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Abstract—Model updating using measured system dynamic 

response has a wide range of applications in structural health 

monitoring, control and response prediction. In this paper, we 

are interested in model updating of a linear structural dynamic 

system with non-classical damping based on incomplete modal 

data including modal frequencies, damping ratios, and partial 

complex mode shapes of some of the dominant modes. To 

quantify the uncertainties and plausibility of the model 

parameters, a Bayesian approach is adopted. A new Gibbs-

sampling based algorithm is proposed that allows for an 

efficient update of the probability distribution of the model 

parameters. The effectiveness and efficiency of the proposed 

method are illustrated by a numerical example involving a 

linear structural dynamic system with complex modes. 

 
Index Terms—Bayesian model updating, linear, structural 

dynamic system, complex modes, Gibbs sampling  

 

I. INTRODUCTION 
he need of structural model updating is usually 
motivated by the desire to improve the accuracy of 

prediction of the system response and control, and structural 
health monitoring. In general, the system is assumed to be 
linear and classically damped, i.e., its equation of motion 
can be transformed into a set of decoupled modal equations 
using the real-valued eigenvectors and eigenvalues. Most 
vibration data of structures are obtained under low 
amplitude excitation, thus the assumption that the structures 
behave approximately linearly during such vibration is 
valid. However, in many real situations a linear system can 
be non-classically damped. Such is the case when a system 
is made up of materials with different damping 
characteristics in different parts of the system. For example, 
a soil-structure system, a system with supplemental viscous 
dampers, or a coupled structure-equipment (primary-
secondary) system is non-classically damped. Assuming a 
non-classically damped system to be classically damped 
might bring in errors in the updating process because of 
non-orthogonality of damping. 

The usual approach to update a linear structural dynamic 
system is to first identify its modal properties and then use 
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those to update the modeling parameters. There are several 
ambient or forced vibration based modal identification 
techniques available [1-7] that provide optimal estimates of 
the modal parameters. These techniques can be grouped into 
two types: probabilistic and deterministic. Probabilistic 
techniques, particularly the Bayesian approach, provide 
estimates of the optimal parameters along with their 
probability density function (PDF) that can be used to 
describe the complete picture of the uncertainty while the 
outcome of deterministic techniques is usually a unique set 
of parameters. Several researchers [8-10] have presented 
work on updating of the Finite element models, based on the 
experimental modal data. However, there are relatively few 
papers in structural model updating literature in which 
probabilistic model updating is considered [11-14]. Ching et 

al. [13] proposed a new Gibbs sampler based simulation 
approach for model updating of linear dynamic systems with 
classical damping. In this paper, a stochastic simulation 
algorithm based on Gibbs sampler is presented for Bayesian 
model updating of linear structural dynamic system based 
on incomplete complex modal data, corresponding to modal 
frequencies, damping ratios, and partial complex mode 
shapes of some of the dominant modes of a dynamical 
system with non-classical damping. The proposed method is 
robust to the dimension of the problem. Finally, to 
demonstrate the effectiveness and accuracy of the proposed 
method, a numerical example with complex modes is 
shown. 

II. BAYESIAN MODEL UPDATING  
Bayesian model updating approach provides a robust and 

rigorous framework to characterize modeling uncertainties. 
Given the data D and prior PDF ( )p θ of the uncertain 
system parameters, by applying Bayes’ theorem the 
posterior PDF can be written as 
 

( | ) ( )
( | )

( | ) ( )
.p D p

p D
p D p d





θ θ
θ

θ θ θ
 

(1) 

 
( | )p Dθ  is often not known explicitly and only known up 

to a normalizing constant. However, if samples distributed 
according to PDF ( | )p Dθ  are available, statistical 
estimates such as mean, variance, or PDF of θ can be 
estimated. Assuming that θ is divided into G groups of 
uncertain parameter vectors, i.e., [ : 1,.., ].i i G θ θ  The 
Gibbs Sampler [15] is one type of Markov chain Monte 
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Carlo (MCMC) algorithms that allow sampling from an 
arbitrary multivariate PDF if sample simulation according to 
the PDF of each group of uncertain parameters conditioned 
on all the others groups is possible. In Gibbs sampling 
algorithm, the full conditional PDFs * *

1: 1 1:( | , , )i i i i Gp D θ θ θ  
are required for 1,..,i G . Usually some initial portion of 
Markov chain samples are discarded before the stationary 
stage is reached. After the burn-in period the Markov chain 
samples obtained are distributed as the target PDF ( | )p Dθ . 
Statistical estimates such as the mean, variance, or PDFs can 
be estimated using the remaining samples.  

A set of Ns experimental modal data identified from the 
structure under consideration, is considered for the Bayesian 
model updating problem. The modal data are denoted by  
 

 , , ,
ˆ ˆˆ ˆ , , : 1... , 1... .

m s m s m s m s
D m N s N    

 
(2) 

 

Where , ,
ˆˆ ,  ,

m s m s
    and ,ˆ No

m s
   are the 

observed modal frequency, damping ratio, and complex 
mode shape vector of the m-th mode in the s-th modal data 
set. Here, Nm is the number of modes identified and No is the 
number of observed DOF (degree of freedom). 

III. LINEAR SYSTEM UPDATING MODEL FOR COMPLEX 
MODAL DATA 

In state-space, the equation of motion of a general Nd-
DOF time invariant system can be expressed by a first order 
differential equation as follows 
 

( ) ( ) ( )t t tX = AX + BU  .  (3) 

0(0) .X = X  (4) 
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where X(t) and U(t) denote the state and excitation vectors 
at time t, respectively, and X0 denotes the initial conditions. 
The system matrix A is a function of mass, damping, and 
stiffness matrices M, C, and K. Complex eigenvalues m  
and eigenvector ,m

 
for 1,2,..., ,mm N

 
can be obtained 

from the solution of the eigenvalues problem corresponding 
to the system matrix A as 
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2i 1 .m m m m m         (8) 
 

The eigenvalues and eigenvectors occur in complex 
conjugate pairs. Using (5)-(6)  and rearranging the terms 
gives the relationship between modal data and dynamic 
model parameters 
 

2 0.m m m m m      M C K  (9) 

 
Replacing system eigenvalues m  with observed 

eigenvalues ,
ˆ
m s  gives 

 
2

, , ,
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(10)  

 
where the system mode shape m  is related to the observed 
mode shape ,ˆ

m s  through a selection matrix Γ that picks the 
observed DOF from the system mode shape 
 

, ,ˆ .m s m m s    e
 

(11)  
 

In the above equation ,m sε  and ,m se  are the complex 
random vectors representing the model prediction errors, 
i.e., the errors between the response of the structure under 
consideration and that of the assumed model. The mass, 
damping and stiffness matrices in (10) are represented as a 
linear sum of contribution of the corresponding mass, 
damping, and stiffness matrices from the individual 
prescribed substructures 
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where [ , , ]α β η  are the contribution parameters  to be 
updated ( [ , , ] [1,..,1]α β η  gives the nominal matrices). 
Damping matrix can also be represented in terms of mass 
and stiffness matrix (as in the case of classical damping), 
and contribution from other damping sources (as in the case 
of viscous damping). Other parameters which are unknown 
in (10)-(11) and need to be updated are the system mode 
shapes m and the parameters defining the probabilistic 
models of the model prediction errors. Separating the real 
and imaginary parts, (10)-(11) are transformed to 
 

2
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(18) 
 

Based on the Principle of Maximum Entropy [16], the 
PDFs for vectors , , , ,Re( ), Im( ),Re( ), Im( )m s m s m s m sε ε e e  are 
zero-mean Gaussian PDF and their covariance matrices are 
assumed to be equal to scaled versions of the identity matrix 
I of appropriate order 
 

2
, Re,Re( ) (0, ).m s mN ε I
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 2
, Im,Im( ) (0, ).m s mN ε I

 

(20)
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(21)

 2
, Im,Im( ) (0, ).m s mN e I

 

(22) 
 
The variance parameters 2 2

Re, Im, and m m 
 
are assumed to be 

known or are directly estimated from the sample variance of 
the experimental modal data 
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where m is the averaged mode shape for m-th mode. The 
variance parameters 2 2

Re, Im,,m m   are left for updating. In 
total, the parameters to be updated are the contribution 
parameters [ , , ]α β η , mode shapes

1 1[Re( ), Im( ),...,Re( ), Im( )],Nm Nm     and prediction 
error variance 2 2 2 2

Re,1 Im,1 Re, Im,[ , ,.., , ]Nm Nm    .  

IV. PRIOR PDFS 
To define the Gibbs Sampler algorithm, three groups of 

parameters are considered 
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It will be more convenient to choose Bayesian conjugate 
priors which will allow exact sampling from the full 
conditional PDFs 1 2 3

ˆ( | , , ),p Dθ θ θ 2 1 3
ˆ( | , , ),p Dθ θ θ  and

3 1 2
ˆ( | , , )p Dθ θ θ . Thus, the initial PDF for the system 

parameters θ1 is taken to be the product of independent 
Gaussian PDFs, (0) (0)

1 1( , )N Pθ θ  with mean θ1
(0) and 

diagonal covariance matrix P
(0)

 to express the initial 
uncertainties. Similarly, the initial PDF for the system mode 
shapes θ2 is taken to be the product of either independent 
Gaussian PDFs in case any prior information is available, or 
independent uniform PDFs in case of no prior information 
(as for the case with unknown components of the mode 
shapes). The initial PDF for prediction error variances θ3 is 
taken to be the product of independent inverse gamma 
PDFs, IG(ρ0,κ0).  

V. CONDITIONAL PDFS 
Equation (15)-(16) are linear with respect to θ1, i.e., they 

can be written in the following form 
 

1 .Y - Aθ Ε  (25) 

 

 
Then, the full conditional PDF 1 2 3

ˆ( | , , )p Dθ θ θ  is Gaussian 
whose first two moments are given by 
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Similarly, the PDF 2 1 3

ˆ( | , , )p Dθ θ θ  is also a Gaussian 
and its first two moments can be obtained in a similar 
manner. 3 1 2

ˆ( | , , )p Dθ θ θ  is an inverse gamma given by  
 

3 1 2 0 0
1
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(28) 

VI. GIBBS SAMPLING ALGORITHM 
1) Initialize samples, drawn from prior or choose nominal 

values and let k=1. 
2) Sample contribution  parameters ( )

1
k

θ  from 
( ) ( 1) ( 1)
1 2 3

ˆ( | , , ).k k k
p D

 
θ θ θ  

3) Sample mode shape ( )
2
k

θ  from ( ) ( ) ( 1)
2 1 3

ˆ( | , , ).k k k
p D


θ θ θ  

4) Sample prediction error variance ( )
3
k

θ  from 
( ) ( ) ( )
3 1 2

ˆ( | , , ).k k k
p Dθ θ θ  

5) Let k=k+1 and go to step 2, until N samples are 
obtained. 

 
It can be seen that the proposed approach is a 

generalization of what was proposed by Ching et al. [13] 
with steps 1 to 5 being the same and A, E, Y, θ1, θ2 and θ3 
being different. For a classically damped system, (9) reduces 
to 2( 0r r  K M) and the dimension of the problem 
reduces by half as all the imaginary components are equal to 
zero.  

VII. ILLUSTRATIVE EXAMPLE 
The system selected for the illustrative example is a 4-

DOF mechanical system considered in [6] as shown in Fig. 
1, and has the following properties: m1=m2=m3=m4=1 kg, 
k1=k3=k5=7000 N/m, k2=k4=8000 N/m, c1=c3=c5=0.7 N s/m, 
c2=c4=0.8 N s/m. The modal data for the model updating 
problem using Gibbs sampler for this system consists of 10 
sets of modal data (Ns=10) with the first two modal 
frequencies, modal damping ratios, and partial complex 
mode shapes (corresponding to DOFs 1, 2, and 4, i.e., No=3) 
for each data set (Nm=2). Variability in modal data is 
introduced by perturbing the masses by 5%, and stiffnesses 
and dampings by 10%. 

For Bayesian identification purpose, a dynamic model 
structure based on same 4-DOF mechanical system is 
considered and the uncertain parameters to be updated for 
this model class are contribution parameters 1 2 3 4[ , , , ] , 

1 2 3 4 5[ , , , , ] , 1 2 3 4 5[ , , , , ] , prediction error 

variances 2 2 2 2
Re,1 Im,1 Re,2 Im,2[ , , , ] , and complete complex 

mode shapes 1 2[ , ] . Masses are assumed to be known 
with sufficient accuracy and thus the initial PDFs for 
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1 2 3 4[ , , , ]  are chosen with mean values equal to 1 and 
coefficient of variation (c.o.v., i.e., the ratio of standard 
deviation to mean) for each equal to 1%; and prior mean 
values for 1 2 3 4 5[ , , , , ]  and 1 2 3 4 5[ , , , , ]  are 
assumed equal to 1, with prior c.o.v. for each equal to 20%. 
Flat independent priors are taken for 1 2[ , ] . Independent 
inverse gamma prior PDFs with 0 02, 0    are taken for 

2 2 2 2
Re,1 Im,1 Re,2 Im,2[ , , , ]  (Jeffreys’ non-informative prior). 

The total number of parameters to be updated is 34 (14 for 
the contribution parameters, 16 for the two mode shapes, 
and 4 prediction error variances). 
 
 

 
 

Fig. 1.  The 4-DOF mechanical system 
 

 
Using the proposed Gibbs sampling based algorithm, 

N=5,000 samples of contribution parameters, mode shapes 
and prediction errors variances are obtained. The burn-in 
period is less than 100 samples. Table I shows the statistical 
properties of the contribution parameters samples. It shows 
the   estimated   posterior   mean   values  1θ    (column 2),  

 

 
(a) 

 
(b) 

 
(c) 

TABLE I 
BAYESIAN IDENTIFICATION RESULTS 

Parameter Mean 1θ  Standard 
Deviation 

c.o.v. (%) 1 1| |



θ θ
 

m1 0.974 0.016 1.670 1.621 

m2 0.982 0.031 3.150 0.600 

m3 0.993 0.016 1.600 0.468 

m4 1.009 0.039 3.880 0.226 

c1 0.960 0.015 1.570 2.673 

c2 0.959 0.020 2.050 2.101 

c3 0.996 0.052 5.240 0.082 

c4 0.992 0.020 2.050 0.385 

c5 1.031 0.064 6.200 0.490 

k1 1.013 0.021 2.060 0.641 

k2 0.995 0.009 0.940 0.545 

k3 0.995 0.010 0.990 0.561 

k4 0.997 0.009 0.950 0.287 

k5 0.997 0.010 0.990 0.290 

m1 

m2 

m3 

m4 
 

c1 k1 

c2 k2 

c3 k3 

c4 k4 

c5 k5 
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(d) 

Fig. 2.  Posterior mean and c.o.v. estimates for stiffness (a, b), and damping 
(c, d) contribution parameters as functions of the number of Gibbs samples, 
stabilizing after about 2000 samples. 
 
posterior standard deviation (column 3), the posterior c.o.v. 
(column 4), and the normalized distance (column 5). The 
normalized distance represents the absolute value of 
difference between the estimated mean value and the true 
mean value 1θ  of structural parameters, normalized with 
respect to the estimated standard deviation.  It can be seen 
that the estimated posterior mean parameters are close to the 
true mean values of the system and their c.o.v. is much 
smaller than that what was initially assumed. Table II shows 
the identified missing mode shape components 
(corresponding to DOF-3). Again the Bayesian 
identification results are quite close to the true mean values. 
 

Table II  
IDENTIFIED MODE SHAPE COMPONENT, DOF-3 

Mode True mean 
(abs, angle) 

Posterior mean 
(abs, angle) 

1 1.529 0.004 1.528 0.003 

2 0.654 3.134 0.635 3.136 

 
The simulation results stabilized at around 2000 samples, 

as shown in Fig. 2 where the posterior mean and c.o.v. 
estimates of the stiffness and damping contribution 
parameters are reported as functions of the number of Gibbs 
samples. 

VIII. CONCLUSION 
A new Gibbs sampling based approach for model 

updating of a linear structural dynamic system with non-
classical damping based on incomplete modal data including 
modal frequencies, damping ratios and partial complex 
mode shapes of some of the dominant modes is proposed. 
The results from the example demonstrate that all the 
updated parameters are reasonable when compared with the 
true mean values, indicating the effectiveness of the 
procedure. The proposed method also allows the uncertainty 

of the parameters to be updated efficiently even if there are a 
large number of uncertain parameters. Like most problems 
in identification, the quality of the updated results can only 
be as good as the quality of the data available. 
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