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Abstract--There has been significant interest in single 

period newsvendor problem where besides determining lot size, 
the decision maker has to set the selling price. The model is 
applicable when the demand for the product is a stochastic 
function of the selling price; i.e., the retailer is facing price 
sensitive uncertain demand. Although there have been several 
models, the problem needs exploration when the retailer finds 
it hard to estimate the shortage cost and rather use the notion 
of service level to set his/her lot sizing and pricing policy. 

 
   
Index Terms :  Newsvendor problem, lot sizing, pricing, 

service level. 
 
 

I.  INTODUCTION 
 

Newsvendor model has been used to model supply 
demand balance for seasonal, perishable as well as products 
with short life cycle. Pricing is a natural extension. Petruzzi 
and Dada [1] formulated a joint pricing inventory model 
where they model economic consequence of stockout using 
shortage cost. They allow demand to be described by 
additive or multiplicative demand but could not show joint 
concavity of the expected profit when the random error is 
distributed according to a general distribution. They provide 
certain condition on the density function under which profit 
is jointly concave. Recently,  Propescu [2] has revisited the 
problem assuming shortage cost to be zero . He provides 
additional conditions for profit to be jointly concave using a 
new construct called as lost sales elasticity. 

  
Whereas shortage costs are widely used in literature to 

formulate inventory models, practitioners seem to prefer 
using service level as a measure of economic consequence 
of stock outs. For example, service level approach is widely 
used in practice to set up reorder point or the order-up-to-
level. In fact the most popular enterprise resource planning 
system SAP does not use shortage costs in determining 
reorder points or dynamic order up to level [3]. 
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II. MODEL FORMULATION 

Let  
TABLE I 

 NOTATION 
 

Q =  lot size of the perishable good. 

c =  purchase  cost per unit. 

r  =  selling price (exogenous)  in period 1. 

( , )D r  =  the demand function such that 

( , ) ( )D r f r   ,   where ( )f r  is the riskless 

demand  when selling price is is set to r. 

  = the random error defined over a range [ , ]A B  

u =   the realized error. 

SL   = the service level specified by the retailer 

for the second period. 

 
We assume that 

1.  The random error   is distributed with mean 0 and 
standard deviation  and its probability     density and 

cumulative functions are denoted by (.), (.)g G , 

respectively. One special case will be when  is 
distributed according to truncated Normal; i.e.,   

           

   

 

 

 
2. The selling price, r,  does not change during the 

season/period. 
 
3.   Without loss of generality, the salvage    value is zero 

and there is no carrying cost. 
 
4.   The starting inventory level is zero; the order up to 

level and order quantity is the same. 
 
The revenue function is given as  
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After rearranging,
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Given that ( ) 0,E     the expected profit can be 

shown to be  
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In general, ( , )Q r is not jointly concave in and .Q r  
Procedures involving enumeration can be used to maximize

( , )Q r .  However, maximizing ( , )Q r may result in 

poor service to the customers. Beside cost, service level is 
the most important criterion for the practitioners. Suppose 
the decision maker specifies the service level to be SL. Then 
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Or ,  
* ( ) ( ) Q Q r f r z                    (4)   

Given the above,  (3) can be rewritten as 
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    Clearly, the convexity of ( * ( ), )

 is assured if ( ) ( )  is convex.

This is much simpler since ( ) ( )  

 is independent of the density function ( ).

For example ( ) ( )  is convex for 

linear
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III. LINEAR DEMAND 
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Given above closed form results, the following   

properties of the optimal policy are seen for the linear 
demand case. Assuming that all other parameters are held 
constant. 

  
1. The optimal price r increases as purchase cost c increases.  

The seller tends to pass the increased purchase cost to the 
end consumers. 

2. The optimal price r increases as the market size a 
increases.  Given that there are more potential customers, 
the seller can improve his margin by charging more. 

3.  The optimal price r decreases as the elasticity increases 
text. Given that fewer  customers parameter are willing 
to pay more, the seller has to reduce her price. 

4.  The optimal price increases at a slight rate as z or service 
level SL increases. 

5.  The optimal price r increases as demand    volatility  σ  
increases. 

6.  The optimal lot size Q increases with market potential  a. 
When market potential is large the seller will reach a 
more customers at a given price. 
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7. The optimal lot size Q decreases as price elasticity 
parameter b increases. 

8. The optimal lot size Q increases as safety   factor constant 
z or service level SL increases.  As z increases, the seller 
is carrying larger safety stock to provide the increased   
amount of service. 

 9.   The optimal lot size Q increases as demand volatility σ   
increases.  When  σ increases, to provide the same 
amount of service, the seller has to carry more safety 
stock.  

 
 
3.1  Example 1 
 
Suppose, 
 

( ) 1500 50 , 6,SL = 95%  or  

= 1.645. Also,  is distributed according

 to a truncated Normal distribution 

with =0, =33, 100 and 100.
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With the above values, conditions (6) give  
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IV.  CONSTANT PRICE ELASTICITY OR 

POWER FUNCTION DEMAND 
 
Now suppose 
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It is easy to see that  
 
 

2

2

1
0       for     

1

1
 0      for    

1

1
0     for    

1

r c

d
r c

dr

r c




 





 




 




 













 

     

   

1

*

*

0

Now ( ) + 

    <c
1

1
Clearly,  <c  < .  Hence 

1 1

B

z

d
r c r r

dr

ru z g u du

r c

 



 






 

 

  
  

 






 





 

*

* *

*

*

*

( ( ), )

( ( ), )

( ) and therefore  is concave 

at  . Thus   is the global maximum of  

the optimal solution  to the 

original problem in this case

is  *  and ( ) .

 and

r

r r

r r Q

Q r r

Q r r

Q r r z




 


   




 

4.1  Example 2 
 
Suppose 

   

2.5

*

100000, 2.5  or  ( ) 100000 .

Also, random error  is distributed according 

to truncated Normal distribution with

=0, 33, 100 and 100. 
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V.    ADDITIONAL APPROACHES TO 

FIND GLOBAL OPTIMUM 
 

Since 
*( ( ), )Q r r is a function of a single variable, there 

are following other approaches to find the global optimum. 
  

       

1

One could solve the first order condition 

( * ( ), ) ( )
( ) ( )

                      ( ) ( ) d 0

and check if  ( * ( ), ) is   concave at  

that solution. Similarly, one could  show 
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that ( * ( ), ) is unimodal.  Q r r
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VI. CONCLUSIONS 

In this paper, we revisit the single period problem of 
determining the selling price and lot size when demand is a 
stochastic function of the price. We used the notion of 
service level to determine the price and order quantity. The 
construct of service level is preferred by practitioners in 
setting reorder points and order up to level.  For example 
ERP system SAP ECC 6.0 does not use per unit shortage 
cost when it comes to setting reorder points or dynamic 
order-up-to-levels.  

Our model is parsimonious: for the linear demand case, 
we have derived the optimal selling price and lot size in a 
closed form. Even for other demand functions, the 
procedure should be easy to apply since the optimal lot size 
is a closed form function of the selling price.  
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