
A Genetic Algorithm for the Order Batching
Problem in Low-Level Picker-to-Part Warehouse

Systems
Temel Öncan

Abstract—In this work we introduce a Genetic Algorithm
(GA) for the Order Batching Problem considering traversal
and return routing policies. The proposed GA has been tested
on randomly generated instances and compared with the well-
known savings algorithm. According to our extensive compu-
tational experiments we can say that the proposed GA yields
promising solutions in acceptable computation times.

Index Terms—Order Batching Problem; Genetic Algorithm;
Warehouse Management

I. INTRODUCTION

WAREHOUSE systems have several functions includ-
ing receiving, storage, order picking and shipping.

Among these functions, order picking is known to be the
most labor intensive and costly one [8]. Order picking is the
process of retrieving products from their storage locations
in order to satisfy customer requests. Order picking costs is
estimated to be as much as of 65 % of the total warehouse
operating expenses [26]. In this study we consider the order
batching problem (OBP) which is shown to be NP-hard
by Gademann and Van de Velde [11]. Given both a list of
customer orders and order picking routing policy, the OBP
deals with constructing batches of customer orders such that
the total travel length of pickers is minimized.

Broadly speaking, order-picking systems can be grouped
in two categories according to the material handling equip-
ments used: picker-to-parts systems and parts-to-picker sys-
tems. In picker-to-parts systems, order pickers travel along
the warehouse and retrieve the items requested. On the other
hand, in parts-to-picker systems the requested items are
handled and transported by automatic storage and retrieval
systems (AS/RSs) to order pickers [7], [28]. Particularly,
there exists two types of picker-to-parts systems: low-level
and high-level picking systems. In low-level picking systems,
the picker travels along the aisles in order to pick the
requested items from the storage bins or racks. In high-level
systems, the pickers drive a truck or crane to reach the pick
locations. In this work, we address low-level picker-to-parts
picking systems employing human pickers. De Koster, Le-
Duc and Roodbergen [7] have claimed that 80 % of all order-
picking systems in Western Europe are of this type.

In order picking systems, the service level basically con-
sists of order delivery time, order integrity and accuracy [7].

Manuscript received December 8, 2012; revised January 7, 2013. This
research is supported by the Turkish Scientific and Technological Research
Council Research Grants Nos. 107M462 and 109M139, and Galatasaray
University Scientific Research Project Grant No 12.402.009.

T. Öncan is with the Department of Industrial Engineering,
Galatasaray Üniversitesi, Ortaköy, İstanbul, 34357, TÜRKİYE e-mail:
ytoncan@gsu.edu.tr

Order delivery time is closely related with the travel time
of the picker. As pointed out by Tompkins, White, Bozer
and Tanchoco [26] almost half of the order picker time is
wasted while travelling. Despite several activities other than
travelling, require a considerable amount of the picker’s time
([14], [21], [23]), the time devoted to the travel activity is
seen as the most time consuming activity [7]. Furthermore,
the travel time has a substantial role in customer satisfaction
since the shorter the travel time is; the sooner the requested
items are ready for shipping. Hence, among several objective
functions that can be taken into consideration such as the
minimization of order throughput, maximization of item
accessibility, maximization of labor use; the minimization of
pickers’ total travel distance, which will be also addressed
in this paper, is the most widely considered one [7].

In the literature, several order picking routing policies have
been introduced: traversal [13], return, midpoint, largest gap
[14], composite and optimal [22] routing policies. Petersen
[21] claims that the routing policies range from simple to
more complex in that order. That is to say, traversal, return
and midpoint strategies are simpler than the largest gap,
composite and optimal routing policies. According to the
experiments by Petersen [21], the optimal routing strategy
is the winner at the expense of its disadvantages such as
discernible pattern and the routes with backtracks. However,
the author asserts also that the traversal, return, midpoint,
largest gap and composite routing policies are easy to use.
Note that, complex routing policies may yield congestion
problems when several pickers share long, narrow and two-
way aisles. Simple routing policies may arise to be useful
especially for complex order picking systems with many
pickers.

In this work, we concentrate only on the OBP considering
traversal and return routing policies. In the traversal routing
policy also known as the S-shape algorithm, the picker starts
from the I/O point, visits every aisle where an item is
required to be picked up and returns the I/O point. The picker
enters an aisle from one end and leaves from the opposite
end. In case the number of aisles that must be visited is odd
then the picker enters and returns in the last aisle when it
retrieves the last item in that aisle. Note that, only in that
case the picker does not necessarily traverses the last aisle
completely. In the return routing policy, a picker starts from
the I/O point and proceeds along the front aisle. The picker
enters each aisle where an item has to be picked up and
travels along this aisle as far as the deepest location where
an item must be retrieved, then returns and leaves the aisle
from the same end.

For the sake of clearness, we present with Fig. 1 an

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



Fig. 1. Layout of a rectangular warehouse

Fig. 2. Traversal Routing Policy

illustration of the warehouse layout that we focus in this
work. In Fig. 1, we consider three orders, i.e. order 1, order
2 and order 3 which include 4, 3 and 5 items, respectively.
Note that, the location of these items are indicated with
order numbers. The shape of the warehouse is assumed to
be rectangular with parallel storage. The warehouse totally
incorporates 10 parallel aisles. The aisles are number starting
from the left most aisle. The I/O point is situated in front
of the leftmost aisle. The picking area has the capacity to
store 200 items. Each order must be assigned into a batch
and each order consists of at least one item. The locations
of items are known a priori and we assume that sufficient
number of homogenous pickers are available. The amount of
items which belong to the orders assigned to a batch should
not exceed the picker’s capacity. The quantity to be picked
up of each item is assumed to be one unit. For the OBP
test problems, we assume that the horizontal distance within
stocking aisles is negligible and the picker does not need
additional time for entering and leaving the aisles. Fig. 2
and Fig. 3 depict the routes of the picker serving all of three
orders considering traversal and return policies, respectively.

To the best of our knowledge, there are very few studies
addressing the exact solution of the OBP. Gademann, Van
den Berg and Van der Hoff [10] have designed a branch and

Fig. 3. Return Routing Policy

bound algorithm for the order batching with the objective
of minimizing the maximum travel time of the pickers. The
OBP has been formulated as a set partitioning problem by
Gademann and Van de Velde [11] where the authors have
devised a branch and price algorithm and have reported the
optimum solution of problems up to 32 customer orders.
For a revised version of OBP considering the traversal
routing policy, Bozer and Kile [2] have proposed a Mixed
Integer Programming (MIP) formulation and they could solve
small size instances (up to 25 customers) to optimality.
The revised version of the OBP addressed by Bozer and
Kile [2] is quite different than the original OBP considering
the traversal routing policy. The authors address only the
traversal routing policy when the number of traversals is
even. Their formulation does not compromise the case when
the number of traversals is odd and the picker returns back
in the last aisle whenever he retrieves the last requested item.
Recently, Henn and Wäsher [15] have claimed that after
generating all possible feasible batches they could solve OBP
instances with up to 40 customer orders by running the set
partitioning partitioning formulation by Gademann and Van
de Velde [11].

Several heuristic algorithms have also been developed
for the OBP. Among them we can mention the first fit-
envelope based batching heuristic [24], the priority rule based
algorithms [12], the seed algorithms ([9], [16], [17]) and
the savings algorithms [5]. Hwang and Kim [20] proposed
order batching algorithm based on cluster analysis. Data
mining approaches have been developed by Chen and Wu
[4] and Chen, Huang, Chen and Wu [3]. De Koster, Le-
Duc and Roodbergen [6] have computationally tested several
construction heuristic procedures and have reported that
among them the seed algorithm and the savings algorithm
yield the most promising performance.

As meta-heuristic algorithms designed for the OBP, we can
mention the Genetic Algorithm (GA) proposed by Hsu, Chen
and Chen [19], Tabu Search (TS) algorithm by Henn and
Washer [15] and the variable neighborhood search algorithm
by Albareda-Sambola, Alonso-Ayuso, Molina and Simon de
Blas [1]. Tsai, Liou and Huang [27] have simultaneously
addressed the OBP and the routing problem which considers
both travel distance and order due time. The authors have
proposed a GA for this combined problem. For a survey on
the OBP we refer to the recent review paper by De Koster,
Le-Duc and Roodbergen [7].

The basic motivation of this study is to introduce an
efficient GA for the OBP. We compare the performance of the
proposed GA with the savings algorithm (named as C&W(ii)
in [6]) which is known to be one of the best performing
construction heuristics for the OBP [6]. According to our
computational experiments we can state that the proposed
GA yields comparable performance to the TS algorithm
devised by Henn and Washer [15].

The rest of the paper is organized as follows. In Section 2
we present an outline of the proposed GA. This is followed
by the computational results in Section 3. Finally, concluding
remarks are given in Section 4.

II. GENETIC ALGORITHM

The GA is a stochastic search procedure which simulates
the natural selection process [18]. The GA considers a pop-

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



ulation of solutions, which are also called as chromosomes.
Each solution is represented with an encoding scheme which
serve to translate a solution into a string of genes that form
a chromosome.

Each iteration of GA consists of several operators. Among
them, reproduction, crossover and mutation are the most
common ones. The reproduction operator selects the best-
fit chromosomes to the next generation. Crossover allows
solutions to exchange information from two randomly chosen
parents in order to produce one or more offspring which
include some combination of genes from the parents. The
mutation operator randomly modify some of the genes
within a chromosome. In our implementation, we employ
the immigration operator in stead of the mutation operator.
The immigration operator creates a small number of new
solutions by means of the procedure used to construct the
initial population.

A. Encoding and fitness value of a solution

A suitable encoding of the solution is crucial for the
performance of the GA since with a good representation it
would be possible to clearly state crossover and immigration
operators. Keeping in mind this fact, we prefer to represent
each solution with a vector of integer numbers. This repre-
sentation is depicted with Fig. 4 for an OBP instance with 10
orders and 3 batches. Observe that, the first batch consists of
orders {5, 7, 9}; the second batch includes orders {1, 3, 4, 6}
and the third batch incorporates order {2, 8, 10}.

Given the set of orders, i = 1, . . . , n let Q indicate the
capacity of each picker and mi denote the number of items
in order i. Note that we assume homogeneous capacity for all
pickers. Let xij be equal to 1 if and only if order i is assigned
to batch j. Then the capacity constraints which enforce that
the items of all orders assigned to batch j satisfy the capacity
of the picker is as follows.

n∑
i=1

mixij ≤ Q for j = 1, . . . , p (1)

Here, the number of batches is computed as follows p =⌈(
n∑

i=1

mi

)
/Q

⌉
where ⌈y⌉ is the smallest integer not less

than y.
For each solution xt ∈ Ψ, where Ψ is the set of all possible

assignments of n order to p batches, we compute fitness
and unfitness functions. The fitness function of a solution
is equal to its objective function value ct. Namely, the total
tour length of all pickers. The unfitness ut of a solution
xt measures the infeasibility of the capacity constraints (1).
That is to say, the unfitness function is as follows: ut =
n∑

j=1

max

{
0,

n∑
i=1

mix
t
ij −Q

}
. Note that when, ut = 0 then

the xt solution satisfies the capacity constraints (1).

B. Initial Population

The GA is initialized with a randomly generated chromo-
some set which is called as the initial population. To generate
initial population we make use of the seed algorithm with
random order selection rule [12]. In the initialization step,
p out of n orders are randomly selected as the seed orders.

For each of the selected p orders, we assign a picker. Then
in the next step, we first construct a random sequence of the
remaining n− p orders which are waiting to be assigned to
a picker. Then, starting from the top of the constructed list,
we assign each order to the most suitable picker as long as
the picker has enough capacity to carry that order. This step
continues until all orders are assigned to a picker.

C. Improvement Heuristic
When a new solution is created after crossover operator,

immigration operator or the initial population construction
phase, we try to improve the new solution using an improve-
ment heuristic which consists of MOV E, SWAP (1, 1),
SWAP (1, 2) and SWAP (2, 1) operations. The improve-
ment heuristic perform these operations in that order and
the best move for each operation is performed at the end of
its run. The MOV E operation tries to remove an order from
its batch and re-assign to another batch. The SWAP (1, 1)
operation considers all possible pairwise interchanges of
orders. SWAP (1, 2) and SWAP (2, 1) operations attempt to
remove one order from a batch and two orders from another
batch; then exchange their assignments. The improvement
heuristic consists of two phases. In the first phase, the
heuristic tries to construct a feasible solution and in the
second phase it makes an effort to improve the current
solution value without harming the feasibility. In case the
current solution is feasible the first phase is skipped.

In the first phase, we apply MOV E operation which tries
to remove an order assigned to a batch which exceeds the
picker capacity Q and to move it to another batch which
has enough capacity. Considering all possible moves the
one which yields the largest enhancement in the feasibility,
namely the largest improvement in the unfitness function ut,
is performed. The MOV E operation is run until no further
enhancement in the unfitness function is observed. Next,
SWAP (1, 1) operation is performed in order to exchange
two orders such that one of them is assigned to an over-
capacitated batch and the other one is assigned to an under-
capacitated batch. Then, among all possible order exchanges,
the one which yields the largest enhancement in the feasibil-
ity, i.e. unfitness function ut, is done and the SWAP (1, 1)
operation is run until no more improvement is obtained.
Finally, SWAP (1, 2) and SWAP (2, 1) operations are run
until they do not yield enhancement in the feasibility of the
solution. The first phase terminates after applying MOV E,
SWAP (1, 1), SWAP (1, 2) and SWAP (2, 1) operations
without having any improvement.

The second phase of the improvement heuristic address
the enhancement in the solution value without violating
the feasibility. Given the current assignment of n orders
to p batches, MOV E, SWAP (1, 1), SWAP (1, 2) and
SWAP (2, 1) operations are implemented in their turn and
we compute the change in the objective value that results at
the end of these operations. Then the move resulting in the
largest improvement and without harming the feasibility of
the solution is realized. This procedure is repeated until no
further improvement in the solution value is possible.

D. Crossover and Immigration
In order to implement crossover operation, two solutions

are selected from population and recombined producing

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



offspring. The crossover operations exchanges information
between two selected solutions. We have employed the
parameterized uniform crossover operation [25] which yields
off-spring by mixing the information of two parents. The
parameterized uniform crossover mixes the information of
two parents according to a fixed mixing ratio. In case the
mixing ratio is 0.5 then half of information comes from
the first parent and the other half is inherited from the
second parent. In other words, in case the mixing ratio
is set to 0.5, then the parameterized uniform crossover
considers each gene in the parent strings for exchange with a
probability of 0.5. In our GA implementation we set the fixed
mixing ratio to 0.6. That is to say, the genes of a child are
inherited from the first parent with probability 0.6 and from
the second parent with probability 0.4. The parameterized
uniform crossover is illustrated with Fig. 4 and Fig. 5.

The immigration operator serves to yield genetic diversity
from one generation to the next one and hence it prevents
us falling into local optimums. Note that, our immigration
operator first employs the seed algorithm with random order
selection rule [12]. Then we try to enhance this solution by
running the improvement heuristic.

E. Generation of a new population

The population size plays a critical role in the performance
of the GA. According to our preliminary computational
experiments, We have observed that when the size of the
population is small, then the convergence of the GA becomes
faster. Moreover, with the increasing population size one may
encounter convergence problems. Considering the trade-off
between the population size and the convergence of the GA,
we have decided to employ a population size of 20+ n/2
solutions.

During the evolution process, we form a mating pool
from the current population by replicating each chromosome
twice. Then we randomly select random pairs of the parents
without replacement and we generate two offspring from
each pair by using the parameterized uniform crossover
operator. As a result of this operation the population is
doubled. First, we sort the parents and offspring in increasing
order of their unfitness values. Then, the feasible solutions in
both lists are further ordered according to their fitness values.

After applying reproduction, crossover and immigration
operators, we are ready to generate a new population. In
our implementation, 20% of the new population is chosen
from the best solution in the previous population, namely
the list of parents, and 60% of the new population is selected
from the best offspring obtained with the crossover operator.
Finally, the remaining 20% is generated via immigration. The
population has evolved through a number of generations until
a stopping criterion is satisfied.

Furthermore, during the generation of new population we
do not allow duplicate solutions. Whenever a new solution
is created, after improvement phase, it is compared to the
solutions already in the solution. In case it is the same
to any of the existing solution then it is not included in
the next generation. In addition, we do not allow multiple
combinations of orders batches. As for instance, when orders
{1, 7, 2}; {4, 6} and {3, 5} are assigned to batches 1, 2 and
3 respectively. Then we would not allow solutions which are

Fig. 4. Solution representation

Fig. 5. Before uniform crossover operator

represented with the assignment of these orders to batches
1, 3 and 2; 2, 1 and 3; 2, 3 and 1; 3, 1 and 2; 3, 2 and 1.

F. Stopping Criterion

After a careful experimentation and fine-tuning process,
we decided to stop the algorithm when the number of
generations reaches := 40+ ⌈n/3⌉. This setting is found to
be a suitable choice for most of the instances. Additionally,
we stop the algorithm, when ⌈n/4⌉ consecutive generations
have failed to improve the best known solution.

III. COMPUTATIONAL EXPERIMENTS

In this section we present the details of our computational
experiments. The algorithms are coded in C++ and tested
on a Dell Server PE2900 with two 3.16 GHz Quad Core
Processors and 32 GB RAM with Microsoft Windows Server
2003 operating system. In the literature, there is no standard
test library for the OBP. Hence we have produced our test
instances to carry out our computational experiments.

In the test instances that we have randomly produced, the
number of orders varies from 10 to 100 with an increment
of 10. For each number of orders we have generated 10
instances which totally makes 100 OBP test problems. The
number of items for each order is randomly chosen between
2 and 10. The items are randomly assigned to locations.
According to the capacity of the order picker we have
three classes of randomly generated test instances. These are

Fig. 6. After uniform crossover operator

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



the first class, the second class and the third class of test
instances, which assume picker capacities Q = 24, Q = 36,
and Q = 48, respectively.

In Table I, Table II and Table III (Table IV, Table V and
Table VI), we report the computational results obtained with
OBP considering the traversal (return) routing policy and
picker capacities Q = 24, Q = 36 and Q = 48, respectively.
The first columns in all tables denote the instance names and
sizes. The last row of all table include the overall column
averages. The number of orders n is followed by the capacity
of the picker Q. For example the row 20 36 stands for
the computational experiments obtained with 10 OBP test
instances with 20 orders and picker capacity Q = 36. The
next two columns include the experimental results obtained
with the savings heuristic (named as C&W(ii) in [6]) and
the last two columns report the results obtained with the GA
algorithm. We have chosen the savings heuristic because of
its promising performance as pointed out by De Koster, Van
Der Poort and Wolters [6]. The CPU times reported are in
seconds and UB stands for the upper bound value. We assess
the performance of the proposed GA in terms of solution
accuracy within a CPU time limit on randomly generated
test problems.

The average percent improvements obtained with the GA
algorithm for the OBP considering traversal policy over the
savings algorithm are 3.94 %, 3.55 % and 3.65 % for picker
capacity Q = 24, Q = 36 and Q = 48, respectively.
These values are 4.08 %, 3.89 % and 4.16 % for the OBP
considering return policy.

The formulae used to calculate the average percent im-
provements is

100× (ZS
UB − ZGA

UB )

ZS
UB

(2)

where ZS
UB and ZGA

UB are respectively the upper bounds
obtained with the savings algorithm and the GA.

As can be observed, the performance of MILP formula-
tions improves for larger values of Q. Furthermore, consid-
ering the overall average percent improvements the MILP
formulation for the OBP considering traversal and return
policies, which are 3.71 % and 4.04 % respectively. Although
we can not say that it is a fair comparison, since both the
test instance and computational platform are different, the TS
algorithm by Henn and Washer [15] for the OBP considering
the traversal policy, yields an average improvement over the
C&W(ii) in [6] amounts to 4.05 %. Hence, we can say that
the performance of the proposed GA is comparable to their
TS algorithm.

Moreover, when we consider the CPU times required by
the GA and the savings algorithm; the winner is the saving
algorithm. However, we believe the attempts to obtain more
accurate solutions of the OBP at the expense of additional
CPU time are worthwhile.

IV. CONCLUSION

We have addressed the order batching problem (OBP)
which is known to be NP-hard. The proposed Genetic Algo-
rithm (GA) has been tested on randomly generated instances
and they have been compared with the savings algorithm
which is known to be one of the most promising construction
heuristics for the OBP. From the experimental results, we

TABLE I
COMPUTATIONAL RESULTS WITH THE SAVINGS ALGORITHM AND THE
GA FOR THE OBP CONSIDERING TRAVERSAL POLICY WITH Q = 24.

TRAVERSAL SAVINGS GA

UB CPU UB CPU

10 24 391.44 0.0 367.04 1.1

20 24 691.76 0.0 666.86 2.0

30 24 968.4 0.0 930.63 3.5

40 24 1265.84 0.1 1232.93 5.4

50 24 1528.16 0.2 1450.22 8.6

60 24 1814.08 0.8 1745.14 12.5

70 24 2134.08 1.4 2078.59 28.9

80 24 2395.04 2.9 2313.61 43.4

90 24 2668.64 5.0 2559.23 76.1

100 24 2954.48 8.5 2833.35 128.8

Average 1681.19 1.9 1617.76 31.0

TABLE II
COMPUTATIONAL RESULTS WITH THE SAVINGS ALGORITHM AND THE
GA FOR THE OBP CONSIDERING TRAVERSAL POLICY WITH Q = 36.

TRAVERSAL SAVINGS GA

UB CPU UB CPU

10 36 291.6 0.0 278.48 1.3

20 36 511.36 0.0 488.86 2.2

30 36 687.36 0.0 656.43 4.2

40 36 922 0.1 895.26 6.2

50 36 1107.28 0.2 1075.17 10.5

60 36 1307.04 0.6 1257.37 15.7

70 36 1534.4 1.2 1496.04 24.1

80 36 1691.04 2.2 1640.31 48.9

90 36 1913.44 4.0 1859.86 94.5

100 36 2107.68 6.4 2019.16 141.2

Average 1207.32 1.5 1166.69 34.9

TABLE III
COMPUTATIONAL RESULTS WITH THE SAVINGS ALGORITHM AND THE
GA FOR THE OBP CONSIDERING TRAVERSAL POLICY WITH Q = 48.

TRAVERSAL SAVINGS GA

48 UB CPU UB CPU

10 48 249.68 0.0 238.69 1.6

20 48 408.24 0.0 392.73 2.9

30 48 576.64 0.0 557.61 5.8

40 48 748.32 0.1 718.39 8.6

50 48 889.04 0.2 847.26 11.8

60 48 1046.24 0.6 1015.90 19.2

70 48 1206.48 1.1 1173.91 28.3

80 48 1342.72 2.2 1271.56 55.6

90 48 1532.16 3.9 1489.26 99.1

100 48 1664.24 6.5 1620.97 156.2

Average 966.376 1.5 932.63 38.9

observe that the proposed GA yields quite good upper bounds
in reasonable CPU times. According to our computational
experiments we have observed that the proposed GA yields
a comparable performance to a recent Tabu Search algorithm
for the OBP.

REFERENCES

[1] M. Albareda-Sambola, M. Alonso-Ayuso, E. Molina, and C. Simon de
Blas, “Variable neighborhood search for order batching in a warehouse,”

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013



TABLE IV
COMPUTATIONAL RESULTS WITH THE SAVINGS ALGORITHM AND THE

GA FOR THE OBP CONSIDERING RETURN POLICY WITH Q = 24.

RETURN SAVINGS GA

UB CPU UB CPU

10 24 471.72 0.0 458.52 1.2

20 24 855.12 0.0 818.3 2.2

30 24 1216.6 0.0 1171.6 4.0

40 24 1569.2 0.1 1489.2 6.4

50 24 1913.16 0.3 1813.7 8.7

60 24 2272.16 0.7 2188.1 15.1

70 24 2664.2 1.5 2584.3 35.3

80 24 2974.04 2.7 2881.8 46.0

90 24 3125.4 3.3 2947.3 93.6

100 24 3395.7 3.9 3253.1 131.4

Average 2045.73 1.3 1960.6 34.4

TABLE V
COMPUTATIONAL RESULTS WITH THE SAVINGS ALGORITHM AND THE

GA FOR THE OBP CONSIDERING RETURN POLICY WITH Q = 36.

RETURN SAVINGS GA

UB CPU UB CPU

10 36 369.32 0.0 352.0 1.3

20 36 672.64 0.0 649.8 2.2

30 36 931.48 0.0 890.5 4.7

40 36 1229.16 0.1 1191.1 7.2

50 36 1485.8 0.2 1429.3 12.6

60 36 1761.68 0.5 1700.0 19.4

70 36 2043.64 1.1 1953.7 25.3

80 36 2289.28 2.1 2190.8 59.7

90 36 2592.52 3.7 2509.6 115.3

100 36 2840.92 6.1 2724.4 166.6

Average 1621.64 1.4 1559.12 41.4

TABLE VI
COMPUTATIONAL RESULTS WITH THE SAVINGS ALGORITHM AND THE

GA FOR THE OBP CONSIDERING RETURN POLICY WITH Q = 48.

RETURN SAVINGS GA

UB CPU UB CPU

10 48 334.16 0.0 320.79 1.8

20 48 568.08 0.0 542.52 3.6

30 48 784.52 0.0 749.22 7.3

40 48 1022.12 0.1 982.26 8.9

50 48 1228.6 0.2 1161.03 13.9

60 48 1450.24 0.5 1387.88 22.7

70 48 1713.32 1.1 1661.92 31.1

80 48 1883.04 2.1 1794.54 68.9

90 48 2147.88 3.7 2061.96 121.9

100 48 2343.6 6.2 2268.60 167.1

Average 1347.56 1.4 1293.07 44.7

Asia-Pacific Journal of Operational Research, vol. 26, no. 5, pp. 655-
683, 2009.

[2] Y. A. Bozer and J. W. Kile, “Order batching in walk-and-pick order
picking systems,” International Journal of Production Research, vol.
46, no. 1, pp. 1887-1909, 2008.

[3] M. -C. Chen, C. -L. Huang, K.-Y. Chen and H.-P. Wu, “Aggregation of
orders in distribution centers using data mining,” Expert Systems with
Applications, vol. 28, no. 3, pp. 453-460, 2005.

[4] M. -C. Chen and H. -P. Wu, “An association-based clustering approach
to order batching considering customer demand patterns,” Omega - The
International Journal of Management Science, vol. 33, no. 4, pp. 333-
343, 2005.

[5] G. Clarke and J. W. Wright, “Scheduling of vehicles from a central
depot to a number of delivery points,” Operations Research, vol. 12,
no. 4 , pp. 568-581, 1964.

[6] R. De Koster, E. Van Der Poort and M. Wolters, “Efficient orderbatching
methods in warehouses,” International Journal of Production Research,
vol. 37, no. 7, pp. 1479-1504, 1999.

[7] R. De Koster, T. Le-Duc and K. J. Roodbergen, “Design and control
of warehouse order picking: A literature review,” European Journal of
Operational Research, vol. 182, no. 481-501, 2007.

[8] J. Drury, Towards more efficient order picking. IMM monograph no. 1,
The Institute of Materials Managements: Cranfield, UK, 1988.

[9] E. A. Elsayed, “Algorithms for optimal material handling in automatic
warehousing systems,” International Journal of Production Research,
vol. 19, no. 5, pp. 525-535, 1981.

[10] N. Gademann, J. Van den Berg and H. Van der Hoff, “An order
batching algorithm for wave picking in a parallel-aisle warehouse,” IIE
Transactions, vol. 33, no. 5, pp. 385-398, 2001.

[11] N. Gademann and S. Van de Velde, “Order batching to minimize total
travel time in a parallel-aisle warehouse,” IIE Transactions, vol. 37, no.
1, pp. 63-75, 2005.

[12] D. R. Gibson and G. P. Sharp, “Order Batching Procedures,” European
Journal of Operational Research, vol. 58, pp. 57-67, 1992.

[13] M. Goetschalckx and H. D. Ratliff, “Order picking in an aisle,” IIE
Transactions, vol. 20, no.1, pp. 53-62, 1998.

[14] R. W. Hall, “Distance approximations for routing manual pickers in a
warehouse,” IIE Transactions, vol. 24, no. 4, pp. 76-87, 1993.

[15] S. Henn and G. Wäsher, “Tabu search heuristics for the order batch-
ing problem in manual order picking systems,” European Journal of
Operational Research, vol. 222, pp. 484-494, 2012.

[16] Y. -C. Ho, T. -S. Su and Z. -B. Shi, “Order-bathcing methods for
an order-picking warehouse with two cross aisles,” Computers and
Industrial Engineering, vol. 55, no. 2, pp. 321-347, 2008.

[17] Y. -C. Ho and Y. -Y. Tseng, “A study on order-batching methods of
order-picking in a distribution centre with two cross-aisles,” Interna-
tional Journal of Production Research, vol. 44, no.17, pp. 3391-3417,
2006.

[18] J. Holland, Adaptation in Natural and Artificial Systems, University
of Michigan Press: Ann Arbor, MI, 1975.

[19] C. -M. Hsu, K. -Y. Chen and M. -C. Chen, “Batching orders in
warehouses by minimizing travel distance with genetic algorithms,”
Computers in Industry, vol. 56, no. 2, pp. 169-178, 2005.

[20] H. Hwang and D. G. Kim, “Order-batching heuristics based on cluster
analysis in low-level picker-to-part warehousing system,” International
Journal of Production Research, vol. 43, no. 17, pp. 3657-3670, 2005.

[21] C. G. Petersen, “An evaluation of order picking routeing policies,”
International Journal of Operations and Production Management, vol.
17, no. 11, pp. 1098-1111, 1997.

[22] H. D. Ratliff and A. S. Rosenthal, “Orderpicking in a rectangular ware-
house: a solvable case of the traveling salesman problem,” Operations
Research, vol. 31, pp. 507-521, 1983.

[23] K. J. Roodbergen and R. De Koster, “Routing methods for warehouses
with multiple cross aisles,” International Journal of Production Re-
search, vol. 39, no. 9, pp. 1865–1883, 2001.

[24] R. A. Ruben and F. R. Jacobs, “Batch construction and storage
assignment,” Management Science, vol. 45, no. 4, pp. 575-596, 1999.

[25] W. M. Spears and K. A. “On the virtues of parameterizes uniform
corssover,” in Proceedings of the Fourth International Conference on
Genetic Algorithms, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc, 1991, pp. 230-236.

[26] J. A. Tompkins, J. A. White, Y. A. Bozer and J. M. A. Tanchoco,
Facilities Planning. 3rd ed. John Wiley & Sons, New Jersey, 2003.

[27] C. -Y. Tsai, J. J. M. Liou and T. -M. Huang, “Using a multiple-GA
method to solve the batch picking problem: considering travel distance
and order due time,” International Journal of Production Research, vol.
46, no. 22, pp. 6533-6555, 2008.

[28] G. Wäsher, “Order picking: a survey of planning problems ans
methods,” in: H. Dyckoff, R. Lackes, J. Reeves (eds.) Supply Chain
Management and Reverse Logistics 2004, Springer, Berlin, pp. 323-
347.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2013 Vol I, 
IMECS 2013, March 13 - 15, 2013, Hong Kong

ISBN: 978-988-19251-8-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2013




