
 

  

Abstract—For CNC machine tools with synchronized motion 

axes, existing feedforward motion control designs are usually 

employed for reducing tracking errors and thus achieving 

desired tracking accuracy. However, the contouring accuracy of 

motion control design remains limited mainly because of 

unmatched dynamics among all motion axes. In this study, a 

feedforward motion control design was developed by 

considering the mutual dynamics among all the motion axes for 

improving contouring accuracy. Applying stable pole-zero 

cancellation to each axis and compensating phases for the 

uncancelled zeros of all axes led to matched dynamic responses 

for all the motion axes across the entire frequency range, thus 

ensuring contouring accuracy. Moreover, a digital disturbance 

observer was developed to repress adverse effects induced by 

model uncertainties and external disturbances, for the 

enhancement of motion robustness in real applications. Finally, 

experiments performed on a 3-axis CNC milling machine 

validated both the proposed feedforward motion control design 

and the digital disturbance observer design. 

 
Index Terms—Feedforward Control, Motion Control, 

Contouring Accuracy, CNC machine tools 

 

I. INTRODUCTION 

NE of the most important requirements of precision CNC 

machining is motion accuracy, which is usually 

characterized in the motion control system by its tracking 

accuracy and contouring accuracy. However, in practice, 

certain factors can significantly degrade motion accuracy, 

including the following: (a) external disturbances such as 

cutting force, friction, and external force and torque 

perturbations; (b) inherent characteristics of servo systems 

such as servo lag and mismatched dynamic properties among 

synchronized motion axes; and (c) model uncertainties in the 

motion control design. 

Generally, the performance of motion control systems that 

have an appropriate feedback and feedforward control design 

is highly dependent on both tracking accuracy and contouring 

accuracy. Poo et al. [1] analyzed the relations between 
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feedback controllers and contouring errors. Later, 

feedforward control loops began to be discussed in motion 

control systems because they efficiently reduce servo lags 

[2-5] and passively decrease contouring error. In addition to 

well-designed feedback and feedforward control loops, a 

cross-coupled control (CCC) structure, which considers the 

mutual dynamic effects among all axes, was developed by 

Koren [6] to reduce contouring error. Various improved CCC 

designs have since been proposed [7-11]. For significantly 

improving both tracking and contouring accuracy, Lo [12] 

proposed transforming coordinates to obtain a moving basis 

in order to create a feedback controller for 3-axis motion 

systems. Chiu and Tomizuka [13] proposed a 

task-coordinated approach by considering all axes as 

first-order loops to obtain feedback and feedforward control 

loops. Yeh et al. [14] further applied an integrated control 

structure to achieve high tracking and contouring precision. 

Although many advanced control algorithms and structures 

have been developed for simultaneously improving the 

tracking accuracy and contouring accuracy of multi-axis 

motion control systems, conventional control structures with 

feedback and feedforward controllers remain the most 

fundamental and crucial factor in obtaining desirable motion 

accuracy. Theoretically, to improve the contouring accuracy 

of multi-axis motion control systems, feedback controllers 

should be designed to achieve matched dynamic 

characteristics among all motion axes. Then, the feedforward 

control is applied to further improve tracking accuracy. Poo et 

al. [1] proposed a design with constant gains matched 

between two motion axes; however, such a design is not 

applicable to complex plants that usually have higher-order 

models and that operate under high speed. In recent decades, 

feedforward control design with zero-phase error tracking 

controller (ZPETC) has received considerable attention in 

positioning applications because it provides good tracking 

accuracy in motion systems. ZPETC [2] renders the desirable 

zero-phase error but with a limited gain response. Although 

an optimal ZPETC design with a concise polynomial digital 

pre-filter [4, 5] can be applied toward extending the 

bandwidth for a single axis, unmatched dynamics among all 

axes still limit the contouring responses. 

In our study, a novel feedforward motion control design 

was developed in order to significantly improve both the 

tracking accuracy and the contouring accuracy for multi-axis 

motion control systems with conventional PID feedback 

controllers [15]. By applying stable pole-zero cancellation to 

individual axes and by employing complementary zeros for 
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all uncancelled zeros among all axes, we developed the 

feedforward motion control design for achieving identical 

frequency responses for different motion axes. Thus, we 

expected that, besides good tracking responses, it would also 

achieve good contouring responses. We optimized the 

feedforward motion control design by cascading our 

feedforward controller with a digital pre-filter in which its 

parameters were obtained through applying L2-norm 

optimization. The resultant optimal feedforward motion 

control design greatly improved the bandwidth of a multi-axis 

motion control system while maintaining matched frequency 

responses among all synchronized motion axes.  

Because a model-based motion control design is usually 

sensitive to external disturbances and model uncertainties in 

real applications, a disturbance observer has been employed 

to reduce the adverse effects of such undesirable influences 

[16-18]. Although this disturbance observer has been 

successfully applied to motion control systems and has shown 

good performance in reducing external disturbances and 

eliminating uncertainties, some problems remain, including 

selection of the nominal plant used in the observer design, the 

design of the observer filter with dilemmatic characteristics, 

and stability analysis when using the disturbance observer in a 

feedback control loop [19]. In our study, the systematic 

design of a digital disturbance observer was developed to 

replace currently employed disturbance observer designs, in 

order to reduce the abovementioned problems and to provide 

motion robustness to our proposed feedforward motion 

control design. For the velocity controlled plant with 

nonminimum-phase zeros, stable pole-zero cancellation was 

first applied to the observer filter design to simplify the 

dynamic effects of the selected nominal plant in the design 

procedure, an all-pass filter design was then used to achieve 

constant-gain response across the entire frequency range, and 

a low-pass filter was finally added to the observer to improve 

its bandwidth. We also carried out stability analysis by 

applying an equivalent feedback loop and internal stability 

criterion when the digital disturbance observer was used in a 

velocity feedback control loop. Moreover, the analysis results 

may be applied for selecting a suitable nominal plant in the 

observer filter design to maintain system stability and 

execution performance.  

The results of experiments performed on a 3-axis CNC 

milling machine indicate that the feedforward motion control 

design and the digital disturbance observer design developed 

in this study significantly improve the contouring accuracy 

while maintaining the motion robustness of the motion control 

system in the applied CNC machine tool. 

II. FEEDFORWARD MOTION CONTROL DESIGN 

In our study, the feedforward motion control design 

presented in [15] was applied to improve both the tracking 

accuracy and the contouring accuracy for multi-axis motion 

control systems as shown in Fig. 1. The position feedback 

transfer function that differs for each axis ( )T zi

−1  can be 

expressed as 
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where ( )B zi

pa −1  denotes the polynomials with acceptable 

zeros such as stable zeros; ( )B zi

pu −1  denotes the polynomials 

with unacceptable zeros such as unstable and nearly unstable 

zeros. 

 

 
Fig. 1.  Two-degrees-of-freedom motion control systems. 

 

Based on the design of the optimal ZPETC [5] and 

complementary zeros, the feedforward controller ( )F zi

−1  is 

designed as 

( ) ( )
( )

( )
( )F z DPF z

z A z

B z
B zi i

i

p

i

pa j

pu

j
j i

n
− −

−

−

−

=
≠

= ⋅
⋅

⋅∏1 1

1

1

1

1

 (2) 

The corresponding axial transfer function ( )R zi

−1  for each 

axis is then obtained as 
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To achieve identical axial transfer functions for all axes, the 

feedforward controller ( )F zi

−1  can be designed as 
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where,  
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N: the order of digital pre-filter DPF z( )−1 . 

P: the number of unacceptable zeros. 

Then, by substituting (5)-(13) into (3), the control system 

transfer function R z( )−1  becomes 
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corresponding to the order z
i .  

III. DIGITAL DISTURBANCE OBSERVER DESIGN 

Fig. 2 shows the control system based on the proposed 

digital disturbance observer in the discrete time domain. The 

proposed disturbance observer contains three parts including 

the input finite impulse response (FIR) filters )( 1−
zNε

 and 

N z
v
( )−1  and the output filter Q z( )−1 . The design goal of the 

digital disturbance observer is to find suitable FIR filters 

N zε ( )−1  and N z
v
( )−1  such that the entire system can be 

properly represented as the nominal plant even under 

perturbations from external disturbances and model 

uncertainties. 
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Fig. 2.  Structure of the control system with the proposed digital 

disturbance observer. 

 

Consider the system as shown in Fig. 2, where u , ε , and v  

denote the reference input, driving force, and velocity output 

of the controlled plant, respectively. d  and $d  are the 

external disturbance and estimated disturbance, respectively. 

$δ  is the feedback signal, and ξv
 is the measured noise. 

N z( )−1  and D z( )−1  are the numerator and denominator of the 

controlled plant, respectively. N zd ( )−1  is the structure of the 

external disturbance, and N zε ( )−1  and N zv ( )−1  are the input 

FIR filters. Q z( )−1  denotes the observer filter that must be 

carefully designed in applications of the disturbance observer. 

Since 

v
N

D

N

D
dd= +ε  and [ ]ε εε= − +u Q N N vv
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the velocity response of the controlled plant is derived as 
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Suppose the filter Q can be designed such that  

1 0+ =N Qε
; (16) 

then, (15) becomes 

v
N

D N

D
N Q

u
N Q

u
N

N
u

v
v v

= = =
−1 1 ε . 

By setting the velocity transfer function as the nominal plant, 

i.e.,  
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, 

the input FIR filters N zε ( )−1  and N zv ( )−1  are designed as 

N z N znε ( ) ( )− −= −1 1  and N z D zv n( ) ( )− −=1 1 . 

The assumption of (16) becomes  

N z Q zn ( ) ( )− − =1 1 1  (17) 

The structure of the digital disturbance observer is then 

obtained as shown in Fig. 3. All the sub-systems in the digital 

disturbance observer are stable, and the nominal plant 
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 can be an arbitrary stable system with 

unstable numerators. By considering the measurement noise 
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, the velocity response of the proposed digital disturbance 

observer is derived as 
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If the filter Q is designed such that  

N z Q zn ( ) ( )− − =1 1 1 ,  

then 

v
N

D
un

n

v= − ξ . 

However, if the filter Q is designed such that 

N z Q zn ( ) ( )− − =1 1 0 ,  

then 

v
N

D
u

N

D
dd= +  
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Therefore, the filter Q must be designed such that  
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to reduce the effect of external disturbances and to eliminate 

measurement noise.  
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Fig. 3.  Structure of the digital disturbance observer. 

 

Since the design of the filter Q closely relates to the 

nominal numerator N zn ( )−1 , the design of Q has three steps. 

First, stable pole-zero cancellations are directly employed. 

Second, an all-pass filter is employed to re-shape the 

frequency response. Then, the low-pass filter is embedded to 

achieve the frequency response as in (18). The nominal 

numerator N zn ( )−1 is separated as 

N z N z N zn n
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n
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where N zn

a ( )−1  denotes the acceptable polynomial with stable 

roots and N zn

u ( )−1  denotes the unacceptable polynomial with 

unstable and nearly unstable roots. Suppose the unacceptable 

polynomial N zn

u ( )−1  is represented as 
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then, we design the filter Q as 
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Note that (20) is stable and realizable, and 
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stable all-pass filter. The low-pass filter LPF z( )−1  is 

designed such that 
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performs the desired frequency response as in (18). 

The stability of the digital disturbance observer, as shown 

in Fig. 3, can be demonstrated as follows. Define the 

equivalent plant R as 

R D
N

D
Nn n= ⋅ −  

and the equivalent feedback system S as shown in Fig. 4. Then, 

since 

(a) the system S is internally stable, implying that Q z( )−1 , 

R z( )−1 , and 1

1 1 1+ − −
Q z R z( ) ( )

 are all stable; 

(b) all subsystems of digital disturbance observer, 

N N
D

N D Qd n n,  ,  ,  ,  ,  
1








, are stable; and 

(c) the transfer function 1

1 1 1+ − −
Q z R z( ) ( )

 dominates the 

characteristic roots of the digital disturbance observer 

system,  

then the digital disturbance observer in Fig. 3 is internally 

stable if the equivalent feedback system S is internally stable. 

According to the stability analysis, the filter Q z( )−1  closely 

relates to system stability, and the low-pass filter LPF z( )−1  in 

filter Q z( )−1  is then designed to achieve the desired stability 

and the desired frequency response. The trade-off condition 

between stability and desired frequency response generally 

exists in the LPF z( )−1  design. 

 

+

   - Q z R z( ) ( )− −1 1        

 
Fig. 4.  Equivalent feedback loop system S. 

IV. EXPERIMENTAL RESULTS 

The experimental setup of a DYNA 1007 3-axis CNC 

milling machine is shown in Fig. 5. A PC-486 generated the 

main control commands and recorded the principal signals 

including the input command calculation for different 

contours, the implementation of controller, and the control 

inputs to the velocity loop. The machine feed system was 

driven by SEM AC servomotor packs. The PC-486 interface 

utilized a PC-based motion control card with D/A converters 

and digital decoders to send and receive the control inputs and 

position outputs, respectively, in a sampling period of 1 ms. 

The velocity loops of a real biaxial motion system are 

obtained by applying the identification algorithm [20] as 

( )V z
z z z

z z z
x

−
− − −

− − −
=1

1 2 3

1 2 3

- 0.00437948 + 0.04225802 + 0.09618655

1- 0.88944678 + 0.23980063 - 0.19529895  

( )V z
z z z

z z z
y

−
− − −

− − −
=1

1 2 3

1 2 3

 - 0.00141126 + 0.04402946 + 0.09340968

1- 0.83356582 - 0.04295967 + 0.03239339  
To illustrate the performance of the proposed feedforward 

motion control in industrial applications, circular motion tests 

with different speed commands, 5000.0 mm/min and 600.0 

mm/min, were applied to control the motion of the CNC 

milling machine. Moreover, results of three control designs 

were compared as follows: 

Case (A): The conventional approach in which the position 

controllers were designed to achieve a 0.707 

damping ratio for each axis and constant gain 

matched dynamics at zero-frequency response 

among all motion axes. 

Case (B): The motion control system was similar to Case (A) 

but was combined with the proposed digital 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



 

disturbance observer design. The nominal plant of 

the digital disturbance observer was set such that it 

was identical to the model of the velocity loop. The 

observer filter was designed according to the 

developed procedures as 
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Case (C): Based on the motion control design in Case (B), 

the motion control system also used the proposed 

feedforward motion control design as  
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Results of the circular motion tests are summarized in 

Table I and Fig. 6. Note that the contouring errors shown in 

Fig. 6 are amplified 100 times. Clearly, the proposed 

feedforward motion control design significantly improved 

both the tracking accuracy and contouring accuracy of the 

applied CNC milling machine. To increase the bandwidth of 

servo systems, we developed a feedforward motion control 

design by developing a zero-phase digital pre-filter design 

and a phase compensation algorithm. Experimental results 

indicate that the proposed feedforward motion control design 

significantly improved the tracking accuracy of servo systems. 

We designed the feedforward motion control for multiple 

axes to achieve identical dynamic properties among all axes 

with zero-phase lag error. By using the proposed feedforward 

control design, tracking and contouring accuracy were both 

significantly improved in multi-axis motion systems. Because 

the proposed feedforward motion control design is a 

model-based approach, a digital disturbance observer was 

integrated with the motion control design in order to reduce 

adverse effects induced by model uncertainties and external 

disturbances. In motion systems with serious nonlinearity, 

which give rise to friction, the slip-stick phenomenon can be 

further reduced if the motion controller is designed to 

compensate for friction [21, 22]. 

 

 
Fig. 5.  Experimental setup. 

 
TABLE I 

EXPERIMENTAL RESULTS OF THE CIRCULAR MOTION TESTS WITH DIFFERENT 

CONTROL DESIGN AND SPEED COMMANDS 

Controller 

Performance 

Case (A) Case (B) Case (C) 

Speed command of 5000.0 mm/min 

Contouring error 

(RMS, mm) 

0.0242 0.0145 0.0041 

Tracking error 

(RMS, mm) 

1.2028 1.1750 0.0052 

Speed command of 600.0 mm/min 

Contouring error 

(RMS, mm) 

0.0321 0.0016 0.0016 

Tracking error 

(RMS, mm) 

0.2046 0.1521 0.0019 

 

 
Fig. 6.  Results of the circular motion tests with a speed command of 

5000.0 mm/min. 
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V. CONCLUSION 

Feedforward motion control is conventionally designed 

individually for improving the tracking accuracy of motion 

control systems used in CNC machine tools. However, the 

individual design of feedforward motion control usually leads 

to mismatched dynamics among all synchronized motion axes 

and may seriously degrade contouring accuracy, particularly 

under high-speed machining processes. Therefore, we 

developed the feedforward motion control design presented in 

this paper for improving both the tracking and contouring 

accuracy of motion control systems in CNC machine tools. By 

applying stable pole-zero cancellation to individual axes and 

by employing complementary zeros for all uncancelled zeros, 

the feedforward motion control design led to matched 

dynamics among all motion axes and thereby achieved highly 

accurate contouring and tracking results. 

In motion control systems, the model-based control design 

is usually sensitive to external disturbances and plant 

uncertainties. We thus developed a digital disturbance 

observer design to significantly reduce those adverse effects, 

and as a result, our feedforward motion control design 

achieved high-precision motion accuracy and good motion 

robustness in real applications. A systematic design procedure 

was developed, including stable pole-zero cancellation, 

all-pass filter design, and low-pass filter design, so that the 

digital disturbance observer became more feasible for the 

feedforward motion control design. An internal stability 

criterion was further employed to validate stability in 

application of the developed digital disturbance observer to 

show that it maintained system stability and provided good 

execution performance. Finally, experimental results 

performed on a 3-axis CNC milling machine show that our 

feedforward motion control design and digital disturbance 

observer design are feasible and can significantly improve 

both tracking accuracy and contouring accuracy; thus, they 

provide high-precision motion in CNC machine tools. 
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