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Abstract—In this paper, we prove a strong convergence theo-
rem for fixed points of sequence for multivalued nonexpansive
mappings and a zero of maximal monotone operator in Banach
spaces by using the hybrid projection method. Our results
modify and improve the recent results in the literatures.
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I. INTRODUCTION

THROUGHOUT this paper, we let C be a nonempty
closed convex subset of a real Banach space E. A

mapping t : C → C is said to be nonexpansive if
∥tx−ty∥ ≤ ∥x−y∥ for all x, y ∈ C. We denote by F (t) the
set of fixed points of t, that is F (t) = {x ∈ C : x = tx}. A
mapping t is said to be an asymptotic fixed point of t (see
[11]) if C contains a sequence {xn} which converges weakly
to p such that limn→∞ ∥xn−txn∥ = 0. The set of asymptotic
fixed points of t will be denoted by F̂ (t). A mapping t
from C into itself is said to be relatively nonexpansive [9],
[12], [16] if F̂ (t) = F (t) and ϕ(p, tx) ≤ ϕ(p, x) for all
x ∈ C and p ∈ F (t). The asymptotic behavior of a relatively
nonexpansive mapping was studied in [2], [3].

Let N(C) and CB(C) denote the family of nonempty
subsets and nonempty closed bounded subsets of C, respec-
tively. Let H : CB(C) × CB(C) → R+ be the Hausdorff
distance on CB(C), that is

H(A < B) = max{sup
a∈A

dist(a,A), sup
b∈B

dist(b,B)},

for every A,B ∈ CB(C), where dist(a,B) = inf{∥a− b∥ :
b ∈ B} is the distance from the point a to the subset B of
C.

A multi-valued mapping T : E → CB(C) is said to be
nonexpansive if

H(Tx, Ty) ≤ ∥x− y∥,

for all x, y ∈ C. An element p ∈ C is called a fixed point
of T : C → CB(C), if p ∈ Tp. The set of fixed point T is
denoted by F (T ).
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A point p ∈ C is said to be an asymptotic fixed point of
T : C → CB(C), if there exists a sequence {xn} ⊂ C such
that xn ⇀ x ∈ E and d(xnTxn) → 0. Denote the set of
all asymptotic fixed points of T by F̂ (T ). T is said to be
relatively nonexpansive, if F (T ) ̸= ∅, F̂ (T ) = F (T ) and
ϕ(p, z) ≤ ϕ(p, x), ∀x ∈ C, p ∈ F (T ), z ∈ Tz. A mapping
T is said to be closed, if for any sequence {xn} ⊂ C with
xn → x ∈ C and d(y, Txn) → 0 then d(y, Tx) → 0. T is
said to be quasi-ϕ-nonexpansive if F (T ) ̸= ∅ and ϕ(p, zn) ≤
ϕ(p, x), ∀x ∈ C, p ∈ F (T ), z ∈ Tn(x). T is said to be quasi-
ϕ-asymptotically nonexpansive if F (T ) ̸= ∅ and there exists
a real sequence kn ⊂ [1,+∞), kn → 1 such that

ϕ(x, zn) ≤ knϕ(p, x), ∀x ∈ C, p ∈ F (T ), zn ∈ Tnx. (1)

A mapping T is said to be total quasi-ϕ-asymptotically
nonexpansive if F (T ) ̸= ∅ and there exist nonnegative real
sequences {νn} and {µn} with νn, µn → 0 as n → ∞ and
a strictly increasing continuous function ζ : R+ → R+ with
ζ(0) = 0 such that

ϕ(x, zn) ≤ knϕ(p, x) + νnζ[ϕ(p, x)] + µn, ∀x ∈ C,

p ∈ F (T ), zn ∈ Tnx. (2)

A mapping T is said to be uniformly L-Lipschitz continuous,
if there exists a constant L > 0 such that ∥xn − yn∥ ≤
L∥x− y∥, where x, y ∈ C, xn ∈ Tnx, yn ∈ Tny.

Let E be a real Banach space with dual E∗. Denote by
⟨·, ·⟩ the duality product. The normalized duality mapping J
from E to 2E

∗
is defined by Jx = {f ∈ E∗ : ⟨x, f⟩ =

∥x∥2 = ∥f∥2}, for all x ∈ E. The function ϕ : E ×E → R
is defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, for all x, y ∈ E.
(3)

A mapping T is said to be hemi-relatively nonexpansive
(see [12]) if F (T ) ̸= ∅ and

ϕ(p, Tx) ≤ ϕ(p, x), for all x ∈ C and p ∈ F (T ).

A point p in C is said to be an asymptotic fixed point of T
[2] if C contains a sequence {xn} which converges weakly
to p such that the strong limn→∞(xn − Txn) = 0. The set
of asymptotic fixed points of T will be denoted by F̂ (T ). A
hemi-relatively nonexpansive mapping T from C into itself
is called relatively nonexpansive if F̂ (T ) = F (T ), see [8],
[10], [14]) for more details.
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Matsushita and Takahashi [8] introduced the iteration in a
Banach space E:

x0 = x ∈ C, chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTxn),
Cn = {z ∈ C : ϕ(z, yn) ≤ ϕ(z, xn)},
Qn = {z ∈ C : ⟨xn − z, Jx− Jxn⟩ ≥ 0},
xn+1 = ΠCn∩Qnx, n = 0, 1, 2, . . . ,

(4)

and proved that the sequence {xn} converges strongly to
ΠF (T )x.

Qin and Su [10] showed that the sequence {xn}, which
is generated by a relatively nonexpansive mappings T in a
Banach space E, as following

x0 ∈ C, chosen arbitrarily,
yn = J−1(αnJxn + (1− αn)JTzn),
zn = J−1(βnJxn + (1− βn)JTxn),
Cn = {v ∈ C : ϕ(v, yn) ≤ αnϕ(v, xn)+

(1− αn)ϕ(v, zn)},
Qn = {v ∈ C : ⟨Jx0 − Jxn, xn − v⟩ ≥ 0},
xn+1 = ΠCn∩Qnx0,

(5)

converges strongly to ΠF (T )x0.
Moreover, they also showed that the the sequence {xn},
which is generated by

x0 ∈ C, chosen arbitrarily,
yn = J−1(αnJx0 + (1− αn)JTxn),
Cn = {v ∈ C : ϕ(v, yn) ≤ αnϕ(v, x0) + (1− αn)ϕ(v, xn),
Qn = {v ∈ C : ⟨Jx0 − Jxn, xn − v⟩ ≥ 0},
xn+1 = ΠCn∩Qnx0,

(6)
converges strongly to ΠF (T )x0.

In 2012, Chang et al. [4] modified the Halpern-type
iteration algorithm for total quasi-ϕ-asymptotically nonex-
pansive mapping to have the strong convergence under a
limit condition in Banach space. Recently, Tang and Chang
[15] introduce the concept of total quasi-ϕ-asymptotically
nonexpansive multi-value mapping in Banach space, let {xn}
be a sequence generated by

x0 ∈ C, is arbitrary,
C0 = C,
yn = J−1(αnJxn + (1− αn)JTzn),
zn = J−1(βnJxn + (1− βn)JTwn),
Cn+1 = {v ∈ Cn : ϕ(v, yn) ≤ ϕ(v, xn) + ξn},
xn+1 = ΠCn+1x0,

(7)

∀n ≥ 0, where wn ∈ Tnxn, ξn = νn supp∈F ζ(ϕ(p, xn)) +
µn and showed that the sequence {xn} converges strongly
to ΠFx0.

In this paper, motivated by Tang and Chang [15], we prove
strong convergence theorems for fixed points of sequence for
multicalued nonexpansive mapping and a zero of maximal
monotone operator in Banach space by using the hybrid
projection methods. Our results extend and improve the
recent results by Tang and Chang [15] and many others.

II. PRELIMINARIES

In this section, we will recall some basic concepts and
useful well known results.

A Banach space E is said to be strictly convex if∥∥∥∥x+ y

2

∥∥∥∥ < 1, (8)

for all x, y ∈ E with ∥x∥ = ∥y∥ = 1 and x ̸= y. It is said to
be uniformly convex if for any two sequences {xn} and {yn}
in E such that ∥xn∥ = ∥yn∥ = 1 and

lim
n→∞

∥xn + yn∥ = 2, (9)

limn→∞ ∥xn − yn∥ = 0 holds.
Let U = {x ∈ E : ∥x∥ = 1} be the unit sphere of E.

Then the Banach space E is said to be smooth if

lim
t→0

∥x+ ty∥ − ∥x∥
t

, (10)

exists for each x, y ∈ U. It is said to be uniformly smooth if
the limit is attained uniformly for x, y ∈ E. In this case, the
norm of E is said to be Gâteaux differentiable. The space E
is said to have uniformly Gâteaux differentiable if for each
y ∈ U , the limit (10) is attained uniformly for y ∈ U . The
norm of E is said to be uniformly Fréchet differentiable (and
E is said to be uniformly smooth) if the limit (10) is attained
uniformly for x, y ∈ U . .

In our work, the concept duality mapping is very impor-
tant. Here, we list some known facts, related to the duality
mapping J , as following:
(a) E (E∗, resp) is uniformly convex if and only if E∗ (E,

resp.) is uniformly smooth.
(b) J(x) ̸= ∅ for each x ∈ E.
(c) If E is reflexive, then J is a mapping of E onto E∗.
(d) If E is strictly convex, then J(x) ∩ J(y) ̸= ∅ for all

x ̸= y.
(e) If E is smooth, then J is single valued.
(f) If E has a Fréchet differentiable norm, then J is norm

to norm continuous.
(g) If E is uniformly smooth, then J is uniformly norm to

norm continuous on each bounded subset of E.
(h) If E is a Hilbert space, then J is the identity operator.
For more information, the readers may consult [5], [13].

If C is a nonempty closed convex subset of real a Hilbert
space H and PC : H → C is the metric projection, then
PC is nonexpansive. Alber [1] has recently introduced a
generalized projection operator ΠC in a Banach space E
which is an analogue representation of the metric projection
in Hilbert spaces.

The generalized projection ΠC : E → C is a map that
assigns to an arbitrary point x ∈ E the minimum point of
the functional ϕ(y, x), that is, ΠCx = x∗, where x∗ is the
solution to the minimization problem

ϕ(x∗, x) = min
y∈C

ϕ(y, x).

Notice that the existence and uniqueness of the operator ΠC

is followed from the properties of the functional ϕ(y, x) and
strict monotonicity of the mapping J , and moreover, in the
Hilbert spaces setting we have ΠC = PC . It is obvious from
the definition of the function ϕ that

(∥ y∥− ∥x∥)2 ≤ ϕ(y, x) ≤ (∥y∥+ ∥x∥)2, for all x, y ∈ E.
(11)

Remark II.1. If E is a strictly convex and a smooth Banach
space, then for all x, y ∈ E, ϕ(y, x) = 0 if and only if x = y,
see Matsushita and Takahashi [8].

To obtain our results, following lemmas is very important.
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Lemma II.2. (Kamimura and Takahashi [6]). Let E be a
uniformly convex and smooth real Banach space and let
{xn}, {yn} be two sequences of E. If ϕ(xn, yn) → 0 and
either {xn} or {yn} is bounded, then ∥xn − yn∥ → 0.

Lemma II.3. (Kamimura and Takahashi [6]). Let E be a
uniformly convex and smooth Banach space and let r > 0.
Then there exists a continuous, strictly increasing and convex
function g : [0, 2r] → [0,∞) such that g(0) = 0 and

g(∥x− y∥) ≤ ϕ(x, y),

for all x, y ∈ Br = {z ∈ E : ∥z∥ ≤ r}.

Let E be a strictly convex, smooth and reflexive Banach
space, let J be the duality mapping from E into E∗. Then
J−1 is also single-valued, one-to-one, and surjective, and it
is the duality mapping from E∗ into E. Define a function
V : E × E∗ → R as follows (see [7]):

V (x, x∗) = ∥x∥2 − 2⟨x, x∗⟩+ ∥x∗∥2 (12)

for all x ∈ Ex ∈ E and x∗ ∈ E∗. Then, it is obvious that
V (x, x∗) = ϕ(x, J−1(x∗)) and V (x, J(y)) = ϕ(x, y).

Lemma II.4. (Kohsaka and Takahashi [7]). Let E ba a
strictly convex, smooth and reflexive Banach space, and let
V be as in (12). Then

V (x, x∗) + 2⟨J−1(x∗ − x), y∗⟩ ≤ V (x, x∗ + y∗) (13)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma II.5. (Alber [1]). Let E be a reflexive, strict convex
and smooth real Banach space, let C be a nonempty closed
convex subset of E and let x ∈ E. Then

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x), ∀y ∈ C. (14)

A set-value mapping A : E → E∗ with domain D(A) =
{x ∈ E : A(x)} ̸= ∅ and range R(A) = {x∗ ∈ E∗ : x∗ ∈
A(x), x ∈ D(A)} is said to be monotone if ⟨x − y, x∗ −
y∗⟩ ≥ 0 for all x∗ ∈ A(x), y∗ ∈ A(y). We denote the set
{s ∈ E : 0 ∈ Ax} by A−10. A is maximal monotone if its
graph G(A) is not properly contained in the graph of any
other monotone operator. If A is maximal monotone, then
the solution set A−1 is closed and convex.

Let E be a reflexive, strictly convex and smooth Banach
space, it is known that A is a maximal monotone if and only
if R(J + rA) = E∗ for all r > 0.

Define the resolvent of A by Jrx = xr. In other words,
Jr = (J + rA)−1J for all r > 0. Jr is a single-valued
mapping from E to D(A). Also, A−1(0) = F (Jr) for all
r > 0, where F (Jr) is the set os all fixed points of Jr.
Define, for r > 0, the Yosida approximation of A by Ar =
(J − JJr)/r. We know that Arx ∈ A(Jrx) for all R > 0
and x ∈ E.

Lemma II.6. (Kohsaka and Takahashi [7]). Let E ba a
strictly convex, smooth and reflexive Banach space, let A ⊂
E×E∗ be a maximal monotone operator with A−1 ̸= ∅, let
r > 0 and let Jr = (J + rT )−1J . Then

ϕ(x, Jry) + ϕ(Jry, y) ≤ ϕ(x, y) (15)

for all x ∈ A−1(0) and y ∈ E.

III. MAIN RESULT

Theorem III.1. Let E be a real uniformly smooth and
uniformly convex Banach space with Kadec-Klee property
and let C be a nonempty closed convex subset of E. Let T :
C → CB(C) be a closed and total quasi-ϕ-asymptotically
nonexpansive multivalued mapping with nonnegative real
sequence {νn}, {µn} and a strictly increasing continuous
function ζ : R+ → R+ such that µ1 = 0, νn → 0, µn → 0
as n → ∞ and ζ(0) = 0, let t : C → C be a relatively non-
expansive mapping, let A : E → E∗ be a maximal monotone
operator satisfying D(A) ⊂ C. Let Jr = (J + rA)−1J for
r > 0 such that F := A−1(0) ∩ F (T ) ∩ F (t) and let a
sequence {xn} in C by the following algorithm:

x0 ∈ C, chosen arbitrarity and C0 = C,
wn = J−1(βnJxn + (1− βn)J(Jrnzn)), zn ∈ Tnxn,
yn = J−1(αnJxn + (1− αn)Jtwn),
Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ αnϕ(z, xn)

+(1− αn)phi(z, wn) ≤ ϕ(z, xn) + ξn},
xn+1 = ΠCn+1x0,

(16)
for n ∈ N ∪ {0}, where J is the single-valued duality
mapping on E and ξn = νn supu∗∈F ζ(ϕ(u∗, xn)) + µn.
The coefficient sequence {αn}, {βn} ⊂ [0, 1] satisfying
(i) 0 < β1 ≤ βn ≤ β2 < 1,

(ii) 0 ≤ αn ≤ α < 1,
(iii) lim infn→∞ rn > 0.

Then {xn} converges strongly to ΠFx0, where ΠF is the
generalized projection from C onto F .

Proof . We first show that Cn+1 is closed and convex for
each n ≥ 0. Obviously, from the definition of Cn+1, we see
that Cn+1 is closed for each n ≥ 0. Now we show that Cn+1

is convex for any n ≥ 0. Since

ϕ(z, yn) ≤ ϕ(z, xn) + ξn ⇐⇒ 2⟨v, Jxn − Jyn⟩+ ∥yn∥2

−∥xn∥2 − ξn ≤ 0, (17)

this implies that Cn+1 is a convex set.
Next, we show that {xn} is bounded and {ϕ(xn, x0)} is

convergent sequence. Put un = Jrnzn, ∀n ≥ 0, let p ∈ F :=
A−1(0) ∩ F (T ) ∩ F (t). By (16), we obtain

ϕ(p, yn) = ϕ(p, J−1(αnJxn + (1− αn)Jtwn))

≤ ∥p∥2 − 2αn⟨p, Jxn⟩ − 2(1− αn)⟨p, Jtwn⟩
+αn∥xn∥2 + (1− αn)∥twn∥2

−αn(1− αn)g∥Jxn − Jtwn∥2

= αnϕ(p, xn) + (1− αn)ϕ(p, twn)

−αn(1− αn)g∥Jxn − Jtwn∥2

≤ αnϕ(p, xn) + (1− αn)ϕ(p, wn)

−αn(1− αn)g∥Jxn − Jtwn∥2 (18)

and

ϕ(p, wn) = ϕ(p, J−1(βnJxn + (1− βn)Jun))

≤ ∥p∥2 − 2βn⟨p, Jxn⟩ − 2(1− βn)⟨p, Jun⟩
+βn∥xn∥2 + (1− βn)∥un∥2

−βn(1− βn)g∥Jxn − Jun∥2

= βnϕ(p, xn) + (1− βn)ϕ(p, un)− βn(1− βn)

g∥Jxn − Jun∥2
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≤ βnϕ(p, xn) + (1− βn)[ϕ(p, zn)− ϕ(un, zn)]

−βn(1− βn)g∥Jxn − Jun∥2

≤ βnϕ(p, xn) + (1− βn)[ϕ(p, T
nxn)

−ϕ(un, zn)]− βn(1− βn)g∥Jxn − Jun∥2

≤ βnϕ(p, xn) + (1− βn)[ϕ(p, xn)

+νnζ(ϕ(p, xn)) + µn − ϕ(un, zn)]

−βn(1− βn)g∥Jxn − Jun∥2

= ϕ(p, xn) + νn sup
u∗∈F

ζ(ϕ(u∗, xn)) + µn

−(1− βn)ϕ(un, zn)

−βn(1− βn)g∥Jxn − Jun∥2

= ϕ(p, xn) + ξn − (1− βn)ϕ(un, zn)

−βn(1− βn)g∥Jxn − Jun∥2

= ϕ(p, xn) + ξn, (19)

where ξn = νn supu∗∈F ζ(ϕ(u∗, xn)) + µn.
By the assumptions of {νn}, {µn}, we obtain

ξn = νn sup
u∗∈F

ζ(ϕ(u∗, xn)) + µn → 0, as n → ∞. (20)

Substituting (19) into (18), we have

ϕ(p, yn) ≤ αnϕ(p, xn) + (1− αn)[ϕ(p, xn) + ξn

−βn(1− βn)g∥Jxn − Jun∥2]
≤ ϕ(p, xn) + ξn −

(1− αn)βn(1− βn)g∥Jxn − Jun∥2

≤ ϕ(p, xn) + ξn, ∀p ∈ F. (21)

This means that, p ∈ Cn+1 for all n ≥ 0. As consequently,
the sequence {xn} is well defined. Moreover, since xn =
ΠCnx0 and xn+1 ∈ Cn+1 ⊂ Cn, we get

ϕ(xn, x0) ≤ ϕ(xn+1, x0),

for all n ≥ 0. Therefore, {ϕ(xn, x0)} is nondecreasing.
By definition of xn and Lemma II.6, we have

ϕ(xn, x0) = ϕ(ΠCnx0, x0) ≤ ϕ(p, x0)− ϕ(p,ΠCnx0)

≤ ϕ(p, x0),

for all p ∈
∩∞

n=0 F (Tn) ⊂ Cn. Thus, {ϕ(xn, x0)} is a
bounded sequence. Moreover, by (11), we know that {xn}
is bounded. So, limn→∞ ϕ(xn, x0) exists. Again, by Lemma
II.6, we have

ϕ(xn+1, xn) = ϕ(xn+1,ΠCnx0)
≤ ϕ(xn+1, x0)− ϕ(ΠCnx0, x0)
= ϕ(xn+1, x0)− ϕ(xn, x0),

for all n ≥ 0. Thus, ϕ(xn+1, xn) → 0 as n → ∞.
Since {xn} is bounded and x is reflexive, there exists a

subsequence {xni} ⊂ {xn} such that xni ⇀ q ∈ C.
From Cn is closed and convex and Cn+1 ⊂ Cn, this

implies that Cn is weakly closed and q ∈ Cn, for each n ≥ 0.
In view of xni

= ΠCni
x0, we have

ϕ(xni , x0) ≤ ϕ(q, x0), ∀ni ≥ 0.

Since the norm ∥ · ∥ is weakly lower semi-continuous, we
have

lim infnt→∞ ϕ(xni , x0) = lim infni→∞ ∥xni∥2 − 2⟨xni , Jx0⟩
+∥x0∥2|

≥ ∥q∥2 − 2⟨q, Jx0⟩+ ∥x0∥2|
= ϕ(q, x0).

So,

ϕ(q, x0) ≤ lim inf
ni→∞

ϕ(xni , x0) ≤ lim sup
ni→∞

ϕ(xni , x0) ≤ ϕ(q, x0).

this implies that limni→∞ ϕ(xni , x0) = ϕ(q, x0). By Kadec-
Klee property of E, we have

lim
ni→∞

xni = q, as ni → ∞.

Since the sequence {ϕ(xn, x0)} is convergent and
limni→∞ ϕ(xni , x0) = ϕ(q, x0) which implies that
limn→∞ ϕ(xn, x0) = ϕ(q, x0). If there exists some
subsequence {xnj} ⊂ {xn} such that xnj ⇀ q∗, then from
Lemma II.6

ϕ(q, q∗) = limni,nj→∞ ϕ(xni , xnj )
= limni,nj→∞ ϕ(xni ,ΠCnj

x0)

≤ limni,nj→∞[ϕ(xni , x0)− ϕ(ΠCnj
x0, x0)]

= limni,nj→∞[ϕ(xni , x0)− ϕ(xnjx0, x0)]
= ϕ(q, x0)− ϕ(q, x0) = 0.

This implies that q = q∗ and so

lim
n→∞

xn = q. (22)

By definition of ΠCnx0, we have

ϕ(xn+1, xn) = ϕ(xn+1,ΠCnx0)

≤ ϕ(xn+1, x0)− ϕ(ΠCnx0, x0)

= ϕ(xn+1, x0)− ϕ(xn, x0). (23)

From limn→∞ ϕ(xn, x0) exists, we have

lim
n→∞

ϕ(xn+1, xn) = 0. (24)

It follows from Lemma II.2, we get

lim
n→∞

∥xn+1 − xn∥ = 0. (25)

By definition of Cn and xn+1 = ΠCn+1x0 ∈ Cn+1, we have

ϕ(xn+1, yn) ≤ ϕ(xn+1, xn) + ξn. (26)

It follows from (24) and ξn → 0 as n → ∞ that

lim
n→∞

ϕ(xn+1, yn) = 0. (27)

Again from Lemma II.2, we have

lim
n→∞

∥xn+1 − yn∥ = 0. (28)

By using the triangle inequality, we get

∥yn − xn∥ ≤ ∥yn − xn+1∥+ ∥xn+1 − xn∥, (29)

again by (25) and (28), we also have

lim
n→∞

∥yn − xn∥ = 0. (30)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol II, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19252-6-8 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

∥Jyn − Jxn∥ = 0. (31)

From (21), for u∗ ∈ F (T ) and un = Jrnzn, zn ∈ Tnxn, we
have

ϕ(p, yn) ≤ ϕ(p, xn)+ξn−(1−αn)βn(1−βn)g∥Jxn−Jun∥2,

and hence

(1− αn)βn(1− βn)g∥Jxn − Jun∥2

≤ ϕ(p, xn)− ϕ(p, yn) + ξn. (32)

On the other hand, we note that

ϕ(p, xn)− ϕ(p, yn) = ∥xn∥2 − ∥yn∥2 − 2⟨p, Jxn − Jyn⟩
≤ ∥xn − yn∥(∥xn + yn∥)

+2∥p∥∥Jxn − Jyn∥. (33)

It follows from ∥xn − yn∥ → 0 and ∥Jxn − Jyn∥ → 0, that

ϕ(p, xn)− ϕ(p, yn) → 0, as n → ∞. (34)

Since condition (i), (20) and (34), it follows from (32)

g∥Jxn − Jun∥ → 0, as n → ∞. (35)

It follows from the property of g that

∥Jxn − Jun∥ → 0, as n → ∞, (36)

and so

lim
n→∞

∥Jxn − Jun∥ = lim
n→∞

∥Jxn − JJrnzn∥ = 0. (37)

Since J−1 is uniformly norm-to-norm continuous, we have

lim
n→∞

∥xn − un∥ = lim
n→∞

∥xn − Jrnzn∥ = 0. (38)

From (18) and (19), we obtain that

ϕ(p, yn) ≤ ϕ(p, xn) + (1− αn)ξn

−(1− αn)(1− βn)ϕ(un, zn), (39)

and hence

(1−αn)(1−βn)ϕ(un, zn) ≤ ϕ(p, xn)−ϕ(p, yn)+ξn. (40)

By condition (i), (ii) and (20), we have

lim
n→∞

ϕ(un, zn) = 0. (41)

From Lemma II.2, we get

lim
n→∞

∥un − zn∥ = lim
n→∞

∥Jrnzn − zn∥ = 0. (42)

Since J is uniformly norm-to-norm continuous, we have

lim
n→∞

∥Jun − Jzn∥ = lim
n→∞

∥JJrnzn − Jzn∥ = 0. (43)

From definition of Cn, we have

αnϕ(z, xn) + (1− αn)ϕ(z, wn) ≤ ϕ(z, xn) + ξn

⇔ ϕ(z, wn) ≤ ϕ(z, xn) + ξn.

Since xn+1 = ΠCn+1x0 ∈ Cn+1, we have

ϕ(xn+1, wn) ≤ ϕ(xn+1, xn) + ξn. (44)

It follows from (24) and ξn → 0 as n → ∞ that

lim
n→∞

ϕ(xn+1, wn) = 0. (45)

From Lemma II.2, we have

lim
n→∞

∥xn+1 − wn∥ = 0. (46)

By using the triangle inequality, we get

∥wn − xn∥ ≤ ∥wn − xn+1∥+ ∥xn+1 − xn∥, (47)

again by (25) and (46), we also have

lim
n→∞

∥wn − xn∥ = 0. (48)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞

∥Jwn − Jxn∥ = 0. (49)

From (18) and (19), that

ϕ(p, yn) ≤ ϕ(p, xn) + ξn

−αn(1− αn)g∥Jxn − Jtwn∥, (50)

and hence

αn(1−αn)g∥Jxn−Jtwn∥ ≤ ϕ(p, xn)−ϕ(p, yn)+ξn. (51)

By condition (ii), (20) and (34), we obtain that

g∥Jxn − Jtwn∥ → 0, as n → ∞. (52)

It follows from the property of g that

∥Jxn − Jtwn∥ → 0, as n → ∞. (53)

Since J−1 is uniformly norm-to-norm continuous, we have

∥xn − twn∥ → 0, as n → ∞. (54)

By using the triangle inequality, again

∥wn − twn∥ ≤ ∥wn − xn∥+ ∥xn − twn∥. (55)

By (48) and (54), we have

∥wn − twn∥ → 0. (56)

Since {xn} is bounded and xni ⇀ q ∈ C. It follows from
(48), we have wni ⇀ q as i → ∞ and t is relatively
nonexpansive. We have that q ∈ F̂ (t) = F (t).

Next, we show that q ∈ A−1(0). Indeed, since
lim infn→∞ rn > 0, it follows from (42) that

lim
n→∞

∥Brnzn∥ = lim
n→∞

1

rn
∥zn − un∥ = 0. (57)

If (z, z∗) ∈ A, then it holds from the monotonicity of B that

⟨z − zni , z
∗ −Brni

zni⟩ ≥ 0,

for all i ∈ N. Letting i → ∞, we get ⟨z − q, z∗⟩ ≥ 0. Then,
the maximality of A implies q ∈ A−1.

By (38) and (42), we have

lim
n→∞

∥xn − zn∥ = 0, (58)

From (22), we get

zn → q as n → ∞. (59)

From un ∈ Tnxn and let {sn} be a sequence generated by
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

s2 ∈ Tz1 ⊂ T 2x1;
s3 ∈ Tz2 ⊂ T 3x2;
s4 ∈ Tz3 ⊂ T 4x3;
...
sn ∈ Tzn−1 ⊂ Tnxn−1;
sn+1 ∈ Tzn ⊂ Tn+1xn;
...

(60)

By the assumption that T is uniformly L-Lipschitz contin-
uous and any zn ∈ Tnxn and an+1 ∈ Tzn ⊂ Tn+1xn, we
have

∥sn+1 − zn∥ ≤ ∥sn+1 − zn+1∥+ ∥zn+1 − xn+1∥
+∥xn+1 − xn∥+ ∥xn − zn∥

≤ L∥xn − xn+1∥+ ∥zn+1 − xn+1∥
+∥xn+1 − xn∥+ ∥xn − zn∥

≤ (L+ 1)∥xn − xn+1∥+ ∥zn+1 − xn+1∥
+∥xn − zn∥.

From (22), (25) and (59) that

lim
n→∞

∥sn+1 − zn∥ = 0 and lim
n→∞

sn+1 = q. (61)

In view of closedness of T , it yields that q ∈ Tq. Therefore
q ∈ F (T ).

Finally, we show that xn → q = ΠFx0. Let p∗ = ΠFx0.
Since p∗ ∈ F ⊂ Cn and xn = ΠCn

x0, we have

ϕ(xn, x0) ≤ ϕ(p∗, x0),∀n ≥ 0.

This implies that

ϕ(q, x0) = lim
n→∞

ϕ(xn, x0) ≤ ϕ(p∗, x0). (62)

In view of definition of ΠFx0, we have q = p∗. Therefore,
xn → q = ΠFx0. This completes the proof. �
Corollary III.2. Let E be a real uniformly smooth and
uniformly convex Banach space with Kadec-Klee property
and let C be a nonempty closed convex subset of E. Let T :
C → CB(C) be a closed and total quasi-ϕ-asymptotically
nonexpansive multivalued mapping with nonnegative real
sequence {νn}, {µn} and a strictly increasing continuous
function ζ : R+ → R+ such that µ1 = 0, νn → 0, µn → 0
as n → ∞ and ζ(0) = 0 such that F := F (T ) and let a
sequence {xn} in C by the following algorithm:

x0 ∈ C, chosen arbitrarity and C0 = C,
wn = J−1(βnJxn + (1− βn)Jzn), zn ∈ Tnxn

yn = J−1(αnJxn + (1− αn)Jwn),
Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ αnϕ(z, xn)

+(1− αn)phi(z, wn) ≤ ϕ(z, xn) + ξn},
xn+1 = ΠCn+1x0,

(63)
for n ∈ N ∪ {0}, where J is the single-valued duality
mapping on E and ξn = νn supu∗∈F (T ) ζ(ϕ(u

∗, xn)) + µn.
The coefficient sequence {αn}, {βn} ⊂ [0, 1] satisfying
(i) 0 < β1 ≤ βn ≤ β2 < 1,

(ii) 0 ≤ αn ≤ α < 1,

Then {xn} converges strongly to ΠF (T )x0, where ΠF (T ) is
the generalized projection from C onto F (T ).

IV. CONCLUSION

We established the strong convergence theorem for fixed
points of sequence for multivalued nonexpansive mappings
and a zero of maximal monotone operator in Banach spaces.
The results of this paper extended and improved the corre-
sponding results given by Tang and Chang [15] and some
authors in the literature.
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