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Numerical Method for Solving Wave Equation
with Non Local Boundary Conditions

A. Cheniguel

Abstract— The hyperbolic partial differential equations with
nonlocal boundary conditions arise in many branches of
science and engineering. In this paper a numerical new
technique (ADM) is presented and used for solving wave
equation with nonlocal boundary conditions. Numerical
experiments show that the series form of approximate solution
converges rapidly, and the obtained results are in very good
agreement with the exact ones.

Index Terms—Adomian decomposition method, wave
equation, non local problem, numerical solutions for partial
differential equations.

I. INTRODUCTION

N this paper, we deal with non classical initial boundary

value problems that is, the solution of hyperbolic

differential equations with non local boundary
specifications. These non local conditions arise mainly
when the data on the boundary cannot be measured directly.
Many physical phenomena are modeled by hyperbolic initial
boundary value problems with non local boundary
conditions. Hyperbolic equationswith non local integral
conditions are widely used in chemistry, plasma physics,
thermoelasticity, engineering and so forth. The solutions of
hyperbolic and parabolic equations with integral conditions
were studied by several authors [1-10]. Numerical solution
of hyperbolic partial differential equations with integral
conditions are still a major research area with widespread
applications in engineering, physics and technology.
We consider the following one-dimensional wave equation:
%u  9%u

o =dk)0<x<1,0<t<T @)

Subject to the initial condition:

ulx,0)=rx),0<x<1 )
u(x,0) = s(x) (©)
And the non local boundary conditions

u(,t) =p), 0<t<T (4)
fol u(e,t)dx=q @), 0<t<T ()
Where r, s, p and g are known functions, we suppose that f

is sufficiently smooth to produce a smooth classical
solution.
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Il. ADOMIAN DECOMPOSITION METHOD

A. Operator for:

The Adomian decomposition method has been applied [11-
14] for solving a large classe of linear and non linear
ordinary and partial differential equations with approximate
solutions which converges rapidly to accurate solutions. In
recent years, many papers were devoted to the problem of
approximate of one-dimensional wave equation with non
local boundary conditions. The motivation of this work is to
apply the decomposition method for solving the one-
dimensional wave equation with an integral boundary
condition. It is well known in the literature that this
algorithm provides solution in rapidly convergent series.
The implementation of theAdomian method has shown
reliable results in that few terms only are needed to obtain
accurate solutions.

Consider equations (1)-(5) written in the form

L (u) = Ly (W) + q(x, 1) (6)

Where the differential operators are givenas :
92 92
Ltt(-) = (andLy, =

a2 ax2
The inverse operator Litis therefore considered a two-fold
integral operator defined by :

- t ct
Lttl = f() fo () dtdt
Operating with Lz} on equation (6), it then follows that:

L (Ltt(u)) =Lt (Lxx(u)) + L (q (x, t)) )
And specified initial conditions yield:

u(x, t) =r(x) +ts(x) + Lt (Lxx(u(x, t))) +

Lt (qCx, 1)) )

B. Application to the solution of the problem

The decomposition method assumes an infinite series
solution for unknown function u(x, t) given by:

u(x, t) = Yizo Uk (9
Where the components v, (k =0,1,2,3,...) are determined
recursively by using the relation:
ug =71(x) +ts(x) + Lt (q(x, t)
And

Ups1 = L;tl(Lxx(uk))vk =0 (11)
If the series converges in a suitable way then, the general
solution is obtained as:

u(x, t) = lim, 0 Do Ug (X, t)

(10)
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Ill. EXAMPLES

A. Example 1
We consider the following wave equation:

?u  9%u
57 2= 00<x<1,0<t<0.5_(12)

With the initial conditions:

u(x,0) =0, 0<x<1
u(x,0) = mwcos(mx), 0 <x < 1(13)
And the boundary conditions:
u(0,t) = p(t) = sin (nt)

Jy uCx, )dt = q(t) = 0 (14)

Substituting in equations (10) and (11) we obtain the

following:
uy = t(mcos(mx)) (15)

Upsr = L (L (), k 2 0 (16)

We can then, proceed to compute the first few terms of the

series:
ug = t(cos(mx)) (17)

u; = meos (x) [ dt [, tdt = cos(mx) (—° t3—3|)

Uy = Lt (Lex(wy)) = cos (mx) fot dt fotns (;—3') dt =

cos (mx) (m> ;—i)

uz = L (Lyx (uy)) = cos (mx) fot dt fot(—n7
cos (mx)(—m’ i)

u, = L (Lxx(u3)) = cos(nx)f dt ft ot —dt =

cos(mx) (;)

And so on:
u(x ) =ug+u Futus Fuy 4+ +
Hence:
_ @)® (@S (@) | (t)°
u(x, t) = COS(TZ'X) (ﬂt - T T - T + T
Or

u(x, t) = cos(mx) sin (mt)

(18)

5
;)dt =

(19)

(20)

__+...)

1)

The result shows that the method provides an excellent

approximation.

B. Example 2

Consider the wave equation :
Pu_ 1% _ g 0<x<1,t>0
Jt2 4 9x2
With the initial conditions:
ulx,0)=x0<x<1
u(x,0)=e*, 0<x<1
And the boundary conditions:

u,(0,t) = 2sinh (g), t>0

uy(1,6) = 2¢* X (sinh () + 1), £ > 0 (24)
Writing equation (22) in an operator form yields:
Ltt(u(x, t)) - iLxx(u(x, t)) =0

(22)

(23)

(29)

Operating with the inverse operator Lz on both sides of

equation (25) and imposing the corresponding initial
conditions we obtain:

u(x, t) = ulx,0) + tu.(x,0) + Lz (Lxx(u(x t)))
Starting with:

uy = ulx,0) + tu.(x,0) = x + te*
And using:

@n
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(26)

uk+1:L;t1(Lxx(uk))’k = 0 (28)
We can obtain:
t\3
uy = Lt (L (ug)) = 2 x & [ det [{dt=2e* 2 (29)
¢ s'
UL ) = 267 [t [l Lt = 20 L (30)
Uz = L (Lyx (up) = 2€* fo dt fo (55_)!dt x%@l)
By continuing the iteration, we find that:
(%)2k+1
— X

Ue = 2€7 o (32)
Which implies that :
u(x,t) = x + 2e* Yo ur(x, t)=x + 2e*sinh (g) (33)
Which converges to the exact solution.

C. Example 3
Now we consider, the following problem:
a2u 82
a—t’j—a—;;=0,0<x<1,o<tso.5 (34)
Subject to the initial conditions:
u(x,0) = cos(mx), 0 <x <1 (35)
u(x,00=00<x<1 (36)
And the boundary conditions:
1, (0,£) =0 (37)
fol u(x,t)dx =0 (38)

Which is easily seen to have the exact solutionu(x,t) =
cos(mx) cos(mt). Rewriting equation (34) in an operator
form:

Lee(u(x,£)) = Ly (u(x.))

We operate with the inverse operator Ly
On both sides of equation (39), we get the following
equations:

(39)

L (Ltt(u(x t)) = L (Lxx(u(x 1)) (40)
Lit(u(x,0) = f dt Wdt

= u(x t) —u(x, 0) — tu.(x,0)
Then :
u(x, t) —u(x, 0) — tuy(x,0) = L (Lux (u(x, 1)) (42)
or:
u(x,t) = ulx,0) + tu,(x,0) + Lt (Lyx (u(x, 1)) (42)

From the above equations we can get the different terms of
the approximate series solution as:

uy = u(x,0) + tu.(x,0) = cos (7x)

Uy = Lt (L (wo)) = —m2cosmx fot dt fot dt =
(nt) ))

(43)

cos(mx) (—

u, = Lt (Lxx(ul)) = COSTTX fot dt f;%dt =

(44)

4
cosrrx(% (45

) (t)2k
Wy = Lt (Lax (ue—1)) = cosmx x (=1)¥ ?Zk)!

Hence, the approximate series solution is given by:
u(‘xlt) = Uy +u1 +u2 ++uk + .-

(46)

Or:

u(x, t) = cosmx(1 —

k(TEt) .
D Gor )

Which converges to the exact solution:

(m)? | (@)t
2! 4!

(7Tt)6

+oet

(47)
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u(x, t) = cosmx X cosmt (48)

IV. CONCLUSION

In this work we have applied the Adomian decomposition
method for the solution of the wave equation with non local
boundary conditions. This algorithm is simple and easy to
implement. The obtained results confirmed a good accuracy
of the method.On the other hand, thecalculations are simpler
and faster than in traditional techniques.

Table 1
Example 1 Absolute Error
X Uey uug  5-lterates [Uex — Uaql

0.0 1.2566*1072 1.2566*107% 0.0

0.1 1.1951x 1072 1.1951 x 1072 0.0
0.2 1.0166 x 1072 1.0166 x 1072 0.0
0.3 7.3851x 1073 7.3851x 1073 0.0
0.4 3.8831x10~® 3.8831x 1073 0.0
05 0.0 0.0 0.0
0.6 —3.8831 x 1073 —3.8831 x 1073 0.0
0.7 —7.3851 x 1073 — 7.3851 x 1073 0.0
0.8 —1.0166 x 1072 — 1.0166 x 1072 0.0
0.9 —1.1951 x 1072 — 1.1951 x 1072 0.0
1.0 —1.2566 x 1072 — 1.2566 x 1072 0.0

Variation of the approximate solution for
dif ferentvaluesofxand
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Example 2
Xi  Uex

0.0 0.004

0.1 0.10442
0.2 0.20489
0.3 0.30540
0.4 0.40592
0.5 0.50659
0.6 0.60729
0.7 0.70806
0.8 0.8089
0.9 0.90984

1.0 0.0109

cos(mx) sin (7t)
Variation of the approximate solution for dif ferent values

Uga

0.004

0.10442

0.20489

0.30540

0.40592

0.50659

0.60729

0.70806

0.8089

0.90984

0.0109

Table 2

Absolute Error

5 — Iterates

of xandt

[Uex — Uaal
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
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