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Abstract—We present a new algorithm that solves the min-
imum Steiner tree problem on an undirected graph with
n nodes, k terminals, and m edges with bounded integer
weights in time Õ((2− ε)kn2 + nm). Our algorithm beats the
aesthetically appealing and seemingly inherent 2k bound of the
current best algorithm for Steiner tree problem from Björklund,
Husfeldt, Kaski, and Koivisto. Our algorithm is based on fast
subset convolution and a variant of the classical tree-separator
theorem.

Index Terms—Steiner tree; Fast subset convolution; Mobius
transform; Tree separator theorem;

I. INTRODUCTION

A. Steiner Tree Problem

IN the standard Steiner tree problem, given an n nodes
undirected graph G(V,E), a subset R ⊂ V of k = |R|

terminals and a length function c : E → R on the edges of
G, then the Steiner tree problem asks for a shortest network
connecting the vertices of R. The nodes in subset R are
called terminal vertices, and the nodes in the subset V/R
are called Steiner vertices. The Steiner tree problem appears
in many different kinds of applications.

This problem is well known to be NP-hard[2] and therefore
we cannot expect to find polynomial time algorithms for
solving it exactly. This motives the search for good approxi-
mation algorithms for the Steiner tree problem in graphs(i.e.,
algorithms that have polynomial running time and return
solutions that are not far from an optimum solution), or faster
exact algorithms that can give a lower time complexity. The
best approximation algorithm for Steiner tree problem comes
from Byrka et al.[3], where they give a 1.39-approximation
ratio based on iterated randomized rounding.

For more than 30 years the fastest parameterized algo-
rithm for the Steiner tree problem was the classical O∗(3k)
dynamic programming algorithm(The O∗ notation omits
polynomial factors, and k denotes the number of termi-
nals in R.) by Dreyfus and Wagner[4]. Dreyfus-Wagner’s
algorithm is still probably the most popular algorithm used
for solving different variants of the Steiner tree problem in
practice[5][6]. This algorithm and its variations are also used
as a subroutine in many other algorithms. Recent progress in
parameterized complexity and exact algorithms led to new
insights on the Steiner tree problem. Mölle, Richter, and
Rossmanith[7] improved the running time to O∗((2 + ϵ)k),
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for any constant ϵ > 0. More recently, Björklund, Husfeldt,
Kaski, and Koivisto[1] obtained an O∗(2k) time algorithm
for the version of the problem where edges have bounded
integer weights.

B. Subset Convolution

Many hard computational problems admit a recursive
solution via a convolution-like recursion step over the subsets
of an n-element ground set N . More precisely, for every
S ⊂ N , one computes the “solution” h(S) defined by

h(S) =
∑
X⊂S

f(X)g(S\X) (1)

where f(X) and g(S\X) are previously computed solutions
for the subproblems specified by X and S\X , and the
arithmetic is carried out in an appropriate semiring; the
most common examples in applications being perhaps the
integer sum-product ring and the integer max-sum semiring.
Given f and g, a direct evaluation of h for all S ⊂ N
requires O(3n) semiring operations. For a long time, this is
the fastest known evaluation. In 2007, Björklund, Husfeldt
et al.[1] introduced a fast subset convolution algorithm
that improved substantially upon the straightforward O(3n)
algorithm. Their algorithm achieved a time complexity of
O(n22n) via a product (“convolution over rank”) of “ranked”
extensions of the classical Möbius transforms of f and g on
the subset lattice, followed by a “ranked” Möbius inversion.

The key of Björklund’s algorithm[1] is the use of Yates’s
fast Fourier transform[9] in combination with Möbius inver-
sion, which will be introduced in the following paragraph.
From the way it is normally stated, Yates’s algorithm[9]
seems to face an inherent 2n lower bound, up to a polynomial
factor, and it also seems to be oblivious to the structural
properties of the transform it computes.

The motivation of the present investigation is to expedite
the running time of Yates’s algorithm[9] for certain structures
so as to get running times with a dominating factor of
the form (2 − ε)n. From the perspective of running times
alone, our improvements are modest at best, but apart from
providing evidence that the aesthetically appealing 2n bound
from[1] can be beaten, the combinatorial framework we
present seems to be new and may present a fruitful direction
for exact exponential time algorithms.

II. FAST SUBSET CONVOLUTION OVER A RING

The key factor of Björklund, Husfeldt et al.[1]’s algorithm
is the use of a product (“convolution over rank”) of “ranked”
extensions of the classical Möbius transforms of f and g on
the subset lattice, followed by a “ranked” Möbius inversion.

The ranked Möbius transform of f is the function f̂r that
associates with every k = 0, 1, . . . , n and S ⊂ N the ring
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element
f̂r(k, S) =

∑
X⊂S
|X|=k

f(X) (2)

While the classical Möbius transform of f is the function
f̂ that associates with every S ⊂ N the ring element

f̂(S) =
∑
X⊂S

f(X) (3)

In particular, the classical Möbius transform of f is
obtained in terms of the ranked transform by taking the sum
over k, that is, f̂(S) =

∑|S|
k=0 f̂r(k, S).

Given the Möbius transform f̂ , the original function f may
be recovered via the Möbius inversion formula

f(S) =
∑
X⊂S

(−1)|S\X|f̂(X) (4)

For the ranked transform, inversion is achieved simply by
f(S) = f̂r(|S|, S), or in a somewhat more redundant form,

f(S) =
∑
X⊂S

(−1)|S\X|f̂r(|S|, X) (5)

Throughout this section we assume that R is an arbitrary
(possibly noncommutative) ring and that N is a set of n
elements, n ≥ 0. Let f (respectively, g) be a function
that associates with every subset S ⊂ N an element f(S)
(respectively, g(S)) of the ring R. Define the convolution
f ∗ g for all S ⊂ N by

(f ∗ g)(S) =
∑
X⊂S

f(X)g(S\X) (6)

For two ranked Möbius transforms, f̂r and ĝr, define the
convolution f̂r � ĝr for all k = 0, 1, . . . , n and S ⊂ N by

(f̂r � ĝr)(k, S) =

k∑
j=0

f̂r(j, S)ĝr(k − j, S) (7)

The fast Möbius transform[8][9] is the following algorithm
for computing the Möbius transform (3) in O(n2n) ring
operations. By relabeling if necessary, we may assume that
N = 1, 2, . . . , n. To compute f̂ given f , let initially

f̂0(S) = f(S) (8)

for all S ⊂ N , and then iterate for all j = 1, 2, . . . , n and
S ⊂ N as follows:

f̂j(S) =

{
f̂j−1(S) if j /∈ S,

f̂j−1(S\{j}) + f̂j−1(S) if j ∈ S.
(9)

It is easy to verify by induction on j that this recurrence
gives f̂n(S) = f̂(S) for all S ⊂ N in O(n2n) ring
operations. The inversion operation (4) can be implemented
in a similar fashion.

Expression (5) provides the key to fast evaluation of the
subset convolution (6). Namely, we will “invert” a function
that, in general, cannot be represented via ranked Möobius
transform but via a convolution (over rank) of two such
transforms. To set the stage, it is immediate that the ranked
transform (2) can be computed in O(n22n) ring operations
by carrying out the fast transform (9) independently for each
k = 0, 1, . . . , n. Similarly, the ranked inversion (5) can be
computed in O(n22n) ring operations by carrying out the
fast inversion independently for each k = 0, 1, . . . , n. Note

that this convolution operation is over the rank parameter
rather than over the subset parameter. In Björklund, Husfeldt,
Kaski, and Koivisto[1] paper, their main result is

Theorem 1: The subset convolution over an arbitrary ring
can be evaluated in O(n22n) ring operations.
Another important result in their paper that relates to our
algorithm is

Theorem 2: The subset convolution over the integer max-
sum (min-sum) semiring can be computed in Õ(2nM) time,
provided that the range of the input functions is {−M,−M+
1, . . . ,M}.
Readers who are interested in the proofs of the above two
theorems are referred to the article of Björklund er al.[1].

III. ALGORITHMS

A. Dreyfus-Wagner Algorithm
Dreyfus and Wagner[4]’s algorithm is based on the fol-

lowing observation. For a given instance of the Steiner tree
problem G(V, A), with a minimum Steiner tree T on the
terminal set R, and k = |R| ≥ 3, there must be an internal
node p ∈ T , terminal vertex or steiner vertex, that can
separate T into two forests R1 and R2, each containing at
least one terminal vertex. Let Ri be the terminal vertices
in Ri, i ∈ 1, 2. If we compute minimum Steiner trees on
the terminal vertices subset Ri ∪ p, i ∈ 1, 2, and merge
them, we obtain a minimum Steiner tree for R. We need to
enumerate all the possible separations since we do not know
p nor (R1, R2) a prior. Let MST (R) be the minimum Steiner
tree on terminal set R in graph G(V,A), and mst(R) be the
responding cost. The following equation holds for Dreyfus
and Wagner[4]’s algorithm.

mst(R) = min
p∈V

min
(R1,R2)∈P(p,R)

{mst(R1∪{p})+mst(R2∪{p})}
(10)

where P(p,R) is the set of possible partitions R1, R2 of
R\{p} in two nonempty subsets. Dreyfus and Wagner[4]’s
algorithm simply applies (10) to any subset of R in a bottom-
up fashion, storing each partial solution computed for the
later computations.

B. Björklund-Husfeldt Algorithm
For a given vertex subset Y ⊂ R, denote by W (Y )

the total weight of a Steiner tree connecting Y in G.
Equation(10) can be deposed into two parts.

W ({q} ∪X) = min{W ({p, q}) + gp(X) : p ∈ V } (11)

gp(X) = min{W ({p}∪D)+W ({p}∪(X\D)) : 0 ⊂ D ⊂ X}
(12)

for all q ∈ Y and X = Y \{q}.
In [1], Björklund et al. apply the fast subset convolution

over the min-sum semiring to expedite the evaluation of the
Dreyfus-Wagner recursion in (12). They define the function
fp for all X ⊂ R by

fp(X) = W ({p} ∪X) (13)

Applying the subset convolution over the min-sum
semiring, it is immediate from (12) and (13) that
gp(X) = (fp ∗ fp)(X) holds for all X ⊂ R. Thus by
Theorem 2, they can computer gp(X) for all p ∈ V and
X ⊂ R using n evaluations of the subset convolution with
integers bounded by nM , which leads to Ô(2kn2) total time.
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Fig. 1. Tight example for Lemma 1 (black nodes are terminals): a Steiner
separator p, and the corresponding forests R1 and R2 with |R1| = k/3
and |R2| = 2k/3 terminals, respectively. Note that in R2 ∪ {s}, node s
separates two perfectly balanced forests R2a and R2b.

C. Our Improvement

In this paper, we exploite a variant of the classical tree-
separator theorem to reduce the time complexity of Björklund
et al.[1] algorithm. It is well known that any n-node tree
contains a node s (separator) whose removal divides the tree
in two forests, each one containing at most 2n/3 nodes. The
same basic result holds if we put weights on the nodes [10].
In particular, the following lemma holds (see Fig. 1[11] for
a tight example).

Lemma 1: [10]Consider any Steiner tree T on the set of
terminals R, |R| = k ≥ 3. Then there exists an internal node
p ∈ T (Steiner-separator), not necessarily a terminal, whose
removal divides the tree in two forests, each one containing
at most 2k/3 terminals.

As a consequence of Lemma 1, when applying Equation
(10), we do not really need to consider all the partitions in
P (p,R). It is sufficient to consider only the subset B(p,R) ⊂
P (p,R) of (“almost balanced”) partitions (R1, R2) where
|R1| ≤ |R2| ≤ 2k/3:

mst(R) = min
p∈V

min
(R1,R2)∈B(p,R)

{mst(R1∪{p})+mst(R2∪{p})}
(14)

Equation (14) shows that when we are counting the subset
of R, we can save some cases. It is clear that in the case of
Equation (10), the total number of subsets of R that needs
to be considered is

k∑
i=0

(
k

i

)
=

(
k

0

)
+ · · ·+

(
k

i

)
+ · · ·+

(
k

k

)
= 2k (15)

But as Equation (14) shows, the total number of subsets
of R that needs to be considered in this problem is

2/3k∑
i=0

(
k

i

)
=

(
k

0

)
+ · · ·+

(
k

i

)
+ · · ·+

(
k

2/3k

)
≤ 2k (16)

In R.L. Graham, D.E. Knuth, O. Patashnik’s book Con-
crete Mathematics[12], they give a asymptotic formula to
calculate partial sum of binomial coefficients.

λk∑
i=0

(
k

i

)
= 2kH(λ)−lg(k)/2+O(1) (17)

where 0 < λ < 1/2, H(λ) = λlg(1/λ)+(1−λ)lg(1/(1−λ))
is the binary entropy of λ and lg is the binary logarithm. Here

we have λ = 1
3 , which means

k/3∑
i=0

(
k

i

)
= 2kH(1/3)−lg(k)/2+O(1) (18)

where H(1/3) = 0.9183. If we put Equation (18) into
Equation (16), we get

2/3k∑
i=0

(
k

i

)
= 2k − 2kH(1/3)−lg(k)/2+O(1) = (2− ε)k (19)

where ε is a number that related to k. The second e-
quality is because that function f(x) = xk with x > 1
and k > 1 is a continuous monotonic function and that
2kH(1/3)−lg(k)/2+O(1)

2k
→ 0 as k → ∞. The following table

gives a insight into the relationship between k and 2− ε.

TABLE I
NUMERICAL RELATIONSHIP BETWEEN k AND 2− ε

k 5 10 15 20 25
ε 0.0814 0.0374 0.0081 0.0059 0.0044
2− ε 1.9186 1.9626 1.9919 1.9941 1.9956∑2/3k

i=0

(k
i

)
/
∑k

i=0

(k
i

)
0.8125 0.8281 0.9408 0.9423 0.9461

In Parallel with Equation (12), we can decompose Equa-
tion (14) into two parts and define

g′p(X) = min{W ({p} ∪D) +W ({p} ∪ (X\D)) :

0 ⊂ D ⊂ X, 1/3|X| ≤ |D| ≤ 2/3|X|} (20)

and at the same time, we can define partial subset convolu-
tion for all S ⊂ N by

(f ⊙ g)(S) =
∑
X⊂S

1/3|S|≤|X|≤2/3|S|

f(X)g(S\X)

=
∑
X⊂S

1/3|S|≤|X|≤2/3|S|

(−1)S\X(f̂ � ĝ)(|S|, X)

When we want to calculate (f̂ � ĝ)(|S|, S) and further
to calculate (f ⊙ g)(S), we first need to calculate all the
necessary ranked Möbius transform Equation (2) and stored
them as what the proof of Theorem 1 indicates. Björklund-
Husfeldt’s algorithm need to calculate ranked Möbius
transform Equation (2) for all S ⊂ N and i = 0, 1, . . . , n.
Lemma 1 and Equation (14) gives us two chance to reduce
the number of ranked Möbius transform Equation (2) that
need to be calculated and stored.

On one hand, we only need to calculate the subset S of
N with |S| ≤ 2/3|N |. On the other hand, we only need
to calculate Equation (2) for 0 < i < 2/3n. As we have
discussed above, we can compute all the necessary Equation
(2) in O(2/3n ∗ n ∗ (2− ε)n) = O(n2(2− ε)n).
Now we can apply the fast partial subset convolution over
the min-sum semiring to expedite the evaluation of the
recursion in (20). However, we cannot simply replace (20)
by fast subset convolution as each g′p(X) is defined in terms
of other values g′r(Z), for Z ⊂ X and r ∈ V , which need to
be precomputed. To this end, we carry out the computations
in a level-wise manner.

Algorithm based on Partial subset convolution
A1 : Initialization Calculate all-pairs shortest paths and
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stored as W (p, q) for ∀p ∈ V, ∀q ∈ V
A2 : For each level i = 2, 3 . . . , 2/3k

A21 : for ∀p ∈ V, ∀q ∈ V,X ⊂ R with |X| = i define
fp for all X ⊂ R by

fp(X) =

{
w({p} ∪X) if 1 ≤ |X| ≤ i− 1,
∞ otherwise. (21)

A22 : compute g′p(X) = (fp ⊙ fp)(X) using partial
subset convolution and stored;

A23 : compute W ({q} ∪ X) = min{W ({p, q}) +
g′p(X) : p ∈ V } and stored;
A3 : Construct a optimal Steiner tree by tracing backwards

a path of the above optimal calculated choices.
Theorem 3: The steiner tree problem with edge weights

in {1, 2, . . . ,M} can be solved in Õ((2− ε)kn2M + nm).
Proof: A1 takes Õ(n2 + nm) to compute all-pairs

shortest paths using Johnson’s algorithm[13]. A22 needs to
compute g′p(X) for all p ∈ V and X ⊂ R using n evaluations
of the partial subset convolution with integers bounded by
nM , which leads to Õ((2− ε)kn2M) total time. A23 needs
Õ(

(
k
i

)
)n2 to compute W ({q}∪X) for all X ⊂ R and q ∈ V

with |X| = i, and Õ((2 − ε)kn2) for all i = 2, . . . , 2/3k.
A3 can be solved in the same time bound.

IV. CONCLUSION

This paper presents a splitting technique based on a variant
of the classical tree-separator theorem to speed up the fast
subset convolution to minimum Steiner tree computation. It’s
interesting to note that if k is small relative to n (e.g., k =
ω(log(n)), which is a realistic situation), the factor n2 seems
to be more time-consuming than 2k, so we think that we may
pay more attention to reduce the factor corresponding to n
instead of k. The ε in our algorithm is related to k, which
makes the reduction in time-complexity seems not substantial
as k → ∞. But if we consider the (realistic) assumption that
k << n, this reduction is in fact quite attracting. However,
we still hope that we can get an fixed ε in our future work.
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