W′ ′ ′∀ ∈ ∈ ≠ ∈ ∈   (12) 

, , , , , , M    i i k k i i k km δ′ ′ ′ ′≤  , , , ,i B i B i i k W k W′ ′ ′∀ ∈ ∈ ≠ ∈ ∈  (13) 

, , , , ,M   i i k k i j k
i i B k W j V

m x′ ′
′ ′≠ ∈ ∈ ∈

≤∑ ∑ ∑ ,i B k U∀ ∈ ∈  (14) 

, , , ,  i i k k i k
i i B k W

m z′ ′
′ ′≠ ∈ ∈

≤∑ ∑  ,i B k W∀ ∈ ∈   (15) 

, ,0,0 0  i i
i B i i B

m ′
′∈ ≠ ∈

=∑ ∑  (16) 

, , ( ), ( ) , , ,M(1 ) 0.5( )( 1) p
r r p r p r i i k k

i r i r r i
i i i iδ φ′ ′ ′ ′

′ ′ ′≤ < < ≤

′ ′+ − ≥ − − −∑ ∑
 , , ,, , 2, , , i i k ki B i B i i k W k W p W ′ ′′ ′ ′∀ ∈ ∈ ≥ + ∈ ∈ ∈  (17) 

, , ( ), ( ) , , ,M(1 ) 0.5( )( 1)p
r r p r p r i i k k

i r i i r r

i i i iδ φ′ ′ ′ ′
′ ′ ′< ≤ < <

′ ′+ − ≥ − − −∑ ∑
 , , ,, , 2, , , i i k ki B i B i i k W k W p W ′ ′′ ′ ′∀ ∈ ∈ ≥ + ∈ ∈ ∈  (18) 

, , ,
, , , 1

i i k k

p
i i k k

p W

φ
′ ′

′ ′
∈

≤∑  , , , ,i B i B i i k W k W′ ′ ′∀ ∈ ∈ ≠ ∈ ∈  (19) 

, , ,
, , , , , ,M

i i k k

p
i i k k i i k k

p W

m φ
′ ′

′ ′ ′ ′
∈

≤ ∑ , , , ,i B i B i i k W k W′ ′ ′∀ ∈ ∈ ≠ ∈ ∈  (20) 

ˆ, , , , , ,
ˆ ˆ ˆ ˆ, , ,, , ( ), ( ) , ( )

T
M(1- )

i i k k p i

p
i i k ki j p i p j i p i

i j p

m zφ
′ ′

′ ′′
′≤ ≤ ′∈Ω

+ ≥∑ ∑
, , ,ˆ, , 2, 1 1, , , i i k ki B i B i i i i i k W k W p W ′ ′′ ′ ′ ′∀ ∈ ∈ ≥ + + ≤ ≤ − ∈ ∈ ∈  (21) 

ˆ, , , , ,
ˆ ˆ ˆ ˆ, , ,, , ( ), ( ) , ( )

0
M(1- )  

i i k k p i

p
i i k ki j p i p j i p i

j i p

m zφ
′ ′

′ ′′
′≤ ≤ ′∈Ω

+ ≥∑ ∑
, , ,ˆ, , 2, 1 1, , , i i k ki B i B i i i i i k V k V p W ′ ′′ ′ ′ ′∀ ∈ ∈ ≥ + − ≤ ≤ + ∈ ∈ ∈  (22) 

, , 0 or 1 i j kx =   , ,i B j V k U∀ ∈ ∈ ∈  (23) 

, , 0   i j kb ≥   , ,i B j V k U∀ ∈ ∈ ∈  (24) 

, , 0  i j kf ≥   , ,i B j V k U∀ ∈ ∈ ∈  (25) 

, 0 i kz ≥  ,i B k W∀ ∈ ∈  (26) 

, , , 0  i i k km ′ ′ ≥  , , , ,i B i B i i k W k W′ ′ ′∀ ∈ ∈ ≠ ∈ ∈  (27) 

, , , 0 or 1   i i k kδ ′ ′ = , , , ,i B i B i i k W k W′ ′ ′∀ ∈ ∈ ≠ ∈ ∈  (28) 

, , , 0 or 1  p
i i k kφ ′ ′ =  , , ,, , , , , i i k ki B i B i i k U k U p W ′ ′′ ′ ′∀ ∈ ∈ ≠ ∈ ∈ ∈  (29) 

 
The goal of objective function (1) is to minimize the total 

turnaround time. Constraints (2) ensure that each vessel has 
to be served. Constraints (3) say that at anytime a berth can be 

occupied at most by a vessel. Constraints (4) require that the 
start time for serving a vessel at a berth must be not smaller 
than its arrival time. Constraints (5) ensure that the start time 
of serving a vessel in larger order can not be less than the 
completion time of serving a ship in smaller order. If no 
vessels are assigned to a service position of a berth, 
constraints (6) set zero to the corresponding service start time. 
The relationship for serving two consecutive vessels at a 
berth is specified in constraints (7). Constraints (8) say that 
the start time for serving the first vessel at each berth can not 
smaller than the corresponding berth ready time. The total 
number of cranes available is given in constraint (9). 
Constraints (10) force that the number of cranes required for 
each vessel must be satisfied. Constraints (11) maintain the 
flow conservation of cranes. Constraints (12) ensure whether 
the feasible transfer arc exists. Constraints (13) ask that 
transferring cranes is not allowed if no feasible transfer arcs 
exist. If no vessel is assigned in a service order of a berth, 
constraints (14) do not consider the action of transferring 
cranes. Constraints (15) restrict that after serving a vessel the 
maximum number of cranes can be transferred to other berths. 
No transfer considered between dummy nodes is stated in 
constraint (16). Whether the existence of a feasible transfer 
path is what constraints (17) and (18) addressed. Constraints 
(19) restrict that using at most one path to transfer cranes 
from source to destination. If no feasible transfer paths exist, 
constraints (20) forbid the transfer. Constraints (21) and (22) 
require that if a feasible transfer path exists between source 
and destination, then all cranes for those intermediate berths 
of the path considered have to be emptied and moved to other 
berths. Constraints (23) ~ (29) declare the domain of 
variables.  

V. CONCLUSIONS 
This paper considers how to simultaneously allocation 

each vessel to a berth and how to transfer cranes to satisfy the 
requirement of each vessel at each berth. A very complicate 
MIP model that attempts to modify the one described by Imai 
et al. [7] is developed. We discuss conditions for feasibly 
transferring cranes between berths. Though to optimally 
solve the MIP model directly is almost impossible for large 
size problems, the fundamental insights revealed in modeling 
the problem can provide valuable thoughts for developing 
approximate solution methods. For instance, you may restrict 
neighboring berths as candidates for crane transfer. Studying 
efficient and effective heuristic algorithms for the problem is 
our current job. 
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